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Abstract

Fatty acids metabolic products determine meat quality in chickens. Identifying genes associ-

ated with fatty acids composition could provide valuable information for the complex genetic

networks of genes with underlying variations in fatty acids synthesis. RNA sequencing

(RNA-Seq) was conducted to explore the chicken transcriptome from the thigh muscle tis-

sue of 6 Huangshan Black Chickens with 3 extremely high and low phenotypic values for

percentage of polyunsaturated fatty acids (PUFAs). In total, we obtained 41,139,108–

44,901,729 uniquely mapped reads, which covered 74.15% of the current annotated tran-

scripts including 18964 mRNA transcripts, across all the six thigh muscle tissue samples. Of

these, we revealed 274 differentially expressed genes (DEGs) with a highly significant cor-

relation with polyunsaturated fatty acids percentage between the comparison groups based

on the ratio of PUFA/SFA. Gene ontology and pathway analysis indicated that the DEGs

were enriched in particular biological processes affecting fatty acids metabolism, biosynthe-

sis of unsaturated fatty acids (USFAs), and cell junction-related pathways. Integrated inter-

pretation of differential gene expression and formerly reported quantitative trait loci (QTL)

demonstrated that FADS2, DCN, FRZB, OGN, PRKAG3, LHFP, CHCHD10, CYTL1,

FBLN5, and ADGRD1 are the most promising candidate genes affecting polyunsaturated

fatty acids percentage.

Introduction

During recent decades, the breeding of meat type poultry focused on increasing growth perfor-

mance and improving breast and thigh meat yields. Although the impressive progress made

in these meat quality traits, there were some poor performances, such as excessive deposition

of abdominal fat, deterioration of taste quality, and decreased sensory acceptability for
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consumers. As an indigenous breed in China, the Huangshan Black Chicken has a distinct

appearance and quality in meat and egg products. Compared with the Arbor Acres (AA)

broiler, the Huangshan Black Chicken is highly popular in China because of its polyunsatu-

rated fatty acids concentration. Therefore, the elucidation of the precise molecular mecha-

nisms underlying fatty acids traits in Huangshan Black chickens will have both economic and

biological consequences.

In the past several decades, candidate gene analysis, quantitative trait locus (QTL) mapping,

and genome-wide association studies (GWASs) have been the main approaches to identify

genes or causal mutations for meat quality traits in chickens. A large number of promising

genetic associations and genomic regions have been successfully identified. As of December

21, 2017, 8,363 QTLs for 383different traits have been reported in 277 papers in chickens

(http://www.animalgenome.org/cgi-bin/QTLdb/GG/index). Of these, 339 QTLs for abdomi-

nal fat traits and 144 for breast muscle traits have been detected in the chicken chromosomal

regions. Moreover, GWASs can be used to identify the genes and variants underlying impor-

tant traits more precisely [1–2]. In chickens, GWASs have already been performed for egg pro-

duction and quality [3], growth [4–5], meat quality [6–7] and disease resistance traits [8–9].

Although these techniques have contributed significantly to our better understanding of mech-

anisms underlying meat quality traits [6,7], several potential limitations still exist. One major

limitation is the fine mapping required to identify causative variants. Additionally, some novel

genes or biological pathways associated with the target trait may be excluded unintentionally.

In recent years, next generation sequencing (NGS) technologies are increasingly being used

for identifying differential expression as well as opportunities to explore novel transcripts [10].

Of these, RNA-Seq has been widely utilized to detect differentially expressed genes (DEGs)

between two gene expression patterns, causative variants, and alternative splicing events. In

chickens, many studies of RNA-Seq have been conducted using intestinal mucosal [11], heart

[12], uterine [13], and ovarian tissues [14]. However, limited studies on the transcriptome of

thigh muscle tissues have been reported. The identification of DEGs in thigh muscle tissue rep-

resents the first step toward clarifying the complex biological properties of meat quality traits.

Therefore, the regulation of fat deposition in chickens at a genome wide level remains to be

elucidated. In the present study, we used RNA-Seq technology to examine the genome-wide

transcription profile in thigh muscle tissues between two groups of Huangshan Black Chickens

with extremely high and low phenotypic values of polyunsaturated fatty acids. We then pro-

posed key candidate genes affecting polyunsaturated fatty acids percentage by conducting inte-

grated analysis. The identified candidate genes could lead to improved selection of chicken

while providing new insights into meat quality traits.

Materials and methods

Ethics statement

All procedures for animal handling were reviewed and approved by the Institutional Animal

Care and Use Committee (IACUC) of Hefei University of Technology (Permit Number:

DK838).

Animals diet and sample collection

Huangshan Black Chickens were maintained in free-ranging flocks in a standardized farm

(Anhui conservation farm for Huangshan Black Chicken, Huangshan, China), using a diet as:

maize 64.0%, wheat bran 16.0%, full-fat soybean 10.0%, fish meal 5.0%, feed yeast powder

2.0%, bone meal 1.5%, inorganic additives 0.7%, Lysine 0.3%, Methionine 0.2%, salt 0.3%. Ten

male chickens with an average weight of 1.82 kg at 120 days old were selected randomly for
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our detection. To keep the environment factors identical, all chickens were raised in the same

way which was free access to food and water in natural lighting. Performance traits of Huang-

shan Black chickens were shown in supporting information (S1 File).

12 h after feed was withheld, the chickens were handled by electroshock, bled, and dismem-

bered. The thigh muscle tissue samples from the left leg of the chickens were removed within

30 min after slaughter. The samples for each chicken were carefully collected into an RNase-

free tube for RNA isolation, immediately frozen in liquid nitrogen, and kept at −80 ˚C until

required for RNA isolation. Meanwhile, sufficient samples were minced and kept at −20 ˚C for

fatty acids analysis.

Fatty acids analysis

Fatty acids samples from ten different individuals were methylated according to Ren et al [15]

with some modifications. 1 mL of 1 M KOH-methanol was added to the lipids (100 μL) for

esterification at 65 ˚C for 30 min. Then, after being cooled to room temperature, a 2 mL mix-

ture of boron fluoride-methanol (140 g BF3-ether per liter of methanol) was added to deal with

the fatty acids, and then heated at 65 ˚C for 5 min. 1 mL of saturated NaCl solution and 1 mL

n-hexane were then added at room temperature. The liquid was allowed to separate into 2

phases using a centrifuge (Thermo Scientific, Wilmington, DE, USA) at 2000 rpm for 5 min.

The upper phase containing fatty acid methyl esters (FAMEs) was collected.

The FAMEs samples were subsequently analyzed by Gas Chromatography-Mass Spectrom-

eter (GC-MS) using an Agilent 5975C GC (Santa Clara, CA, USA) equipped with a quadruple

mass spectrometer (flame ionization detector) and a capillary polar HP-88 cyanopropyl col-

umn (60 m × 0.25 mm ID × 0.20 μm film). With a flow rate of 2 mL / min, Helium was used as

the carrier gas. Initial column temperature was maintained at 125 ˚C, 8 ˚C per minute from

125 ˚C to 145 ˚C, then raised to 220 ˚C at 2 ˚C / min and maintained for 67 min. Meanwhile,

the temperatures of the injector and FID detector were both set at 250 ˚C. As the internal stan-

dard, nonadecanoic acid (C19:0) (Sigma, Saint Louis, MO, USA) was used to quantity the fatty

acids. The details of the ten samples were detected as shown in supporting information (S2

File). Of these, six samples (polyunsaturated fatty acid high (FAH): FAH1, FAH2, FAH3; poly-

unsaturated fatty acid low (FAL): FAL1, FAL2, FAL3) were divided into two groups with

extremes of the phenotypic values for PUFA/(SFA+USFA) to detect DEGs for sequential

analyses.

RNA isolation and quality assessment

The thigh muscle tissues of six samples were disrupted with liquid nitrogen and total RNA was

extracted with TRIzol reagents (Invitrogen, Carlsbad, CA, USA) following the manufacturer’s

instructions [16]. Using the RNase-free DNase I (Invitrogen, Carlsbad, CA, USA), DNA con-

tamination was removed from the RNA by incubating for 30 min at 37 ˚C. The purity and con-

centration of the RNA samples were assessed on a NanoPhotometer1 spectrophotometer

(Thermo Scientific, Wilmington, DE, USA). The integrity of the RNA samples was assessed

with the RNA Nano 6000 Assay Kit of the Bioanalyzer 2100 system (Agilent Technologies, CA,

USA).

Library preparation and RNA sequencing

As input material, a total of 3 μg RNA from per sample was used for the RNA sample prepara-

tions. The transcriptome library for sequencing was constructed using the NEBNext1 Ultra™
RNA Library Prep Kit for Illumina1 (NEB, USA) according to the manufacturer’s instruc-

tions. Using the TruSeq PE Cluster Kit v3-cBot-HS (Illumina) following the manufacturer’s
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recommendations, the index-coded samples were clustered on a cBot Cluster Generation Sys-

tem. After cluster generation, the library preparations were sequenced using an Illumina

HiSeq 2000 platform and 100 bp paired-end reads were generated; this was followed by

FASTQ file generation and the failed reads elimination by CASAVA ver.1.8.2 (Illumina).

Quality control for paired-end reads

Using CASAVA ver.1.8.2 (Illumina), the sequencing-derived raw images were transformed

into raw reads by base calling. The raw reads were cleaned by our self-written Perl scripts. In

this step, low quality reads (more than half of the reads with a phred base quality score of less

than 5) were removed to obtain clean reads. In addition, the description statistics for the clean

data, such as Q20, Q30, and GC-content were calculated for high-quality downstream analysis.

All downstream analyses were based on the clean reads.

Reads mapping to the reference genome

The chicken reference genome UMD 4.1 and model annotation files were downloaded directly

from the website (ftp://ftp.ensembl.org/pub/release-75/fasta/gallus_gallus/dna/) to be utilized

for the assembly. The index of the reference genome was built using Bowtie v2.2.3 and paired-

end clean reads for each individual chicken were aligned to the reference genome using

TopHat v2.0.12. Additionally, HTSeq v0.6.1 was used to count the reads numbers mapped to

each gene.

Identification of DEGs

Differential expression analysis of different groups (the high and low groups with phenotypic

values for percentage of polyunsaturated fatty acids) was performed using the DESeq R pack-

age (1.10.1). Using a generalized linear model based on the negative binomial distribution,

DESeq2 provides statistical counts for determining DEGs in digital gene expression data. Fur-

thermore, the Hochberg and Benjamini method was used to adjust the p-values to control for

the false discovery rate. The fold changes (in log 2 scale), p-values, and q-values (corrected p-

values) of the DEGs were acquired in the output files from DESeq2. An adjusted p-value of

0.05 was assigned as the threshold for significant differential expression.

GO and gene functional analysis of DEGs

GO and pathway enrichment analysis of DEGs was implemented in the GOseq R package (ver-

sion 2.12), in which gene length bias was corrected. GO terms and KEGG pathways (http://

www.genome.jp/kegg/) with p-value less than 0.01 were considered significantly enriched

among the differential expressed genes.

Validation of RNA-Seq results with qRT-PCR

To validate the sequencing results, qRT-PCR was carried out on 10 randomly selected DEGs.

Using identical samples with RNA-seq, total RNA was converted to cDNA with Superscript III

(Invitrogen, CA, USA) following the manufacturer’s instructions and was used as PCR tem-

plates. Primers were designed via Primer3 (http://bioinfo.ut.ee/primer3-0.4.0/primer3/input.

htm) and are shown in S3 File. qRT-PCR was carried out in triplicate with the LightCycler1

480 SYBR Green I Master Kit (Roche Applied Science, Penzberg, Germany) in a 15 μ L reac-

tion on a LightCycler1 480 (Roche), using the following program: 95 ˚C for 8 min; 45 cycles of

95 ˚C for 10 s, 60 ˚C for 15 s, and 72 ˚C for 10 s; 72 ˚C for 10 min. The mRNA levels of the

DEGs were normalized by the housekeeping genes GAPDH, β-actin and 18s rRNA, in the
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corresponding samples. The relative gene expression values were calculated using the 2−ΔΔCt

method. Finally, the correlations between RNA-Seq for 10 genes and the mRNA expression

level from qRT-PCR were estimated using R (V3.2).

Results

Fatty acids profiles determined by GC-MS

A typical chromatogram for the analysis of the 37-component FAMEs reference standard was

shown in S4 File. Interestingly, Compared with the AA broiler, the Huangshan Black Chicken

displayed higher polyunsaturated fatty acids percentage and intramuscular fat ratio (as shown

in S1 File). Meanwhile, all the target compounds can be baseline separated by HP-88GC col-

umn with excellent peak shape as indicated in the chromatogram. Meanwhile, the fatty acids

profiles of different chicken thigh muscle tissues in the comparison group of FAH and FAL

was shown in Table 1. The analysis of the fatty acid profile showed a higher level of PUFAs in

the group FAH. Particularly, contents of C22:6n-3 was higher (p<0.01), while that of C18:2n-

6, C20:3n-3 and C20:4n-6 were relatively higher (p<0.01) in comparison to the FAL group.

RNA sequencing of thigh muscle tissue

We acquired a total of 358.88 million clean reads with an average of 59.81 million (range,

57.31 to 62.63 million) for each sample (Table 2). Alignment of the sequence reads against the

Table 1. Analysis of FAMEs in thigh muscle of Huangshan Black chickens in the group FAH and FAL (Mean

±SD).

Items FAH FAL

C14:0 0.331±0.057A 0.648±0.119B

C16:0 19.511±0.686 21.205±0.608

C18:0 19.668±0.785a 15.944±1.751b

C20:0 0.305±0.070 0.216±0.057

C14:1 0.088±0.031A 0.169±0.016B

C16:1 1.368±0.260A 4.352±1.331B

C18:1n-9 22.385±1.425 26.555±1.009

C18:1n-7 2.938±0.507 2.901±0.191

C20:1 0.291±0.042 0.257±0.063

C18:2n-6 18.444±0.199a 15.542±0.375b

C18:3n-6 0.150±0.049a 0.214±0.058b

C18:3n-3 0.202±0.055 0.265±0.033

C20:2n-6 0.236±0.113 0.238±0.080

C20:3n-3 0.265±0.280a 0.168±0.131b

C20:4n-6 9.619±0.086a 7.727±1.156b

C20:5n-3 0.115±0.065A 0.223±0.264B

C22:6n-3 3.273±0.488A 2.449±0.193B

SFA 39.815±1.338 38.012±1.344

PUFA 32.305±0.236 26.827±1.364

PUFA/SFA 0.812±0.030a 0.672±0.032b

Note: SFA = C14:0 + C16:0 + C18:0 + C20:0; MUFA = C14:1 + C16:1 + C18:1 + C18:1 + C20:1; PUFA = C18:2 +

C18:3 + C18:3 + C20:2 + C20:3 + C20:4 + C20:5 + C22:6; USFA = MUFA + PUFA.

Means in the same row with different lowercase superscripts are different at P<0.05; means in the same row with

different uppercase superscripts are different at P<0.01.

https://doi.org/10.1371/journal.pone.0195132.t001
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chicken reference genome UMD 4.1 yielded 69.01–74.15% of uniquely aligned reads across

the six samples, of which 71.3–80.0% fell in annotated exons, 5.2–8.2% were located in introns,

and the remaining 14.8–20.5% were assigned to intergenic regions (S5 File). The data sets ana-

lyzed are available in the NCBI GenBank (https://www.ncbi.nlm.nih.gov/genbank) and the

BioProject ID is PRJNA412788. Additionally, 18,964 mRNA transcripts were detected. Fur-

thermore, the correlation coefficient (R2) between the six individuals within the FAH and FAL

groups was calculated based on the FRPM value of each sample and was shown to be 0.946 and

0.969, respectively, indicating that the similarity of the three biological samples within each

group was sufficiently high (S6 File).

Top genes expressed in the thigh muscle tissue

The differential gene expression profile between FAH and FAL was examined using the

RPKM method. In total, 274 DEGs were detected significantly different between the FAH and

FAL groups. Of these, 43 genes were up regulated while 231 genes were down regulated. A vol-

cano plot of the two comparison groups that are differentially expressed and illustrate distinct

transcriptional profiles is displayed in Fig 1. Moreover, using integrated analysis of RNA-Seq

and gene function, the top 20 genes with the highest absolute value of expression in the thigh

muscle tissue between FAH and FAL are shown in Table 3. Strikingly, the fat associated genes

FADS2, OGN, and CD2 accounted for a significant proportion.

Validation of differentially expressed genes

To validate the RNA-Seq results, 10 random DEGs including FADS2, ABI3BP, FBLN1, DCN,

LUM, FRZB, OGN, CA10, EDA2R, and ZIC4 were selected for qRT-PCR analysis. The correla-

tions between the mRNA expression level from qRT-PCR and RNA-Seq were all consistent

(Fig 2), validating the reproducibility and repeatability of gene expression data in this study.

Gene ontology enrichment and pathway analysis

To further study the functional associations of the detected 20 DEGs, gene ontology (GO)

analysis was performed. Several important GO categories were enriched (p< 0.01), including

GO processes related to synthesis, transport, and metabolic processing of lipids. For fatty acids

traits, the important pathways identified were ‘fatty acids metabolic process,’‘acyl-CoA desa-

turase activity’,‘lipid biosynthetic process,’ and ‘unsaturated fatty acids biosynthetic process,”

which also involved several candidate genes. The detailed gene function and pathway analysis

of genes are shown in Table 4.

Table 2. Basic sequencing data statistics for each sample.

Sample name FAH1 FAH2 FAH3 FAL1 FAL2 FAL3

Total reads 57317544 59138110 58255332 62638402 61960816 59609516

Total mapped 43427854 (75.77%) 43991875 (74.39%) 43030728 (73.87%) 45961284 (73.38%) 45404156 (73.28%) 42284978 (70.94%)

Multiple mapped 925207 (1.61%) 949905 (1.61%) 979651 (1.68%) 1059555 (1.69%) 1288689 (2.08%) 1145870 (1.92%)

Uniquely mapped 42502647 (74.15%) 43041970 (72.78%) 42051077 (72.18%) 44901729 (71.68%) 44115467 (71.2%) 41139108 (69.01%)

Non-splice reads 26318929 (45.92%) 25224783 (42.65%) 25084799 (43.06%) 26133024 (41.72%) 25612313 (41.34%) 23134101 (38.81%)

Splice reads 16183718 (28.24%) 17817187 (30.13%) 16966278 (29.12%) 18768705 (29.96%) 18503154 (29.86%) 18005007 (30.2%)

https://doi.org/10.1371/journal.pone.0195132.t002
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Candidate genes

Integrated analysis of DEGs, GO, and pathway results, QTL databases and gene function

allows us to suggest FADS2, DCN, FRZB, OGN, PRKAG3, LHFP, CHCHD10, CYTL1, FBLN5,

and ADGRD1 as the 10 promising candidate genes for affecting fatty acids concentration. In

addition, 10 genes (ABI3BP, NAV3, LUM, CD2, BMPER, LAMB1, FAP, SOD3, FSTL1, and

CD38) were also revealed to be associated with fatty acids traits by the significant expression

levels of DEGs and the QTL databases. The details of the above candidate genes identified are

listed in Table 2.

Discussion

Polyunsaturated fatty acids play vital roles in multiple physiological processes, they participate

in structural functions as major components of biomembranes [17], metabolic energy produc-

tion, ligands for transcription factors, and messengers in cellular pathways [18]. Additionally,

they can regulate the metabolism of lipids and promote the growth and development of ani-

mals. For poultry, the content of polyunsaturated fatty acids in adipose tissues directly affects

the flavor of the meat. In our study, the Huangshan Black Chicken displayed higher polyunsat-

urated fatty acids percentage by comparing performance traits with AA broiler. Nonetheless,

Fig 1. Volcano plot displaying DEGs within two different comparison groups. Note: the y-axis shows the mean expression value of log10(q-value), and the x-axis

displays the log2fold change value. The blue dots represent the transcripts did not reach statistical significance (q> 0.05); the red dots represent whose expression

levels were significantly different (q< 0.05).

https://doi.org/10.1371/journal.pone.0195132.g001
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Table 3. Top 20 expressed genes in thigh muscle tissue with high polyunsaturated fatty acids percentage compared to low polyunsaturated fatty acids percentage.

Symbol CHR No.

Reads

Log2 fold

change

Gene name q-value Gene function

FADS2 5 513.11 -1.15 Fatty acid desaturase 2 2.13E-05 Regulated unsaturation of fatty acids, fatty acid beta-oxidation)

DCN 1 2875.33 -1.83 Decorin 5.35E-08 Collagen fibril assembly, tumor suppression

ABI3BP 1 1296.44 -1.68 ABI family member 3 binding protein 7.36E-08 Heparin binding and glycosaminoglycan binding

NAV3 1 258.74 -1.20 Neuron navigator 3 7.83E-05 ATPases associated with a variety of cellular activities

PRKAG3 1 78.24 -1.22 Protein Kinase AMP-Activated Non-

Catalytic Subunit Gamma 3

1.33E-05 cell proliferation, cell differentiation in immune responses

OGN 12 1928.36 -1.33 oglycin 6.92E-07 Ectopic bone formation and osteoblast differentiation

CYTL1 4 47.33 -3.02 Cytokine like 1 1.45E-07 Receptor binding bear the CD34 surface marker

CHCHD10 15 9009.06 1.17 Coiled-coil-helix-coiled-coil-helix

domain containing 10

2.17E-06 Cristae morphology maintenance, oxidative phosphorylation, and

Mitochondrial protein import

FRZB 7 729.84 -1.29 Frizzled-related protein 3.12E-06 Involved in the regulation of bone development

ADGRD1 15 76.24 -1.33 Adhesion G protein-coupled receptor D1 4.27E-04 Transduced extracellular signals through G proteins

FBLN5 5 283.79 -1.12 Fibulin 5 1.01E-04 Promoted adhesion of endothelial cells

CD2 1 47.52 -1.46 CD2 molecule 3.12E-02 Immune recognition with LFA3 on antigen presenting cells

LHFP 1 508.47 -1.08 Lipoma HMGIC fusion partner 1.04E-04 A gene associated with translocation-associated lipoma

BMPER 2 84.83 -1.72 BMP binding endothelial regulator 7.97E-03 Inhibited osteoblast differentiation of the chondrogenic cells

LAMB1 1 2491.65 -1.01 Laminin subunit beta 1 9.75E-05 Cell adhesion, differentiation, signaling and metastasis

FAP 7 445.87 -1.41 Fibroblast activation protein 1.43E-03 Fibroblast growth or epithelial-mesenchymal interactions

LUM 1 1487.66 -1.73 Lumican 9.72E-07 Fibril organization, circumferential growth and tissue repair.

SOD3 4 453.06 -1.29 Superoxide dismutase 3 9.78E-03 Antioxidant enzyme that catalyzed the conversion of superoxide

radicals into hydrogen peroxide and oxygen

FSTL1 1 984.73 -1.23 Follistatin like 1 1.12E-03 An autoantigen associated with rheumatoid arthritis

CD38 4 118.45 -1.18 CD38 molecule 4.12E-03 An intracellular calcium ion mobilizing messenger

https://doi.org/10.1371/journal.pone.0195132.t003

Fig 2. Correlations of mRNA expression level of 10 randomly DEGs between high and low polyunsaturated fatty acids percentage

using RNA-Seq and qRT-PCR. Note: the x- and y-axis correspond to the log2 (ratio of FAH/FAL) measured by RNA-Seq and

qRT-PCR, respectively.

https://doi.org/10.1371/journal.pone.0195132.g002
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the precise mechanisms of Huangshan Black Chicken contributing to fatty acids composition

remain unclear.

Compared with traditional cDNA microarray technologies, RNA-Seq has many advantages,

such as greater dynamic range, reduced bias, lower frequency of false-positive signals, and

higher reproducibility [19–20]. Moreover, the correlations between RNA-Seq and the mRNA

expression level from qRT-PCR were relatively high [10,20]. Three biological replicates were

used for each condition to ensure broader application in our study design, the more replicates,

the greater the detection power [21].

By comparative analysis and imperative validation, we detected 274 DEGs between Huang-

shan black chickens with extremely high and low phenotypic values for polyunsaturated fatty

acids percentage. Among them, 10 genes were identified to be located within QTL areas [22]

that were affirmed to have large genetic effects on fatty acids composition, including FADS2,

DCN, FRZB, OGN, PRKAG3, LHFP, CHCHD10, CYTL1, FBLN5, and ADGRD1.

Fatty Acid Desaturase 2 (FADS2) is one of the key limiting enzymes in the lipid metabolic

pathway, which converts linoleate and alpha-linolenate into PUFAs [23]. The SNPs in the 3’

untranslated regions of the FADS2 gene have significant genetic effects on the composition of

fatty acids in gene expression activity in milk and blood [24–26]. Zhu et al [27] suggested that

the SNPs of the FADS2 gene affect the content of essential fatty acids in muscle, and played a

role in the early-stage growth rate of chickens. To investigate changes in the muscle transcrip-

tome by increased consumption of omega-6 and omega-3 fatty acids in the pig gluteus medius

muscle, Ogłuszka et al [28] showed that FADS2 may be an important gene for fatty acids

metabolism. By liver transcriptome induced by a diet enriched with omega-6 and omega-3

fatty acids, Szostak et al [29] showed that FADS2 is responsible for coding enzymes delta-

6-desaturase. FADS2 was reported to negatively regulate fat synthesis. This evidence is consis-

tent with the results in this study. Considering the performance traits, we supposed that

FADS2 act mainly in the omega-6 metabolic pathway. Integrated analysis indicated that

FADS2 is one of the most important candidate genes for polyunsaturated fatty acids percentage

in chicken.

As a small leucine-rich proteoglycan, Decorin (DCN) distributed in the extracellular matrix

and reported to be associated with the cell membranes in tissues [30–31]. In the chicken, the

existence of the core protein influencing two glycosaminoglycan chains has also been

described [32]. DCN always acts as a ligand for the receptor tyrosine kinases including the

insulin-like growth factor receptor [33] and the hepatocyte growth factor receptor [34].

Table 4. Summary of the GO analysis of 20 differentially expressed genes.

GO ID GO term No. of DEGs P-value

GO:0031012 extracellular matrix 4 1.09E-22

GO:0006631 fatty acids metabolic process 2 4.18E-18

GO:0016215 acyl-CoA desaturase activity 3 1.27E-06

GO:0022610 biological adhesion 5 1.38E-06

GO:0008610 lipid biosynthetic process 3 3.62E-06

GO:0009888 tissue development 6 1.78E-05

GO:0006636 unsaturated fatty acids biosynthetic process 2 1.56E-04

GO:0010811 positive regulation of cell-substrate adhesion 4 2.08E-04

GO:0061049 cell growth involved in cardiac muscle cell development 3 3.69E-03

GO:0048731 system development 5 2.75E-02

GO:0001676 long-chain fatty acids metabolic process 4 3.21E-02

https://doi.org/10.1371/journal.pone.0195132.t004
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Furthermore, the expression of the DCN gene can promote the differentiation of myoblasts,

the formation of muscle fibers, and the regeneration of muscle [35]. Similarly, our study

revealed that DCN was near to the peak positions of four QTLs for fat traits.

Frizzled motif associated with bone development (FRZB) is a protein-coding gene. As a

member of the Wnt signaling pathway, FRZB can influence normal cellular processes

through activating frizzled receptors [36]. In addition, FRZB is a competitor for the cell-sur-

face G-protein receptor Frizzled affecting skeletal development in the embryo and fetus [37].

Bennett et al [38] have shown that FRZB1, FRZB2, and FRZB5 are expressed in preadipocytes

and mediate the repressive effects of Wnt on adipogenesis. However, Soukas et al [39] have

observed that Frizzled4 is expressed in primary adipocytes but not in 3T3-L1 cells. Wang

et al [40] indicated that FRZB expression has a positive association with fat deposition and a

negative association with muscle growth and inferred that FRZB may be a major candidate

gene for growth traits in pigs. Combined with the function of FRZB in the metabolism, our

data implied that FRZB might be involved in fat metabolism through the Wnt signaling

pathway.

As a regulatory subunit of the AMPK, protein kinase AMP-activated non-catalytic sub-

unit gamma 3 (PRKAG3) takes part in regulating cellular energy homeostasis in a wide

variety of tissues and cells [41–42]. By inactivating ACC oxidase (ACC) and HMG-CoA

reductase (HMGCR), PRKAG3 was reported to be associated with meat quality [43],

which was consistent with the previous study [44]. Likewise, nucleotide variants of PRKAG3
were able to produce significant effects on fat traits, such as final pH, meat color, and water-

holding capacity in pigs [45]. Hence, PRKAG3 was considered as a major gene affecting fat

traits.

In addition, comprehensive analysis of differential expression patterns, biological functions,

and QTL, revealed that six other genes, namely OGN, LHFP, CHCHD10, CYTL1, FBLN5, and

ADGRD1, were also associated with fat acids composition traits to some extent. GO and IPA

analysis showed that both OGN and ADGRD1 are involved in accumulation of adipocyte, apo-

ptosis, and differentiation. Osteoglycin (OGN) is involved in matrix assembly, cellular growth,

and migration [46]. It is believed that OGN may be a vital humoral bone anabolic factor pro-

duced by muscle tissues [47]. Donati et al indicated that OGN regulated lipid differentiation

through the Wnt/β-catenin signaling pathway [48]. Lipoma HMGIC Fusion Partner (LHFP)

belongs to a subset of the super family of tetraspan transmembrane protein encoding genes.

Mutations in the LHFP gene result in translocation-associated lipoma. CHCHD10 belongs to a

family of mitochondrial proteins and plays a role in the mitochondrial DNA stability mainte-

nance and mitochondrial cristae morphology [49]. CYTL1 is a cytokine-like protein specifi-

cally expressed in the bone marrow and mainly takes part in DNA repair, metabolism, and cell

migration. FBLN5, a matricellular protein, plays critical roles in cell proliferation [50], vascular

remodeling, and smooth muscle development [51]. Mice lacking in FBLN5 exhibit systemic

elastic fiber defects [52]. As a member of the adhesion-GPCR family of receptors, ADGRD1 is

involved in the control of fat and adipocyte differentiation [53]. No previous studies have

linked CHCHD10 or CYTL1 with lipid differentiation and further study of these genes seems

to be warranted.

A total of 274 genes were found to differ significantly between FAL and FAH, while some

of the genes with known functions [54], e.g. FASN, FABP4, and SCD1, for fat acids composi-

tion and metabolism did not differ in the present study. It is likely that these genes with strong

effects have been fixed by long-term genetic selection and no obvious differences have been

observed between the comparison groups. It is also likely that different chicken populations

were tested in previous studies.
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Conclusions

This study provided a global view of the complexity of the transcriptome of thigh muscle tis-

sues of six Huangshan Black Chickens, and revealed 274 DEGs between Huangshan Black

Chickens with extremely high and low phenotypic values of polyunsaturated fatty acids per-

centage. Integrated analysis of differential gene expression, QTL data and biological functions

indicated that ten genes, including FADS2, DCN, FRZB, OGN, LUM, LHFP, CHCHD10,

CYTL1, FBLN5, and ADGRD1 represent the most promising candidates affecting meat fatty

acids percentage of chicken.
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