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Abstract

Motivation: Understanding chemical–gene interactions (CGIs) is crucial for screening drugs. Wet experiments are usually costly and
laborious, which limits relevant studies to a small scale. On the contrary, computational studies enable efficient in-silico exploration.
For the CGI prediction problem, a common method is to perform systematic analyses on a heterogeneous network involving various
biomedical entities. Recently, graph neural networks become popular in the field of relation prediction. However, the inherent
heterogeneous complexity of biological interaction networks and the massive amount of data pose enormous challenges. This paper
aims to develop a data-driven model that is capable of learning latent information from the interaction network and making correct
predictions.
Results: We developed BioNet, a deep biological networkmodel with a graph encoder–decoder architecture. The graph encoder utilizes
graph convolution to learn latent information embedded in complex interactions among chemicals, genes, diseases and biological
pathways. The learning process is featured by two consecutive steps. Then, embedded information learnt by the encoder is then
employed to make multi-type interaction predictions between chemicals and genes with a tensor decomposition decoder based on
the RESCAL algorithm. BioNet includes 79 325 entities as nodes, and 34 005 501 relations as edges. To train such a massive deep graph
model, BioNet introduces a parallel training algorithm utilizing multiple Graphics Processing Unit (GPUs). The evaluation experiments
indicated that BioNet exhibits outstanding prediction performance with a best area under Receiver Operating Characteristic (ROC)
curve of 0.952, which significantly surpasses state-of-theart methods. For further validation, top predicted CGIs of cancer and COVID-
19 by BioNet were verified by external curated data and published literature.
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Introduction
The traditional drug discovery process is time-consuming,
and it could take years or even decades. However, in
situations like the pandemic outbreak, we need to
find drugs for urgent use within a short period of
time. Therefore, the drug repurposing [1] approach
becomes a feasible option, which attempts to screen
the candidates from FDA-approved drugs and apply it
to novel targets. It can significantly reduce the time to
find therapeutics compared to a standard procedure

from scratch. To be specific, most drugs are small-
molecule chemicals that mainly act on single or multiple
gene/protein targets to achieve satisfactory therapeutic
effects. Therefore, it is worthwhile to investigate the
interactions between chemicals and genes, also known
as chemical–gene interactions (CGIs) [2].

Moreover, to better understand the complex biological
mechanisms, it is important to disentangle the com-
plicated relations among different types of biological
entities besides chemicals and genes. Identifying the
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associations between diseases, chemicals, genes, and
biological pathways have become a key step in under-
standing the cause of diseases and an indispensable step
in finding effective therapeutics. Several studies have
been proposed to represent interaction information by
constructing a large-scale heterogeneous biological inter-
action network [3–5] from curated data or information
extracted from literature. Methods like network pharma-
cology
[6, 7] were utilized to analyze such a massive complex
network. However, the scale of the current target network
is overwhelming for any explicit analytical method.
Therefore, data-driven methods become a better choice
to mine valuable latent information from the interaction
network.

Deep learning methods, especially graph-based mod-
els, have been widely used in link prediction between
biological entities [8]. By utilizing the characteristics
and the known interrelations, relation prediction model
can extract latent relations between biological entities.
Ran Wang et al. [9] constructed and decomposed a 3D
tensor composed of the connection among drugs, targets
and diseases to reuse drugs for cancer. NeurTN [10],
Chemotext [11] and GNBR [8] each provides a powerful
method to capture the non-linear relations among
drugs, targets and diseases. PDGNet [12] used a deep
neural network with multi-view features to excavate
the potential interactions between diseases and genes.
However, those methods cannot merge and embed the
information of adjacent nodes, which limits the accuracy
of prediction. Recently, the multilayer attention graph
convolutional network (LAGCN) [13] was developed for
drug–disease interaction prediction. I-RGCN [14] is a
few-shot link prediction method for COVID-19 drug-
repurposing. These two models use graph convolutional
network (GCN) to get latent information, but the
limited scale of utilized data prevents a comprehensive
representation of available information, which restrict
the performance of relation predictions. For instance,
LAGCN only includes known drug–disease associations,
drug–drug similarities and disease–disease similarities,
while important information like pathogenic genes and
pivotal biological pathways were neglected; I-RGCN only
consider genes and drugs for COVID-19 and information
for related diseases was not used.

Curated databases provide chances to include more
entity data in graph-based models. However, training a
large-scale data-driven model is computationally chal-
lenging. Therefore, it is also important to develop strate-
gies for an efficient computing process.

To address the above problems, we proposed a scalable
graph neural network model named BioNet to predict
the relations between chemicals and genes. Our major
contributions can be summarized as follows:

1) We constructed a comprehensive and large-scale
heterogeneous biological interaction network by
integrating curated datasets related to chemicals,
genes, pathways and diseases.

2) We proposed a deep graph neural network model
named BioNet based on an encoder-decoder archi-
tecture, which utilizes a graph convolution encoder
to learn entity embeddings from subgraphs and
employs a tensor decomposition decoder to pre-
dict CGIs.

3) We developed a parallel strategy to boost the learn-
ing process and improved the model’s ability to
handle large-scale data.

4) We exemplified the value of BioNet by evaluating
the CGIs of cancer [15] and COVID-19 [16], which pri-
oritizes chemicals with higher potential for effective
therapeutics.

Materials and methods
Model architecture of BioNet
Given a set of nodes V = {vi}, a set of edges E = {(vi, r, vj)},
where r is the type of the edge, the graph G can be
denoted as G = (V, E). The goal of our model is to compute
the probability of the interesting edge eij = (vi, r, vj).
To achieve this goal, BioNet adopts an encoder–decoder
architecture (Figure 1). The encoder is equipped with
the graph convolutional networks, whereas the decoder
adopts a tensor factorization model. The following sec-
tions give the details of BioNet.

Network construction
In this paper, we constructed a graph containing
seven subgraphs: chemical–chemical subgraph (CC-
graph), gene–gene subgraph (GG-graph), chemical–
path subgraph (CP-graph), gene–pathway subgraph (GP-
graph), chemical–gene subgraph (CG-graph), chemical–
disease subgraph (CD-graph) and gene–disease subgraph
(GD-graph). There are 720 155 chemical–chemical
interactions, 713 471 gene–gene interactions, 1 285 158
chemical–pathway interactions, 135 809 gene–pathway
interactions and 1 798 796 CGIs from the STITCH
database [17], the SNAP Graph Library [18] and the
Comparative Toxicogenomics Database (CTD) [19].

Especially, we introduced diseases as interaction
entities. The basic idea is that curated databases have
collected a lot of data on interactions of gene–disease
and chemical–disease, which can provide an extra and
valuable context for predicting CGIs. On the one hand,
many diseases can be closely attributed to abnormal
changes in genes. On the other hand, a specific chemical
may be used to treat many diseases while a given
disease might be cured by different chemicals. Therefore,
we built the CD-graph and GD-graph with 2 686 187
chemical–disease interactions and 26 663 499 gene–
disease interactions from the CTD database. Table 1
shows the data source and data type of the final
integrated multi-relational graph.

To investigate how does the addition of disease
entities affects the performance of the BioNet model
in CGI prediction, we studied two combo-graphs: 1© the
CGP graph for relations between chemicals, genes and
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Figure 1. The panorama of BioNet. Network construction → graph representation → graph convolutional encoder → target node embedding → tensor
factorization decoder → the probabilities of interactions.

Table 1. Statistics and data source of the final integrated multi-type interaction graph

Subgraph # of Entity1 # of Entity2 Interaction # of Edges Data source

CC-graph Chemical: 389 393 Chemical: 389 393 Chemicals associate with target
chemicals

720 155 The STITCH
database [17]

GG-graph Gene: 19 081 Gene: 19 081 Genes associate with target genes 713 471 SNAP Graph
Library [18]

CP-graph Chemical: 10 034 pathways: 2185 Chemicals associate with target
pathways

1 285 158 CTD [19]

GP-graph Gene: 11 588 Pathways: 2363 Genes associate with target
pathways

135 809 CTD [19]

CG-graph Chemical: 13 488 Gene: 50 876 Chemicals interact with target
genes

1 801 222 CTD [19]

CD-graph Chemical: 16 146 Disease: 7217 Chemicals associate with target
diseases

2 686 187 CTD [19]

GD-graph Gene: 49 776 Disease: 7078 Genes associate with target
diseases

26 663 499 CTD [19]

pathways; 2© the CGPD graph for relations between
chemicals, genes, pathways and diseases. It is evident
that 1© is the subgraphs of 2©, as illustrated in Figure 2.
In the experimental section, we will compare the
performance and scalability of our model with different
subgraphs. To note, the C-G interactions are featured
by many interaction types, while other interactions are
considered binary in our study.

Graph convolutional encoder
A graph encoder can iteratively aggregate, transform and
propagate information across the entire network. The
input is a graph structure in which nodes are represented
as one-hot vectors and edges are represented as adjacent
matrices, as illustrated in Figure 3.

A GCN module defines the information propagation
architecture of each node, so that the node contains
its own information and learns the information of all
neighbor nodes within k hops. Chebyshev polynomials
prove that graph convolutional networks with a depth
of two layers usually show better performance [20]. The
previous work [2] has been demonstrated that the infor-
mation encoding by subgraph perspective to aggregate
neighbor nodes performs better than the whole graph
perspective. Therefore, we set k = 2 and adopted a sub-
graph perspective to encode the graph in the following

steps. Set vi ∈
{
Vc ∪ Vg ∪ VP ∪ Vd

}
as an example, Figure 4

shows the detailed encoding process.

The GCN processing in BioNet is a two-step procedure.
Firstly, we train the binary association subgraphs (CC-
graph, GG-graph, CP-graph, GP-graph, CD-graph and GD-
graph), and then we introduce the initial embedding to
further train the multi-interaction CG-graph.

In the binary association subgraph G, node embed-
dings of chemicals are encoded from the neighbor infor-
mation in the CC-graph, CP-graph and CD-graph, while
the node embeddings of genes come from the neighbor
nodes in the GG-graph, GP-graph and GD-graph. The
binary encoding procedure is performed according to
Equation (1). Node features are initialized as one-hot
vectors, denoted as h0

i = xi . In the first-layer of GCN,
the embedding will aggregate information from vi’s first-
order neighbors of different relation types, and get hid-
den state hk

i . Stacking one more layer of graph convo-
lutional layers, the embedding will update information
from its second-order neighbors explicitly and get hidden
state hk+1

i . The formula for the update process is as
follows:

hk+1
i = σ

⎛
⎜⎜⎝∑

r

∑
j∈N r

i

1√∣∣N r
i

∣∣ ∣∣∣N r
j

∣∣∣
Wk

r hk
j + 1∣∣N r

i

∣∣hk
i

⎞
⎟⎟⎠ # (1)

where σ is a non-linear activation function. N r
i are the

neighbors of vi with a link type r. Wk
r represents a matrix
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Figure 2. Types of relations are included in each graph.

Figure 3. Graph structure representation.

of learnable parameters linked by relation type r. 1/
√
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j | and 1/ | N r
i | are normalization
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Then, get the hidden state h
k
i ∈ R

d
k of each hidden

layer and output node embedding (zi = h
K
i with K = 2),

and embedded them into the multi-relation subgraph
∼
G

with the second two-layer graph convolutional network
as Equation (2):
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Figure 4. Graph convolutional encoder. Take BioNet-CGPD as an example. Initial embeddings of chemicals c3 and genes g2 are learned with the binary
interaction subgraph.

Similarly, h̃
∼
k
i ∈ R

∼
d∼

k with
∼
d∼

k
represents the dimension

of the
∼
kth hidden layer. r ∈ ∼

R denotes the type of the CG-
interaction.

Finally, we assigned zi = h̃
∼
K
i , where

∼
K = 2 and vi ∈ {Vc ∪

Vg} as multiple relational subgraphs to learn high-level
node embeddings of chemical and gene nodes.

Tensor decomposition decoder
Decomposition into directional components (DEDICOM)
[21] and RESCAL [21] are used to analysis of social
networks with large-scale datasets. They are tensor
factorization methods to learn relations between entities.
As bilinear models, they capture latent semantics via
associating each entity with a vector. Each relation
is represented as a matrix that models the paired

interactions between potential factors. The core idea of
the RESCAL model is to encode the entire knowledge
graph into a 3D tensor. This tensor can be factor-
ized to core tensor and a factor matrix, each 2D
matrix slice in the core scale representing a relation
and each row in the factor matrix representing an
entity.

DEDICOM and RESCAL are appropriate for analyzing
inherent asymmetric relations, such as the relations
between chemicals and genes. Besides, RESCAL can
further simplify the decoding process, especially for
modeling multi-type interaction data. Given a chemical
vi ∈ {Vc} and a gene vj ∈ {Vg}, the decoder will generate

the probability P ij
r of an edge eij = (vi, r, vj) for how

likely chemical vi results in an interaction type r of
gene vj.
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Figure 5. Tensor decomposition decoder. The chemical embedding matrix and the gene embedding matrix are learned from the graph convolutional
encoder. (A) DELICOM (B) RESCAL. The chemical embedding matrix (Left) and the gene embedding matrix (Right) are learned from the graph
convolutional encoder.

In DEDICOM (Figure 5A), we characterize CGIs with a
tensor (note that the first two modes have the same size)
as

G
(
zi, r, zj

) = zT
i DrRDrzj# (3)

Where each slice of Dr is a d × ddiagonal matrix,
giving weights to the columns of the node embeddings
zT

i and zj learned by the encoder. Where R captures the
asymmetric relations, which models to propagate and
gather information across different types of interactions.

To reduce the parameters during the training process,
The RESCAL (Figure 5B) omitted diagonal matrix, and the
decomposition is

G
(
zi, r, zj

) = zT
i Rzj (4)

Parallel optimization
Early BioNet–CGP occupies about 15 GB of memory, which
can barely be squeezed into a single NVIDIA v100 GPU
(with 16 GB of device memory). Compared with BioNet-
CGP, the size of BioNet–CGPD is increased by multiple
times due to the addition of tens of millions of disease-
related interactions. It composes a computational
challenge of model training and prediction. A single
GPU can hardly fulfill the computation requirements
of our model due to the fact that: (1) the processing time
is too long; (2) the data size of the BioNet surpasses
the volume of a single device. Therefore, we need to
employ parallel processing to optimize the computation
process.

The amount of computation in the training process
is primarily determined by the number of relations.
Therefore, we split the training load into batches, which
enables efficient parallel computation across a few GPUs.
Gradient all-reduce [22] is an algorithm that aims to
efficiently consolidate data from different machines and
then distribute the results to individual machines. In
each pass, gradient all-reduce is performed in parallel
with gradient computation to update the parameters in
the BioNet model. The resulting model on each GPU is
identical because each GPU starts with an identical copy
and weights updates are identical on all GPUs due to the
gradient all-reduce operation.

To note, BioNet is ultimately a multi-type interac-
tion model, and each interaction type has a different
number of training samples. When splitting the training
load across different GPUs, we need to ensure that: (1)
the overall workload allocated to each GPU needs to
be approximately balanced; (2) the relation type-specific
workload allocated to each GPU should also be evenly
distributed.

Our training data distribution scheme is depicted
in Figure 6. Rn represents different types of relation
between chemicals and genes.

Specifically, the input edges (the training data) are
divided into mini-batches per relation type, which are
sent to GPUs for calculation. The mini-batch size is deter-
mined by the number of relations with the least num-
ber (70 here according to our data). Firstly, we sort the
relations from small to large by number of CG pairs, and
set the number of CG pairs containing the fewest CG
pairs as batch size l. Secondly, we split other types of CG
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Figure 6. Parallel and distributed computing. The edges of different relation types are randomly sent to different GPU devices in batches. Each GPU
device only processes one kind of relation type per step.

pairs by l and remove the insufficient l portion. Finally, we
distribute the divided data to each GPU. In this way, each
GPU maintains a copy of the BioNet model and trains
on a sub-minibatch of the training data. For example,
R0 represents the relation type “affects∧localization,” while
R0-0 corresponds to the first 70 edges with an R0 relation.

In this way, we can achieve load balancing without
disrupting the generalizability of our model during the
training process.

The introduction of multiples GPUs for parallel train-
ing is vital for time efficiency, and it also greatly improves
the model capacity of the BioNet, which facilitates incor-
porating a lot more valuable information vital for the
prediction of chemical–gene relations.

Results
Experimental settings
All experiments were conducted on a cluster with
NVIDIA Tesla V100 16GB GPUs. The code of the BioNet
model was implemented using the Pytorch deep learning
framework. Similar to our previous work [2], BioNet uses
the hinge loss as the loss function [23], and it is optimized
by the Adam optimizer. The parameters used in the
model are listed in Table 2.

Performance evaluation
To comprehensively evaluate the performance of BioNet,
we employed three classical metrics for performance
evaluation, including area under receiver operating char-
acteristic curve (AUROC), area under precision-recall (PR)

curve (AUPRC) and average precision of top k recommen-
dations (AP@k). Firstly, all CGI instances were randomly
divided into the training set, the validation set and the
test set by a ratio of 8:1:1 per interaction type. We eval-
uated the performance of BioNet along with other state-
of-the-art methods on two datasets (CGP and CGPD). The
CGP dataset only contains information about chemicals,
genes and pathways; the CGPD dataset contains all CGP
data plus disease-related information. The size of CGPD
is about seven times greater than CGP.

Table 3 lists the performance of BioNet compared
with several baseline algorithms (e.g. Deep walk [24],
Node2vec [25], SVD [26], Laplacian [27], GCN-Total [28]
and CGINet [2]). As illustrated in Table 3, BioNet consis-
tently outperformed the other approaches on all three
metrics, including AUROC, AUPRC and AP@20 either on
CGP and CGPD, which confirmed the effectiveness of our
BioNet method. To note, previous GCN-based methods
including GCN-Total and CGINet cannot efficiently
handle the CGPD dataset, so they were only evaluated on
the CGP dataset. The experimental results show that the
former outperforms the latter with the same subgraph.
This is largely due to two reasons: (1) BioNet adopts a
parallel strategy to optimize the training process. During
the parallel training process, BioNet trains each relation
type evenly compared to CGINet, which can alleviate the
distribution imbalance of data. (2) Unlike CGINet, BioNet
employs RESCAL as the tensor decomposition decoder
instead of DEDICOM. RESCAL can further simplify the
decoding process, especially for modeling multi-type
interaction data.
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Table 2. The parameter used in BioNet

Parameter Description Value

epoch The number of training epochs 20
batch_size The number of samples per training step 70
d1, d2 The embedding sizes in the total graph perspective 32, 16

d1, d2,
∼
d1,

∼
d2 The embedding sizes in the subgraph perspective 128, 64, 32, 16

dropout The dropout rate 0.1
lr The learning rate of the Adam optimizer 0.001
m The margin value of the hinge loss function 0.1

Table 3. Performance comparison of our models with baseline approaches

Model Dataset AUROC AUPRC AP@20

DeepWalk [24] CGP 0.830 0.811 0.733
CGPD 0.835 0.832 0.736

Node2Vec [25] CGP 0.819 0.800 0.735
CGPD 0.849 0.798 0.683

SVD [26] CGP 0.833 0.823 0.772
CGPD 0.820 0.876 0.797

Laplacian [27] CGP 0.839 0.841 0.765
CGPD 0.860 0.873 0.744

GCN-Total [28] CGP 0.823 0.768 0.571
CGINet [2] CGP 0.901 0.872 0.770
BioNet CGP 0.948 0.939 0.886

CGDP 0.952 0.944 0.922

Additionally, we can clearly see that the introduction
of disease-related data can further improve the perfor-
mance of BioNet, as demonstrated in Table 3, where
BioNet–CGPD is superior to BioNet–CGP.

Specifically, it is inspiring to see that BioNet–CGPD
outperforms BioNet–CGP by 5.6% on AP@20, indicating
that under the joint embedding of the pathway-related
interactions and disease-related interactions, the top-
20 instances selected by the BioNet model have higher
accuracy. This also indicates that a more comprehensive
data collection is essential for relation prediction tasks
on a heterogeneous network. However, more data imply
a graph with a grander scale, which poses a great chal-
lenge for either computation or model robustness. Our
previous work [2] can only deal with CGP-graph, whereas
BioNet is capable of processing a larger scale graph with
a higher precision.

Computational optimization
The device memory of a single NVIDIA TESLA V100 GPU
is 16 GB, which is insufficient to fit the scale of our
model (the estimated size is about 20 GB). By distributed
computing, we use multiple GPUs to enable BioNet to
learn all the knowledge provided by all data, and improve
the model’s ability to process big data. More importantly,
we have accelerated the training time of the model and
advanced the training efficiency of the model.

We evaluated the parallel processing performance
of BioNet on different numbers of V100 GPUs. Figure 7
shows the time spent with different numbers of GPUs
on training BioNet-CGP and BioNet-CGPD. Note that a

single GPU cannot fulfill the computation of BioNet-
CGPD. As the number of GPUs increases, the time cost
decreases significantly. For example, with the same size
of datasets (BioNet-CGP), under the parallel algorithm,
the calculation time of a single EPOCH is reduced
by nearly 7 h. That is, the parallel efficiency when
computing with 16 GPUs is:

Ep = SP
p = T1

pTP
= 8.012

16∗0.85 = 0.589 (5)

Ep represents parallel efficiency,Sp represents speedup,
T1 refers to the execution time of the sequential exe-
cution algorithm,Tp refers to the execution time of the
parallel execution algorithm,p represents the number
of GPU.

Case study
To further exemplify how BioNet can boost relevant
biomedical studies, we carried out a few case studies
with BioNet to serve as examples.

(1) Identification of targets related to cancer

Because of the various pathogenic mechanisms and
changeable pathogenesis sites, the research on cancer
has never stopped, and a considerable amount of data
have been accumulated. Relevant studies have proved
that various therapeutics may have a certain therapeutic
effect, such as aspirin, vitamin D, etc.

We retrieved some top genes related to cancer accord-
ing to CTD. We then used BioNet to obtain all related
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Table 4. Partially verifiable CGIs of cancer predicted by BioNet

Predicted ranking Relation type Chemical–gene pairs Probability score
(
Pij

r

)
Evidence

1 Increases∧abundance <Succinic Acid,BCL2> 0.7307 NA
2 Increases∧abundance <agathisflavone, BCL2> 0.7303 NA
3 Increases∧abundance <C646 compound, BCL2> 0.7303 NA
4 Increases∧glucuronidation <Calcium, RELA> 0.7301 [32]
41 Increases∧glucuronidation <Navitoclax, AKT1> 0.7293 [29]
49 Increases∧glucuronidation <Icilin, BAX> 0.7292 [33]
56 Decreases∧secretion <Oxytocin, VEGFA> 0.7292 [34]

Figure 7. The time cost of processing on different numbers of GPUs.
Note. A single GPU cannot fulfill the computation of BioNet–CGD and
BioNet–CGPD.

chemical predictions and exclude existing relation pairs
in the source database. The remaining predictions were
ranked in a descending order, as listed in Supplemen-
tary Table S1 (https://github.com/yangxi1016/BioNet). A
higher score indicates a higher predicted probability of
the potential interaction. Next, we searched for the entity
pairs in search engines (Google Scholar and PubMed) to
find supporting evidence in the literature. Table 4 pro-
vides the top 3 and partially verifiable CGIs related to
cancer predicted by BioNet.

In Table 4, each row presents a predicted result of
chemical C (node vi) and gene G (node vj), with literature

evidence listed if applicable. The score Pij
r represents the

predicted probability of the link eij = {vi, r, vj} generated
by BioNet’s tensor factorization decoder.

We easily found direct literature evidence for many
predicted CGIs. For instance, the treatment with Akt1
inhibitor and BCL-xL inhibitor (ABT-263/Navitoclax) sig-
nificantly decreased the cancer cell survival [29].

For predictions without direct literature evidence, we
can also find supporting information. For example, the
first row in Table 4 indicates a high probability of an
“increases∧abundance” relation between succinic acid
(chemical) and BCL2 (gene). The CTD database confirmed
that succinic acid has various interactions with BCL2L1,

including promoting product expression, promoting
reaction activation, etc., and BCL2L1 is an expression
product with a similar structure to BCL2. Moreover,
artesunate [30] (dihydrocyanin-10-α- succinate) and 2,3-
dimercaptosuccinic acid [31] (2,3-dimercaptosuccinic
acid) can promote the expression and reaction of BCL2,
and their molecular structures contain the succinic acid.
This provides a reasonable explanation and support of
the predicted result. For the second predicted result
(increases∧abundance, agathisflavone, BCL2, 0.73018),
we did not find any direct literature evidence, but there
are 22 kinds of 3′, 4′-dimrthoxyflavone and chrysin,
which belong to the same flavonoids as agathisflavone.
The interaction relation with BCL2 can be retrieved,
so this prediction result is reasonable. For the third
predicted result (increases∧abundance, C646 compound,
BCL20.72974), compound C646 is a benzoate with a
complex structure, and it does have an interaction
relation with BCL2’s allotrope BCL2L1 [30], so it is
reasonable to assume that this result is explainable.

(Reference for Table 4: [29, 32–34])
The above results demonstrated that our BioNet model

can predict correct results not included in curated
databases like CTD and provide the potential targets
for subsequent experimental verification. In summary,
BioNet can help identify CGIs for a given chemical (or a
target gene).

(2) COVID-19

The coronavirus pneumonia (COVID-19) caused by the
SARS-CoV-2 virus swept the world. In the latest collection
of CTD, the genes related to COVID-19 including ACE2,
CD9, DPP4, TIPARP, TMPRSS2, etc. To verify the capabil-
ity that BioNet seeks out novel and credible candidates
for COVID-19 (Supplementary Table S2), we obtained
the top ten candidates (Table 5) targeted COVID-related
genes and sorted the predicted scores in the 65 types
of CGIs.

(Reference for Table 5: [35–37])
There are 1749 items with a predicted score over 0.7.

Among the top 50 predicted relations, we have found
four CGIs directly documented in the literature. COVID-
19 infection may aggravate nephritis and diabetes. In [35–
37], the effects of lipopolysaccharides, guanylin and C-
peptide on DDP4 are mentioned, which are used to treat
nephropathy and related diabetes.

https://github.com/yangxi1016/BioNet
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Table 5. Partially verifiable CGIs of COVID-19 predicted by BioNet

Predicted ranking Relation type Chemical–gene pairs Probability score Evidence

1 Increases∧ADP-
ribosylation

<Aroclor 1242, DPP4> 0.727946 NA

2 Increases∧methylation <Ethyl methanesulfonate, TMPRSS2> 0.7279444 NA
3 Affects∧expression <Carbamates, TIPARP> 0.727942 NA
4 Affects∧reaction <2-Aminopyrimidine, TIPARP > 0.7279404 NA
5 Increases∧glucuronidation <Lipopolysaccharides, DPP4> 0.72794 [35]
11 Increases∧glucuronidation <Guanylin, DPP4> 0.72793 [36]
49 Increases∧glucuronidation <C-Peptide, DPP4> 0.72791 [37]

The first CGI in Table 5 (increases∧ADP ribosylation,
Aroclor 1242, DPP4, 0.72034). Although this is not
curated in the CTD database, we found a polychlorinated
biphenyl compound Aroclor 1254 with structural charac-
teristics similar to compound Aroclor 1242, which has a
degree∧expression effect on DPP4 [38]. More importantly,
the relation type mentioned in the prediction results
is increases∧ADP ribosylation. ADP ribosylation adds
one or more ADP riboses to the target protein to
affect the protein’s function. Therefore, we have the
reason to suspect that Aroclor 1242 can interact with
DPP4, and ultimately reduce the expression of DPP4
by promoting ADP ribosylation. The second CGI in
Table 5 (increases∧methylation, ethyl methanesulfonate,
TMPRSS2, 0.71408) is also absent from the curated
database. However, according to relevant records in the
CTD database, there are nine chemicals containing ethyl,
such as atrazine and disopyramide, which have different
effects on the expression of TMPRSS2, and the predicted
compounds are methanesulfonate, camostat, which
belongs to this class of compounds, can reduce the activ-
ity of TMPRSS2 [39], so it is predicted that chemicals may
affect TMPRSS2 by promoting methylation. The third
CGI in Table 5 (affects-expression, carbamates, TIPARP,
0.71146), carbamates represent urethane chemicals.
While enterostat and urethane, which also belong to this
compound, have the effect of inhibiting and promoting
expression with TIPPARP, respectively, and therefore the
prediction is reasonable.

In addition, the spike protein of the new coronavirus
is located on the surface of the virus and mediates the
binding of the virus to the ACE2 receptor [40] of the host
cell, thereby helping the virus invade and infect the host,
and therefore become the target of many vaccines and
antibody drugs.

We choose ACE2 as the target and construct a dataset
that includes all chemicals-ACE2 pairs as test data. Then,
we used BioNet to make predictions. The full result set is
publicly available on our GitHub repository (https://githu
b.com/yangxi1016/BioNet).

We listed the top 10 predicted CGIs related to ACE2
in Table 6. We found direct literature evidence for some
CGI predictions. It is particularly noteworthy that accord-
ing to the latest research outcomes in 2021, defibrotide
can be used to treat endothelins that can complicate

COVID-19 [41], L-carnitine tartrate downregulates the
ACE2 receptor to limits SARS-CoV-2 infection [42] and
fluoxetine [43] may interact with ACE2 receptors and can
be used to treat COVID19.

Other predictions without direct literature evidence
provide valuable possibilities for further studies.

In a recent study, Zhe et al. [44] reported a vir-
tual screening method with accelerated free energy-
perturbation-based absolute binding free energy (FEP-
ABFE) predictions and confirmed 15 chemicals targeting
the SARS-CoV-2 main protease (Mpro) with wet exper-
iments, including candesartan cilexetil, dipyridamole,
atazanavir, indinavir and omeprazole, etc. Thus, we
retrieve all related genes (provided by CTD) and chem-
icals from the source data set obtained a validation
data set DCOVID−19, and predict relation probabilities
with BioNet. The prediction scores are mostly over 0.7,
which indicates the chemical screening by Mpro has high
interaction on genes related to COVID-19 (Supplemen-
tary Table S3). Most importantly, the commonly used
antithrombus drug dipyridamole has been proved as
an effective ancillary drug in the therapy of severely ill
patients with COVID-19 [45], which is also supported
by the BioNet model. Figure 8 shows partial interaction
prediction in DCOVID−19. This further proved that our
model can provide new theoretical support for drug
screening.

Based on a high-performance computer, the researchers
screened out potential anti-coronavirus emergency 33
drugs based on FEP-ABFE. We found 19 FDA-proved
chemicals were contained in BioNet. BioNet predicts that
some drugs are likely to act on COVID-19’s target genes,
as shown in Table 7, and 10 associations have a predicted
probability of more than 0.6.

The FEP-based method consumes an astonishing
amount of computing resources and computing time.
Although BioNet, a smart drug screening method,
cannot completely replace the traditional FEP-based
method, its effective calculation results and efficient
screening speed, on the one hand, can pre-screen
drugs before using traditional methods, reducing the
need for traditional methods The data range of the
calculation, thereby improving the calculation efficiency
and reducing the consumption of computing resources.
On the other hand, it can mutually confirm the results

https://github.com/yangxi1016/BioNet
https://github.com/yangxi1016/BioNet
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Table 6. Chemicals–ACE2 interaction prediction probability score Top-10

Predicted ranking Relation type Chemicals Probability score Evidence

1 Affects∧activity Defibrotide 0.72686 [41]
2 Increases∧stability Carnitine 0.722646 [42]
3 Affects∧chemical synthesis Sodium 0.711425 NA
4 Affects∧chemical synthesis Alectinib 0.719485 NA
5 Increases∧sumoylation Moxonidine 0.710244 NA
6 Affects∧cotreatment Thiamylal 0.709306 NA
7 Increases∧uptake Pirprofen 0.704563 NA
8 Increases∧sumoylation Huangqin-Tang 0.697992 NA
9 Increases∧transport Thiobarbituric Acid

Reactive Substances
0.687303 NA

10 Increases∧uptake Fluoxetine 0.676407 [43]

Figure 8. Partial relation prediction diagram in DCOVID−19.

Table 7. High-probability prediction of FDA-proved chemicals interaction with COVID-19 targets gene

Predicted ranking Relation type Chemicals Probability score

1 Increases∧ADP-ribosylation <Hesperetin, TMPRSS4> 0.717661
2 Increases∧hydrolysis <Riociguat, TMPRSS11A> 0.697253
3 Decreases∧acetylation <Proanthocyanidins, CD9> 0.691185
4 Decreases∧activity <Doxazosin, CD9> 0.672306
5 Increases∧sumoylation <Nisoldipine, CD9> 0.663409
6 Increases∧mutagenesis <Demeclocycline, TMPRSS4> 0.644651
7 Increases∧oxidation <Riociguat, ACE2> 0.642546
8 Increases∧hydroxylation <Doxazosin, TMPRSS4> 0.633889
9 Increases∧reaction <Hesperetin, TMPRSS2> 0.627183
10 Decreases∧transport <Proanthocyanidins, ACE2> 0.618641

of traditional methods and provide a certain degree of
mechanism explanation.

Discussion
The abundance of drug-related data offers tremendous
opportunities to generate new insights and develop bet-
ter approaches for drug discovery. The heterogeneous

information fusion of biomedical data from different
sources can systematically understand the mechanisms
of biopharmaceuticals, provide a more comprehensive
and effective support for drug repurposing, and increase
the accuracy of predictions.

Besides CGI, other types of relations are also important
for drug repurposing, according to recent studies that
have attracted a lot of attention. Zhao et al. [46]
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first used a graph convolutional network to learn the
features for each drug–protein pairs (DPP), and presented
(GCN)-DTI to the identification of new drug–target inter-
actions (DTIs). By evaluation, (GCN)–DTI outperforms
superior to state-of-the-art DTI prediction methods.
Liu et al. [47] presented DeepCDR, a hybrid graph
convolutional network (UGCN) for exploring intrinsic
chemical structures of drugs for predicting cancer drug
response (CDR), and the successful use of the synergy of
multi-omics profiles significantly improves the perfor-
mance of CDR prediction. Kumar et al. [48] comprehen-
sively analyzed the works and data tackling the COVID-
19 pandemic and integrated heterogeneous COVID-19
data sources by various data processing methods, pro-
vided biomedical research and drug/vaccine designers
with available systematic datasets, and computational
biology and bioinformatics approaches.

The above models provide important foundation and
evidence to support our study. In addition, Wang et al.
[49] introduced a bipartite GCN model named BiFusion,
which presents a better method of extracting and fusing
information from the protein–protein interaction (PPI)
network for discovering novel drug–disease association.
The results provide inspiration that the addition of PPI
network as an extra dimension of information that could
be potentially valuable to enhance of our model in the
future work. Based on the subgraph segmentation strat-
egy, our model shows strong expansibility for different
types of relation information. Therefore, it is feasible to
integrate extra information like protein–protein interac-
tions using the framework provided in this paper. We will
further expand the type of entities and interactions in
our future work.

Conclusion
In this study, we proposed BioNet, a graph neural net-
work model that integrates interaction information of
biomedical entities including chemicals, genes, pathways
and diseases to predict CGIs. BioNet adopts the graph
encoder–decoder architecture. In the encoder part, initial
node embeddings are first learnt from binary subgraphs
and then transferred to the whole graph for a second
round of encoding. This scheme greatly reduces the com-
plexity of the model. The decoder is implemented as a
tensor decomposition task based on the RESCAL algo-
rithm, which significantly reduce the number of param-
eters compared with the canonical DEDECOM method.
Evaluation results indicate that our model outperformed
existing methods, which can be attributed to the fact
that we employed more curated data in the context and
we developed a more suitable architecture for multi-type
relation prediction. To note, the introduction of more
curated information leads to a massive graph, which is
computationally challenging and goes beyond the capa-
bility of previous models. Therefore, our parallel process-
ing strategy is also key to enable scalable computation
in the training and the prediction process. Finally, to

further manifest the reliability and high quality of the
prediction results of BioNet, we performed case studies
related to cancer and COVID-19. The cases demonstrate
how BioNet can be applied to prioritize drug candidate
given the complex relations related to the disease of
interest.

In the future work, we would like to further expand the
entity types in BioNet. Currently, the network used in this
article consists of only four types of entities: chemicals,
genes, pathways and diseases. As we have solved the
scalability and computing capacity problem, we can add
more types of entities like symptoms and enrich the
prediction of various biomedical relations to give more
research inspiration to biomedical studies.

Key Points

• We constructed a comprehensive and large-scale
heterogeneous biological interaction network by
integrating curated datasets related to chemi-
cals, genes, pathways and diseases.

• We proposed a deep graph neural network model
named BioNet based on an encoder–decoder
architecture, which utilizes a graph convolu-
tion encoder to learn entity embeddings from
subgraphs and employs a tensor decomposition
decoder to predict chemical–gene interactions
(CGIs).

• We developed a parallel strategy to boost the
learning process and improved the model’s abil-
ity to handle large-scale data.

• We exemplified the value of BioNet by evaluating
the CGIs of cancer and COVID-19, which priori-
tizes chemicals with higher potential for effective
therapeutics.
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