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Abstract Prostate cancer is the second most occurring cancer in men worldwide. To better
understand the mechanisms of tumorigenesis and possible treatment responses, we developed a
mathematical model of prostate cancer which considers the major signalling pathways known to
be deregulated. We personalised this Boolean model to molecular data to reflect the heteroge-
neity and specific response to perturbations of cancer patients. A total of 488 prostate samples
were used to build patient-specific models and compared to available clinical data. Additionally,
eight prostate cell line-specific models were built to validate our approach with dose-response
data of several drugs. The effects of single and combined drugs were tested in these models
under different growth conditions. We identified 15 actionable points of interventions in one cell
line-specific model whose inactivation hinders tumorigenesis. To validate these results, we tested
nine small molecule inhibitors of five of those putative targets and found a dose-dependent effect
on four of them, notably those targeting HSP90 and PI3K. These results highlight the predictive
power of our personalised Boolean models and illustrate how they can be used for precision
oncology.

Editor's evaluation

This paper presents a mathematical model for prioritizing drugs for prostate cancer patients based
on signal network database. The manuscript is of broad interest to the field of oncology and preci-
sion medicine. The methodology developed is sophisticated and relevant to real patient prostate
cancer data. The predictions from the model are validated in an experimental setting and provide
suggestions for the personalisation of prostate cancer treatment. The study can serve as a roadmap
for future development of predictive, personalized models.
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Introduction

Like most cancers, prostate cancer arises from mutations in single somatic cells that induce deregu-
lations in processes such as proliferation, invasion of adjacent tissues and metastasis. Not all prostate
patients respond to the treatments in the same way, depending on the stage and type of their tumour
(Chen and Zhou, 2016) and differences in their genetic and epigenetic profiles (Toth et al., 2019,
Yang et al., 2018). The high heterogeneity of these profiles can be explained by a large number of
interacting proteins and the complex cross-talks between the cell signalling pathways that can be
altered in cancer cells. Because of this complexity, understanding the process of tumorigenesis and
tumour growth would benefit from a systemic and dynamical description of the disease. At the molec-
ular level, this can be tackled by a simplified mechanistic cell-wide model of protein interactions of the
underlying pathways, dependent on external environmental signals.

Although continuous mathematical modelling has been widely used to study cellular biochem-
istry dynamics (e.g. ordinary differential equations) (Goldbeter, 2002, Kholodenko et al., 1995; Le
Noveére, 2015; Sible and Tyson, 2007, Tyson et al., 2019), this formalism does not scale up well to
large signalling networks, due to the difficulty of estimating kinetic parameter values (Babtie and
Stumpf, 2017). In contrast, the logical (or logic) modelling formalism represents a simpler means
of abstraction where the causal relationships between proteins (or genes) are encoded with logic
statements, and dynamical behaviours are represented by transitions between discrete states of the
system (Kauffman, 1969; Thomas, 1973). In particular, Boolean models, the simplest implementation
of logical models, describe each protein as a binary variable (ON/OFF). This framework is flexible,
requires in principle no quantitative information, can be hence applied to large networks combining
multiple pathways, and can also provide a qualitative understanding of molecular systems lacking
detailed mechanistic information.

In the last years, logical and, in particular, Boolean modelling has been successfully used to describe
the dynamics of human cellular signal transduction and gene regulations (Calzone et al., 2010; Cho
et al., 2016, Flobak et al., 2015; Grieco et al., 2013; Helikar et al., 2008; Traynard et al., 2016) and
their deregulation in cancer (Fumia and Martins, 2013; Hu et al., 2015). Numerous applications of
logical modelling have shown that this framework is able to delineate the main dynamical properties
of complex biological regulatory networks (Abou-Jaoudé et al., 2011; Fauré et al., 2006).

However, the Boolean approach is purely qualitative and does not consider the real time of cellular
events (half time of proteins, triggering of apoptosis, etc.). To cope with this issue, we developed the
MaBoSS software to compute continuous Markov Chain simulations on the model state transition
graph (STG), in which a model state is defined as a vector of nodes that are either active or inactive. In
practice, MaBoSS associates transition rates for activation and inhibition of each node of the network,
enabling it to account for different time scales of the processes described by the model. Given some
initial conditions, MaBoSS applies a Monte-Carlo kinetic algorithm (or Gillespie algorithm) to the STG
to produce time trajectories (Stoll et al., 2017, Stoll et al., 2012) such that the time evolution of
the model state probabilities can be estimated. Stochastic simulations can easily explore the model
dynamics with different initial conditions by varying the probability of having a node active at the
beginning of the simulations and by modifying the model such that it accounts for genetic and envi-
ronmental perturbations (e.g. presence or absence of growth factors or death receptors). For each
case, the effect on the probabilities of selected read-outs can be measured (Cohen et al., 2015;
Montagud et al., 2019).

When summarising the biological knowledge into a network and translating it into logical terms, the
obtained model is generic and cannot explain the differences and heterogeneity between patients’
responses to treatments. Models can be trained with dedicated perturbation experiments (Dorier
et al.,, 2016; Saez-Rodriguez et al., 2009), but such data can only be obtained with non-standard
procedures such as microfluidics from patients’ material (Eduati et al., 2020). To address this limita-
tion, we developed a methodology to use different omics data that are more commonly available to
personalise generic models to individual cancer patients or cell lines and verified that the obtained
models correlated with clinical results such as patient survival information (Béal et al., 2019). In the
present work, we apply this approach to prostate cancer to suggest targeted therapy to patients based
on their omics profile (Figure 1). We first built 488 patient- and eight cell line prostate-specific models
using data from The Cancer Genome Atlas (TCGA) and the Genomics of Drug Sensitivity in Cancer
(GDSC) projects, respectively. Simulating these models with the MaBoSS framework, we identified
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Figure 1. Workflow to build patient-specific Boolean models and to uncover personalised drug treatments from present work. We gathered data

from Fumia and Martins, 2013 Boolean model, Omnipath (Tiirei et al., 2021) and pathways identified with ROMA (Martignetti et al., 2016) on

the TCGA data to build a prostate-specific prior knowledge network. This network was manually converted into a prostate Boolean model that could
be stochastically simulated using MaBoSS (Stoll et al., 2017) and tailored to different TCGA and GDSC datasets using our PROFILE tool to have
personalised Boolean models. Then, we studied all the possible single and double mutants on these tailored models using our logical pipeline of tools
(Montagud et al., 2019). Using these personalised models and our PROFILE_v2 tool presented in this work, we obtained tailored drug simulations and
drug treatments for 488 TCGA patients and eight prostate cell lines. Lastly, we performed drug-dose experiments on a shortlist of candidate drugs that
were particularly interesting in the LNCaP prostate cell line. Created with BioRender.com.

points of intervention that diminish the probability of reaching pro-tumorigenic phenotypes. Lastly,
we developed a new methodology to simulate drug effects on these data-tailored Boolean models
and present a list of viable drugs and treatments that could be used on these patient- and cell line-
specific models for optimal results. Experimental validations were performed on the LNCaP prostate
cell line with two predicted targets, confirming the predictions of the model.

Results

Prostate Boolean model construction

A network of signalling pathways and genes relevant for prostate cancer progression was assembled
to recapitulate the potential deregulations that lead to high-grade tumours. Dynamical properties
were added onto this network to perform simulations, uncover therapeutic targets and explore drug
combinations. The model was built upon a generic cancer Boolean model by Fumia and Martins,
2013, which integrates major signalling pathways and their substantial cross-talks. The pathways
include the regulation of cell death and proliferation in many tumours.

This initial generic network was extended to include prostate cancer-specific genes (e.g. SPOP,
AR, etc.), pathways identified using ROMA (Martignetti et al., 2016), OmniPath (Tiirei et al., 2021),
and up-to-date literature. ROMA is applied on omics data, either transcriptomics or proteomics. In
each pathway, the genes that contribute the most to the overdispersion are selected. ROMA was
applied to the TCGA transcriptomics data using gene sets from cancer pathway databases (Appendix
1, Section 1.1.3, Appendix 1—figure 1). These results were used as guidelines to extend the network
to fully cover the alterations found in prostate cancer patients. OmniPath was used to complete our
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Figure 2. Prostate Boolean model used in present work. Nodes (ellipses) represent biological entities, and arcs are
positive (green) or negative (red) influences of one entity on another one. Orange rectangles correspond to inputs
(from left to right: Epithelial Growth Factor (EGF), Fibroblast Growth Factor (FGF), Transforming Growth Factor
beta (TGFbeta), Nutrients, Hypoxia, Acidosis, Androgen, fused_event, Tumour Necrosis Factor alpha (TNFalpha),

Figure 2 continued on next page
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SPOP, Carcinogen) and dark blue rectangles to outputs that represent biological phenotypes (from left to right:
Proliferation, Migration, Invasion, Metastasis, Apoptosis, DNA_repair), the read-outs of the model. This network is
available to be inspected as a Cytoscape file in the Supplementary file 1.

network finding connections between the proteins of interest known to play a role in the prostate
and the ones identified with ROMA, and the list of genes already present in the model (Appendix 1,
Sections 1.1.3 and 1.1.4, Appendix 1—figures 2 and 3). The final network includes pathways such as
androgen receptor, MAPK, Wnt, NFkB, PI3K/AKT, MAPK, mTOR, SHH, the cell cycle, the epithelial-
mesenchymal transition (EMT), apoptosis and DNA damage pathways.

This network was then converted into a Boolean model where variables can take two values: 0
(inactivate or absent) or 1 (activate or present). Our model aims at predicting prostate phenotypic
behaviours for healthy and cancer cells in different conditions. Nine inputs that represent some of these

physiological conditions of interest were consid-
ered: Epithelial Growth Factor (EGF), Fibroblast
Growth Factor (FGF), Transforming Growth Factor
beta (TGFbeta), Nutrients, Hypoxia, Acidosis,
Androgen, Tumour Necrosis Factor alpha (TNF
alpha), and Carcinogen. These input nodes have
no regulation. Their value is fixed according to the
simulated experiment to represent the status of
the microenvironmental characteristics (e.g. the
presence or absence of growth factors, oxygen,
etc.). A more complex multiscale approach would
be required to consider the dynamical interaction
with other cell types and the environment.

We defined six variables as output nodes that
allow the integration of multiple phenotypic
signals and simplify the analysis of the model.
Two of these phenotypes represent the possible
growth status of the cell: Proliferation and
Apoptosis. Apoptosis is activated by Caspase
8 or Caspase 9, while Proliferation is activated
by cyclins D and B (read-outs of the G1 and M
phases, respectively). The Proliferation output
is described in published models as specific
stationary protein activation patterns, namely
the following sequence of activation of cyclins:
Cyclin D, then Cyclin E, then Cyclin A, and finally
Cyclin B (Traynard et al., 2016). Here, we consid-
ered a proper sequence when Cyclin D activates
first, allowing the release of the transcriptional
factor E2F1 from the inhibitory complex it was
forming with the RB (retinoblastoma protein),
and then triggering a series of events leading
to the activation of Cyclin B, responsible for the
cell's entry into mitosis (Appendix 1, Section 2.2,
Appendix 1—figure 5). We also define several
phenotypic outputs that are readouts of cancer
hallmarks: Invasion, Migration, (bone) Metastasis
and DNA repair. The final model accounts for
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Figure 3. Prostate Boolean model MaBoSS
simulations. (A) The model was simulated with all initial
inputs set to 0 and all other variables random. All
phenotypes are 0 at the end of the simulations, which
should be understood as a quiescent state, where
neither proliferation nor apoptosis is active. (B) The
model was simulated with growth factors (EGF and
FGF), Nutrients and Androgen ON. (C) The model

was simulated with Carcinogen, Androgen, TNFalpha,
Acidosis, and Hypoxia ON.
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133 nodes and 449 edges (Figure 2, Supplementary file 1, and in GINsim format at the address:
http://ginsim.org/model/signalling-prostate-cancer).

Prostate Boolean model simulation

The model can be considered as a model of healthy prostate cells when no mutants (or fused genes)
are present. We refer to this model as the wild type model. These healthy cells mostly exhibit quies-
cence (neither proliferation nor apoptosis) in the absence of any input (Figure 3A). When Nutrients
and growth factors (EGF or FGF) are present, Proliferation is activated (Figure 3B). Androgen is neces-
sary for AR activation and helps in the activation of Proliferation, even though it is not necessary when
Nutrients or growth factors are present. Cell death factors (such as Caspase 8 or 9) trigger Apoptosis
in the absence of SPOP, while Hypoxia and Carcinogen facilitate apoptosis but are not necessary if
cell death factors are present (Figure 3C).

In our model, the progression towards metastasis is described as a stepwise process. Invasion is
first activated by known pro-invasive proteins: either B-catenin (Francis et al., 2013) or a combination
of CDH2 (De Wever et al., 2004), SMAD (Daroqui et al., 2012), or EZH2 (Ren et al., 2012). Migra-
tion is then activated by Invasion and EMT and with either AKT or AR (Castoria et al., 2011). Lastly,
(bone) Metastasis is activated by Migration and one of three nodes: RUNX2 (Altieri et al., 2009), ERG
(Adamo and Ladomery, 2016) or ERG fused with TMPRSS2 (St John et al., 2012), FLI1, ETV1 or ETV4
(Cancer Genome Atlas Research Network, 2015).

This prostate Boolean model was simulated stochastically using MaBoSS (Stoll et al., 2017; Stoll
et al., 2012) and validated by recapitulating known phenotypes of prostate cells under physiological
conditions (Figure 3 and Appendix 1, Sections 2.2 and 2.3, Appendix 1—figures 5-7). In partic-
ular, we tested that combinations of inputs lead to non-aberrant phenotypes such as growth factors
leading to apoptosis in wild type conditions; we also verified that the cell cycle events occur in proper
order: as CyclinD gets activated, RB1 is phosphorylated and turned OFF, allowing E2F1 to mediate
the synthesis of CyclinB (see Supplementary file 2 for the jupyter notebook and the simulation of
diverse cellular conditions).

Personalisation of the prostate Boolean model

Personalised TCGA prostate cancer patient Boolean models

We tailored the generic prostate Boolean model to a set of 488 TCGA prostate cancer patients
(Appendix 1, Section 4, Appendix 1—figure 9) using our personalisation method (PROFILE) (Béal
et al.,, 2019), constructing 488 individual Boolean models, one for each patient. Personalised models
were built using three types of data: discrete data such as mutations and copy number alterations
(CNA) and continuous data such as RNAseq data. For discrete data, the nodes corresponding to
the mutations or the CNA were forced to 0 or 1 according to the effect of alterations, based on a
priori knowledge (i.e. if the mutation was reported to be activating or inhibiting the gene's activity).
For continuous data, the personalisation method modifies the value for the transition rates of model
variables and their initial conditions to influence the probability of some transitions. This corresponds,
in a biologically meaningful way, to translating genetic mutations as lasting modifications making the
gene independent of regulation, and to translating RNA expression levels as modulation of a signal
but not changing the regulation rules (see Materials and methods and in Appendix 1, Section 4.1,
Appendix 1—figures 10-14).

We assess the general behaviour of the individual patient-specific models by comparing the model
outputs (i.e. probabilities to reach certain phenotypes) with clinical data. Here, the clinical data consist
of a Gleason grade score associated with each patient, which in turn corresponds to the gravity of the
tumour based on its appearance and the stage of invasion (Chen and Zhou, 2016; Gleason, 1992;
Gleason, 1977). We gathered the output probabilities for all patient-specific models and confronted
them to their Gleason scores. The phenotype DNA_repair, which can be interpreted as a sensor of
DNA damage and genome integrity which could lead to DNA repair, seems to separate low and high
Gleason scores (Figure 4A and Appendix 1, Section 4.1, Appendix 1—figures 15-18), confirming
that DNA damage pathways are activated in patients (Marshall et al., 2019) but may not lead to the
triggering of apoptosis in this model (Appendix 1, Section 4.1, Appendix 1—figure 11). Also, the
centroids of Gleason grades tend to move following Proliferation, Migration and Invasion variables.
We then looked at the profiles of the phenotype scores across patients and their Gleason grade and
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Figure 4. Associations between simulations and Gleason grades (GG). (A) Centroids of the Principal Component
Analysis of the samples according to their Gleason grades (GG). The personalisation recipe used was mutations
and copy number alterations (CNA) as discrete data and RNAseq as continuous data. Density plots of Proliferation
(B) and Apoptosis (C) scores according to GG; each vignette corresponds to a specific sub-cohort with a given GG.
Kruskal-Wallis rank sum test across GG s significant for Proliferation (p-value = 0.00207) and Apoptosis (p-value =
2.83E-6).

The online version of this article includes the following source data for figure 4:
Source code 1. R code needed to obtain Figure 4.

Source data 1. Processed dataset needed to obtain the phenotype distributions of Figure 4B, C, with Figure 4—
source code 1.

Source data 2. Processed dataset needed to obtain the PCA of Figure 4A, with Figure 4—source code 1.

found that the density of high Proliferation score (close to 1, Figure 4B) tends to increase as the
Gleason score increases (from low to intermediate to high) and these distributions are significantly
different (Kruskal-Wallis rank sum test, p-value = 0.00207; Appendix 1, Section 4.1). The Apoptosis
phenotype probabilities, however, do not have a clear trend across grades (Figure 4C), even though
the distributions are significantly different (Kruskal-Wallis rank sum test, p-value = 2.83E-6; Appendix
1, Section 4.1).

Personalised drug predictions of TCGA Boolean models

Using the 488 TCGA patient-specific models, we looked in each patient for genes that, when inhibited,
hamper Proliferation or promote Apoptosis in the model. We focused on these inhibitions as most
drugs interfere with the protein activity related to these genes, even though our methodology allows
us to study increased protein activity related to over-expression of genes as well (Béal et al., 2019,
Montagud et al., 2019). Interestingly, we found several genes that were found as suitable points of
intervention in most of the patients (MYC_MAX complex and SPOP were identified in more than 80%
of the cases) (Appendix 1, Section 4.2, Appendix 1—figures 19 and 20), but others were specific to
only some of the patients (MXI1 was identified in only 4 patients, 1% of the total, GLI in only 7% and
WNT in 8% of patients). All the TCGA-specific personalised models can be found in Supplementary
file 3, and the TCGA mutants and their phenotype scores can be found in Supplementary file 4.
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Node Gene Compound / Inhibitor name Clinical stage Source
PI-103 Preclinical Drug Bank
Enzastaurin Phase 3 Drug Bank
AKT AKT1, AKT2, AKT3 Avrchexin, Pictilisib Phase 2 Drug Bank
Abiraterone,
Enzalutamide, Formestane, Testosterone propionate Approved Drug Bank
AR AR Salpha-androstan-3beta-ol Preclinical Drug Bank
Caspase8 CASP8 Bardoxolone Preclinical Drug Bank
cFLAR CFLAR - - -
Afatinib, Osimertinib, Neratinib, Erlotinib, Gefitinib  Approved Drug Bank
Varlitinib Phase 3 Drug Bank
EGFR EGFR Olmutinib, Pelitinib Phase 2 Drug Bank
Isoprenaline Approved Drug Bank
Perifosine Phase 3 Drug Bank
Turpentine, SB220025, Olomoucine,
MAPK1 Phosphonothreonine Preclinical Drug Bank
Arsenic trioxide Approved Drug Bank
Ulixertinib, Seliciclib Phase 2 Drug Bank
MAPK3, MAPK1 Purvalanol Preclinical Drug Bank
Sulindac, Cholecystokinin Approved Drug Bank
ERK MAPK3 5-iodotubercidin Preclinical Drug Bank
GLUT1 SLC2A1 Resveratrol Phase 4 Drug Bank
HIF-1 HIF1A CAY-10585 Preclinical Drug Bank
Cladribine Approved Drug Bank
17-DMAG Phase 2 Drug Bank
HSP?0AAT, HSP9OAB1, HSP90B1, HSPA1A, HSPA1B,
HSPs HSPB1 NMS-E973 Preclinical Drug Bank
Trametinib, Selumetinib Approved Drug Bank
Perifosine Phase 3 Drug Bank
MEK1_2 MAP2K1, MAP2K2 PD184352 (CI-1040) Phase 2 Drug Bank
MYC_MAX complex of MYC and MAX 10058-F4 (for MAX) Preclinical Drug Bank
p14ARF CDKN2A - - -
PIK3CA, PIK3CB, PIK3CG, PIK3CD, PIK3R1, PIK3R2, PI-103 Preclinical Drug Bank
PIK3R3, PIK3R4, PIK3RS5, PIK3Ré, PIK3C2A, PIK3C2B,
PI3K PIK3C2G, PIK3C3 Pictilisib Phase 2 Drug Bank
NOX1, NOX3, NOX4 Fostamatinib Approved Drug Bank
Dextromethorphan Approved Drug Bank
Tetrahydroisoquinolines (CHEMBL3733336,
ROS NOX2 CHEMBL3347550, CHEMBL3347551) Preclinical ChEMBL
SPOP SPOP - - -
Grn163| Phase 2 Drug Bank
TERT TERT BIBR 1532 Preclinical ChEMBL
Montagud et al. eLife 2022;0:€72626. DOI: https://doi.org/10.7554/eLife.72626 8 of 81
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Furthermore, we explored the possibility of finding combinations of treatments that could reduce
the Proliferation phenotype or increase the Apoptosis one. To lower the computational power need,
we narrowed down the list of potential candidates to a set of selected genes that are targets of
already-developed drugs relevant in cancer progression (Table 1) and analysed the simulations of the
models with all the single and combined perturbations.

We used the models to grade the effect that the combined treatments have in each one of the
488 TCGA patient-specific models’ phenotypes. This list of combinations of treatments can be used
to compare the effects of drugs on each TCGA patient and allows us to propose some of them
for individual patients and to suggest drugs suitable to groups of patients (Supplementary file 4).
Indeed, the inactivation of some of the targeted genes had a greater effect in some patients than in
others, suggesting the possibility for the design of personalised drug treatments. For instance, for the
TCGA-EJ-5527 patient, the use of MYC_MAX complex inhibitor reduced Proliferation to 66%. For this
patient, combining MYC_MAX with other inhibitors, such as AR or AKT, did not further reduce the
Proliferation score (67% in these cases). Other patients have MYC_MAX as an interesting drug target,
but the inhibition of this complex did not have such a dramatic effect on their Proliferation scores as
in the case of TCGA-EJ-5527. Likewise, for the TCGA-H9-A6BX patient, the use of SPOP inhibitor
increased Apoptosis by 87%, while the use of a combination of cFLAR and SPOP inhibitors further
increased Apoptosis by 89%. For the rest of this section, we focus on the analysis of clinical groups
rather than individuals.

Studying the decrease of Proliferation, we found that AKT is the top hit in Gleason Grades 1, 2,
3, and 4, seconded by EGFR and SPOP in Grade 1, by SPOP and PIP3 in Grade 2, by PIP3 and AR in
Grade 3, and by CyclinD and MYC_MAX in Grade 4. MYC_MAX is the top hit in Grade 5, seconded by
AR (Appendix 1, Section 4.2, Appendix 1—figure 19). In regard to the increase of Apoptosis, SPOP
is the top hit in all grades, seconded by SSH in Grades 1, 2, and 3 and by AKT in Grade 4 (Appendix
1, Section 4.2, Appendix 1—figure 20). It is interesting to note here that many of these genes are
targeted by drugs (Table 1). Notably, AR is the target of the drug Enzalutamide, which is indicated for
men with an advanced stage of the disease (Scott, 2018), or that MYC is the target of BET bromo-
domain inhibitors and are generally effective in castration-resistant prostate cancer cases (Coleman
et al., 2019).

The work on patient data provided possible insights and suggested patient- and grade-specific
potential targets. To validate our approach experimentally, we personalised the prostate model to
different prostate cell lines, where we performed drug assays to confirm the predictions of the model.

Personalised drug predictions of LNCaP Boolean model

We applied the methodology for personalisation of the prostate model to eight prostate cell lines
available in GDSC (lorio et al., 2016): 22RV1, BPH-1, DU-145, NCI-H660, PC-3, PWR-1E, and VCaP
(results in Appendix 1, Section 5 and are publicly available in Supplementary file 5). We decided to
focus the validation on one cell line, LNCaP.

LNCaP, first isolated from a human metastatic prostate adenocarcinoma found in a lymph node
(Horoszewicz et al., 1983), is one of the most widely used cell lines for prostate cancer studies.
Androgen-sensitive LNCaP cells are representative of patients sensitive to treatments as opposed
to resistant cell lines such as DU-145. Additionally, LNCaP cells have been used to obtain numerous
subsequent derivatives with different characteristics (Cunningham and You, 2015).

The LNCaP personalisation was performed based on mutations as discrete data and RNA-Seq as
continuous data. The resulting LNCaP-specific Boolean model was then used to identify all possible
combinations of mutations (interpreted as effects of therapies) and to study the synergy of these
perturbations. For that purpose, we automatically performed single and double mutant analyses on
the LNCaP-specific model (knock-out and overexpression) (Montagud et al., 2019) and focused on
the model phenotype probabilities as read-outs of the simulations. The analysis of the complete set
of simulations for the 32,258 mutants can be found in the Appendix 1, Section 6.1 and in Supplemen-
tary file 6, where the LNCaP cell line-specific mutants and their phenotype scores are reported for all
mutants. Among all combinations, we identified the top 20 knock-out mutations that depleted Prolif-
eration or increased Apoptosis the most. As some of them overlapped, we ended up with 29 nodes:
AKT, AR, ATR, AXIN1, Bak, BIRC5, CDH2, cFLAR, CyclinB, CyclinD, E2F1, eEF2K, eEF2, eEF2K, EGFR,
ERK, HSPs, MED12, mTORC1, mTORC2, MYC, MYC_MAX, PHDs, PI3K, PIP3, SPOP, TAK1, TWISTI1,
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and VHL. We used the scores of these nodes to further trim down the list to have 10 final nodes (AKT,
AR, cFLAR, EGFR, ERK, HSPs, MYC_MAX, SPOP, and PI3K) and added seven other nodes whose
genes are considered relevant in cancer biology, such as AR_ERG fusion, Caspase8, HIF1, GLUTI,
MEK1_2, p14ARF, ROS, and TERT (Table 1). We did not consider the overexpression mutants as they
have a very difficult translation to drug uses and clinical practices.

To further analyse the mutant effects, we simulated the LNCaP model with increasing node inhibition
values to mimic the effect of drugs’ dosages using a methodology we specifically developed for this
purpose (PROFILE_v2 and available at https://github.com/ArnauMontagud/PROFILE_v2; Montagud,
2022a). Six simulations were done for each inhibited node, with 100% of node inhibition (proper
knock-out), 80%, 60%, 40%, 20% and 0% (no inhibition) (see Materials and methods). A nutrient-rich
media with EGF was used for these simulations that correspond to experimental conditions that are
tested here. We show results on three additional sets of initial conditions in the Appendix 1, Section
6, Appendix 1—figure 27: a nutrient-rich media with androgen, with androgen and EGF, and with
none, . We applied this gradual inhibition, using increasing drugs’ concentrations, to a reduced list
of drug-targeted genes relevant for cancer progression (Table 1). We confirmed that the inhibition
of different nodes affected differently the probabilities of the outputs (Appendix 1, Section 7.3.1,
Appendix 1—figures 34 and 35). Notably, the Apoptosis score was slightly promoted when knocking
out SPOP under all growth conditions (Appendix 1, Section 7.3.1, Appendix 1—figure 35). Likewise,
Proliferation depletion was accomplished when HSPs or MYC_MAX were inhibited under all condi-
tions and, less notably, when ERK, EGFR, SPOF, or PI3K were inhibited (Appendix 1, Section 7.3.1,
Appendix 1—figure 35).

Additionally, these gradual inhibition analyses can be combined to study the interaction of two
simultaneously inhibiting nodes (Appendix 1, Section 7.3.2, Appendix 1—figures 36 and 37). For
instance, the combined gradual inhibition of ERK and MYC_MAX nodes affects the Proliferation score
in a balanced manner (Figure 5A) even though MYC_MAX seems to affect this phenotype more,
notably at low activity levels. By extracting subnetworks of interaction around ERK and MYC_MAX
and comparing them, we found that the pathways they belong to have complementary downstream
targets participating in cell proliferation through targets in MAPK and cell cycle pathways. This
complementarity could explain the synergistic effects observed (Figure 5A and C).

Lastly, drug synergies can be studied using Bliss Independence using the results from single and
combined simulations with gradual inhibitions. This score compares the combined effect of two drugs
with the effect of each one of them, with a synergy when the value of this score is lower than 1. We
found that the combined inhibition of ERK and MYC_MAX nodes on the Proliferation score was syner-
gistic (Figure 5C). Another synergistic pair is the combined gradual inhibition of HSPs and PI3K nodes
that also affects the Proliferation score in a joint manner (Figure 5B), with some Bliss Independence
synergy found (Figure 5D). A complete study on the Bliss Independence synergy of all the drugs
considered in the present work on Proliferation and Apoptosis phenotypes can be found in Appendix
1, Section 7.3.2, Appendix 1—figures 38 and 39.

Experimental validation of predicted targets

Drugs associated with the proposed targets

To identify drugs that could act as potential inhibitors of the genes identified with the Boolean model,
we explored the drug-target associations in DrugBank (Wishart et al., 2018) and ChEMBL (Gaulton
et al., 2017). We found drugs that targeted almost all genes corresponding to the nodes of interest
in Table 1, except for cFLAR, p14ARF, and SPOP. However, we could not identify experimental cases
where drugs targeting both members of the proposed combinations were available (Appendix 1,
Section 7.1 and in Supplementary file 6). One possible explanation is that the combinations predicted
by the model suggest, in some cases, to overexpress the potential target and most of the drugs avail-
able act as inhibitors of their targets.

Using the cell line-specific models, we tested if the LNCaP cell line was more sensitive than the
rest of the prostate cell lines to the LNCaP-specific drugs identified in Table 1. We compared GDSC's
Z-score of these drugs in LNCaP with their Z-scores in all GDSC cell lines (Figure 6 and Appendix 1,
Section 7.2, Appendix 1—figure 33). We observed that LNCaP is more sensitive to drugs targeting
AKT or TERT than the rest of the studied prostate cell lines. Furthermore, we saw that the drugs that
targeted the genes included in the model allowed the identification of cell line specificities (Appendix
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Figure 5. Phenotype score variations and synergy upon combined ERK and MYC_MAX (A and C) and HSPs and
PI3K (B and D) inhibition under EGF growth condition. Proliferation score variation (A) and Bliss Independence
synergy score (C) with increased node activation of nodes ERK and MYC_MAX. Proliferation score variation (B) and
Bliss Independence synergy score (D) with increased node activation of nodes HSPs and PI3K. Bliss Independence
synergy score <1 is characteristic of drug synergy, grey colour means one of the drugs is absent and thus no

synergy score is available.

The online version of this article includes the following source data for figure 5:

Source code 1. R code needed to perform the drug dosage experiments and obtain Figure 5 from the main text

and Appendix 1—figures 27, 34-39.

Source data 1. Processed datasets needed to obtain the phenotype score variations and synergy values of

Figure 5 with Figure 5—source code 1.

1, Section 7.1). For instance, target enrichment analysis showed that LNCaP cell lines are especially
sensitive to drugs targeting PI3K/AKT/mTOR, hormone-related (AR targeting) and Chromatin (bromo-
domain inhibitors, regulating Myc) pathways (adjusted p-values from target enrichment: 0.001, 0.001,
and 0.032, respectively, Appendix 1, Section 7.1, Appendix 1—table 2), which corresponds to the
model predictions (Table 1). Also, the LNCaP cell line is more sensitive to drugs targeting model-
identified nodes than to drugs targeting other proteins (Appendix 1, Section 7.1, Appendix 1—figure
32, Mann-Whitney U p-value 0.00041), and this effect is specific for LNCaP cell line (Mann-Whitney U
p-values ranging from 0.0033 to 0.38 for other prostate cancer cell lines).

Montagud et al. eLife 2022;0:€72626. DOI: https://doi.org/10.7554/eLife.72626

11 of 81


https://doi.org/10.7554/eLife.72626

e Llfe Research article

Computational and Systems Biology

® AKT ERK @® MEK1_2 @® TERT

Target nodes:
® EGFR @ HSPs @ PI3K Other targets

LNCap 22RV1 BPH-1 DU-145 PC-

PWR-1E VCaP

2- ] ®

Figure 6. Model-targeting drugs’ sensitivities across prostate cell lines. GDSC z-score was obtained for all the
drugs targeting genes included in the model for all the prostate cell lines in GDSC. Negative values mean that
the cell line is more sensitive to the drug. Drugs included in Table 1 were highlighted. ‘Other targets’ are drugs
targeting model-related genes that are not part of Table 1.

The online version of this article includes the following source data for figure 6:
Source code 1. R code needed to obtain Figure 6.
Source data 1. Processed dataset needed to obtain Figure 6 with Figure 6—source code 1.

Source data 2. Processed dataset needed to obtain Figure é with Figure 6—source code 1.

Overall, the drugs proposed through this analysis suggest the possibility to repurpose drugs that
are used in treating other forms of cancer for prostate cancer and open the avenue for further exper-
imental validations based on these suggestions.

Experimental validation of drugs in LNCaP
To validate the model predictions of the candidate drugs, we selected four drugs that target HSPs
and PI3K and tested them in LNCaP cell line experiments by using endpoint cell viability measurement
assays and real-time cell survival assays using the xCELLigence system (see Materials and methods).
The drug selection was a compromise between the drugs identified by our analyses (Table 1) and
their effect in diminishing LNCaP’s proliferation (see the previous section). In both assays, drugs that
target HSP9OAA1 and PI3K/AKT pathway genes retrieved from the model analyses were found to be
effective against cell proliferation.

The Hsp90 chaperone is expressed abundantly and plays a crucial role in the correct folding of
a wide variety of proteins such as protein kinases and steroid hormone receptors (Schopf et al.,
2017). Hsp90 can act as a protector of less stable proteins produced by DNA mutations in cancer
cells (Barrott and Haystead, 2013; Hessenkemper and Baniahmad, 2013). Currently, Hsp90 inhib-
itors are in clinical trials for multiple indications in cancer (Chen et al., 2020; Iwai et al., 2012; Le
et al., 2017). The PI3K/AKT signalling pathway controls many different cellular processes such as
cell growth, motility, proliferation, and apoptosis and is frequently altered in different cancer cells
(Carceles-Cordon et al., 2020, Shorning et al., 2020). Many PI3K/AKT inhibitors are in different
stages of clinical development, and some of them are approved for clinical use (Table 1).

Notably, Hsp90 (NMS-E973,17-DMAG) and PI3K/AKT pathway (PI-103, Pictilisib) inhibitors showed
a dose-dependent activity in the endpoint cell viability assay determined by the fluorescent resazurin
after a 48 hr incubation (Figure 7). This dose-dependent activity is more notable in Hsp90 drugs
(NMS-E973,17-DMAG) than in PI3K/AKT pathway (Pictilisib) ones and very modest for PI-103.

We studied the real-time response of LNCaP cell viability upon drug addition and saw that the
LNCaP cell line is sensitive to Hsp90 and PI3K/AKT pathway inhibitors (Figures 8 and 9, respectively).
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Figure 7. Cell viability assay determined by the fluorescent resazurin after a 48 hours incubation showed a dose-
dependent response to different inhibitors. (A) Cell viability assay of LNCaP cell line response to 17-DMAG HSP90
inhibitor. (B) Cell viability assay of LNCaP cell line response to PI-103 PI3K/AKT pathway inhibitor. (C) Cell viability
assay of LNCaP cell line response to NMS-E973 HSP90 inhibitor. (D) Cell viability assay of LNCaP cell line response
to Pictilisib PI3K/AKT pathway inhibitor. Concentrations of drugs were selected to capture their drug-dose
response curves. The concentrations for the NMS-E973 are different from the rest as this drug is more potent than
the rest (see Materials and methods).

The online version of this article includes the following source data for figure 7:
Source code 1. R code needed to obtain Figure 7.
Source data 1. Processed dataset needed to obtain Figure 7 with Figure 7—source code 1.

Source data 2. Processed dataset needed to obtain with Figure 7—source code 1.

Both Hsp%0 inhibitors tested, 177-DMAG and NMS-E973, reduced the cell viability 12 hr after drug
supplementation (Figure 8A for 17-DMAG and Figure 8B for NMS-E973), with 17-DMAG having a
stronger effect and in a more clear concentration-dependent manner than NMS-E973 (Appendix 1,
Section 8, Appendix 1—figure 40, panels B-D for 17-DMAG and panels F-H for NMS-E973).
Likewise, both PI3K/AKT pathway inhibitors tested, Pictilisib and PI-103, reduced the cell viability
immediately after drug supplementation (Figure 9A for Pictilisib and Figure 9B for PI-103), in a
concentration-dependent manner (Appendix 1, Section 8, Appendix 1—figure 41B-D, for Pictilisib
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Figure 8. Hsp90 inhibitors resulted in dose-dependent changes in the LNCaP cell line growth. (A) Real-time
cell electronic sensing (RT-CES) cytotoxicity assay of Hsp90 inhibitor, 17-DMAG, that uses the Cell Index as a
measurement of the cell growth rate (see the Materials and methods section). The yellow dotted line represents
the 17-DMAG addition. (B) RT-CES cytotoxicity assay of Hsp90 inhibitor, NMS-E973. The yellow dotted line
represents the NMS-E973 addition.

The online version of this article includes the following source data for figure 8:
Source data 1. Processed dataset to obtain Figures 8 and 9 with Figure 8—source code 1.

Source code 1. R code needed to obtain Figures 8 and 9 with Figure 8—source data 1.

and panels F-H for PI-103). In addition, Hsp90 inhibitors had a more prolonged effect on the cells’
proliferation than PI3K/AKT pathway inhibitors.

Discussion

Clinical assessment of cancers is moving toward more precise, personalised treatments, as the times
of one-size-fits-all treatments are no longer appropriate, and patient-tailored models could boost the
success rate of these treatments in clinical practice. In this study, we set out to develop a method-
ology to investigate drug treatments using personalised Boolean models. Our approach consists of
building a model that represents the patient-specific disease status and retrieving a list of proposed
interventions that affect this disease status, notably by reducing its pro-cancerous behaviours. In this
work, we have showcased this methodology by applying it to TCGA prostate cancer patients and to
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Figure 9. PI3K/AKT pathway inhibition with different PI3K/AKT inhibitors shows the dose-dependent response

in LNCaP cell line growth. (A) Real-time cell electronic sensing (RT-CES) cytotoxicity assay of PI3K/AKT pathway
inhibitor, PI-103, that uses the Cell Index as a measurement of the cell growth rate (see the Materials and methods
section). The yellow dotted line represents the PI-103 addition. (B) RT-CES cytotoxicity assay of PI3K/AKT pathway
inhibitor, Pictilisib. The yellow dotted line represents the Pictilisib addition.

GDSC prostate cancer cell lines, finding patient- and cell line-specific targets and validating selected
cell line-specific predicted targets (Figure 1).

First, a prostate cancer Boolean model that encompasses relevant signalling pathways in cancer
was constructed based on already published models, experimental data analyses and pathway data-
bases (Figure 2). The influence network and the assignment of logical rules for each node of this
network were obtained from known interactions described in the literature (Figure 3). This model
describes the regulation of invasion, migration, cell cycle, apoptosis, androgen, and growth factors
signalling in prostate cancer (Appendix 1, Section 1).

Second, from this generic Boolean model, we constructed personalised models using the different
datasets, that is 488 patients from TCGA and eight cell lines from GDSC. We obtained Gleason
score-specific behaviours for TCGA's patients when studying their Proliferation and Apoptosis scores,
observing that high Proliferation scores are higher in high Gleason grades (Figure 4). Thus, the use
of these personalised models can help rationalise the relationship of Gleason grading with some of
these phenotypes.

Montagud et al. eLife 2022;0:€72626. DOI: https://doi.org/10.7554/eLife.72626 15 of 81


https://doi.org/10.7554/eLife.72626

e Llfe Research article

Computational and Systems Biology

Likewise, GDSC data was used with the prostate model to obtain cell line-specific prostate models
(Figure 6). These models show differential behaviours, notably in terms of Invasion and Proliferation
phenotypes (Appendix 1, Section 5, Appendix 1—figure 21). One of these cell line-specific models,
LNCaP, was chosen, and the effects of all its genetic perturbations were thoroughly studied. We
studied 32,258 mutants, including single and double mutants, knock-out and over-expressed, and
their phenotypes (Appendix 1, Section 6.1, Appendix 1—figures 28 and 29). Thirty-two knock-out
perturbations that depleted Proliferation and/or increased Apoptosis were identified, and 16 of them
were selected for further analyses (Table 1). The LNCaP-specific model was simulated using different
initial conditions that capture different growth media’s specificities, such as RPMI media with and
without androgen or epidermal growth factor (Appendix 1, Section 6, Appendix 1—figure 27).

Third, these personalised models were used to simulate the inhibition of druggable genes and
proteins, uncovering new treatment'’s combination and their synergies. We developed a methodology
to simulate drug inhibitions in Boolean models, termed PROFILE_v2, as an extension of previous
works (Béal et al., 2019). The LNCaP-specific model was used to obtain simulations with nodes and
pairs of nodes corresponding to the genes of interest inhibited with varying strengths. This study
allowed us to compile a list of potential targets (Table 1) and to identify potential synergies among
genes in the model (Figure 5). Some of the drugs that targeted these genes, such as AKT and TERT,
were identified in GDSC as having more sensitivity in LNCaP than in the rest of the prostate cancer
cell lines (Figure 6). In addition, drugs that targeted genes included in the model allowed the identi-
fication of cell line specificities (Appendix 1, Section 5).

Fourth, we validated the effect of Hsp90 and PI3K/AKT pathway inhibitors on the LNCaP cell line
experimentally, finding a concentration-dependent inhibition of the cell line viability as predicted,
confirming the role of the drugs targeting these proteins in reducing LNCaP’s proliferation (Figures 7
and 8). Notably, these targets have been studied in other works on prostate cancer (Chen et al.,
2020; Le et al., 2017).

The study presented here enables the study of drug combinations and their synergies. One reason
for searching for combinations of drugs is that these have been described for allowing the use of
lower doses of each of the two drugs reducing their toxicity (Bayat Mokhtari et al., 2017), evading
compensatory mechanisms and combating drug resistances (Al-Lazikani et al., 2012; Krzyszczyk
et al., 2018).

Even if this approach is attractive and promising, it has some limitations. The scope of present work
is to test this methodology on a prostate model and infer patient-specific prostate cancer treatments.
The method need to be adapted if it were to be expanded to study other cancers by using other
models and target lists. The analyses performed with the mathematical model do not aim to predict
drug dosages per se but to help in the identification of potential candidates. The patient-specific
changes in Proliferation and Apoptosis scores upon mutation are maximal theoretical yields that are
used to rank the different potential treatments and should not be used as a direct target for experi-
mental results or clinical trials. Our methodology suggests treatments for individual patients, but the
obtained results vary greatly from patient to patient, which is not an uncommon issue of personalised
medicine (Ciccarese et al., 2017, Molinari et al., 2018). This variability is an economic challenge for
labs and companies to pursue true patient-specific treatments and also poses challenges in clinical
trial designs aimed at validating the model based on the selection of treatments (Cunanan et al.,
2017). Nowadays, and because of these constraints, it might be more commercially interesting to
target group-specific treatments, which can be more easily related to clinical stages of the disease.

Mathematical modelling of patient profiles helps to classify them in groups with differential char-
acteristics, providing, in essence, a grade-specific treatment. We, therefore, based our analysis on
clinical grouping defined by the Gleason grades, but some works have emphasised the difficulty to
properly assess them (Chen and Zhou, 2016) and, as a result, may not be the perfect predictor for the
patient subgrouping in this analysis, even though it is the only available one for these datasets. The
lack of subgrouping that stratifies patients adequately may undermine the analysis of our results and
could explain the Proliferation and Apoptosis scores of high-grade and low-grade Gleason patients.

Moreover, the behaviours observed in the simulations of the cell line-specific models do not
always correspond to what is reported in the literature. The differences between simulation results
and biological characteristics could be addressed in further studies by including other pathways, for
example, better describing the DNA repair mechanisms, or by tailoring the model with different
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sets of data, as the data used to personalise these models do not allow for clustering these cell
lines according to their different characteristics (Appendix 1, Section 5, Appendix 1—figures 24
and 25). In this sense, another limitation is that we use static data or a snapshot of dynamic data
to build dynamic models and to study its stochastic results. Thus, these personalised models would
likely improve their performance if they were fitted to dynamic data (Saez-Rodriguez and Bliithgen,
2020) or quantitative versions of the models were built, such as ODE-based, that may capture more
fine differences among cell lines. As perspectives, we are working on integrating these models in
multiscale models to study the effect of the tumour microenvironment (Ponce-de-Leon et al., 2021,
Ponce-de-Leon et al., 2022), on including information to simulate multiple reagents targeting a single
node of the model, on scaling these multiscale models to exascale high-performance computing clus-
ters (Montagud et al., 2021; Saxena et al., 2021), and on streamlining these studies using workflows
in computing clusters to fasten the processing of new, bigger cohorts, as in the PerMedCoE project
(https://permedcoe.eu/).

The present work contributes to efforts aimed at using modelling (Eduati et al., 2020; Rivas-
Barragan et al., 2020; Gomez Tejeda Zafudo et al., 2017) and other computational methods
(Madani Tonekaboni et al., 2018, Menden et al., 2019) for the discovery of novel drug targets and
combinatorial strategies. Our study expands the prostate drug catalogue and improves predictions of
the impact of these in clinical strategies for prostate cancer by proposing and grading the effective-
ness of a set of drugs that could be used off-label or repurposed. The insights gained from this study
present the potential of using personalised models to obtain precise, personalised drug treatments
for cancer patients.

Materials and methods

Data acquisition

Publicly available data of 489 human prostate cancer patients from TCGA described in Hoadley
et al., 2018 were used in the present work. We gathered mutations, CNA, RNA and clinical data from
cBioPortal (https://www.cbioportal.org/study/summary?id=prad_tcga_pan_can_atlas_2018) for all of
these samples resulting in 488 with complete omics datasets.

Publicly available data of cell lines used in the present work were obtained from the Genomics of
Drug Sensitivity in Cancer database (GDSC) (lorio et al., 2016). Mutations, CNA and RNA data, as
well as cell lines descriptors, were downloaded from (https://www.cancerrxgene.org/downloads). In
this work, we have used 3- and 5-stage Gleason grades. Their correspondence is the following: GG
Low is GG 1, GG Intermediate is GG 2 and 3, and GG High is GG 4 and 5.

All these data were used to personalise Boolean models using our PROFILE method (Béal et al.,
2019).

Prior knowledge network construction

Several sources were used in building this prostate Boolean model and, in particular, the model
published by Fumia and Martins, 2013. This model includes several signalling pathways such as
the ones involving receptor tyrosine kinase (RTKs), phosphatidylinositol 3-kinase (PI3K)/AKT,
WNT/B-Catenin, transforming growth factor-p (TGF-f)/Smads, cyclins, retinoblastoma protein (Rb),
hypoxia-inducible transcription factor (HIF-1), p53 and ataxia-telangiectasia mutated (ATM)/ataxia-
telangiectasia and Rad3-related (ATR) protein kinases. The model includes these pathways as well as
the substantial cross-talks among them. For a complete description of the process of construction,
see Appendix 1, Section 1.

The model also includes several pathways that have a relevant role in our datasets identified by
ROMA (Martignetti et al., 2016), a software that uses the first principal component of a PCA analysis
to summarise the coexpression of a group of genes in the gene set, identifying significantly overdis-
persed pathways with a relevant role in a given set of samples. This software was applied to the TCGA
transcriptomics data using the gene sets described in the Atlas of Cancer Signaling Networks, ACSN
(Kuperstein et al., 2015) (http://www.acsn.curie.fr/) and in the Hallmarks (Liberzon et al., 2015)
(Appendix 1, Section 1.1.3, Appendix 1—figure 1) and highlighted the signalling pathways that show
high variance across all samples, suggesting candidate pathways and genes. Additionally, OmniPath
(Tuirei et al., 2021) was used to extend the model and complete it, connecting the nodes from Fumia
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and Martins and the ones from ROMA analysis. OmniPath is a comprehensive collection of literature-
curated human signalling pathways, which includes several databases such as Signor (Perfetto et al.,
2016) or Reactome (Fabregat et al., 2016) and that can be queried using pypath, a Python module
for molecular networks and pathways analyses.

Fusion genes are frequently found in human prostate cancer and have been identified as a
specific subtype marker (Cancer Genome Atlas Research Network, 2015). The most frequent is
TMPRSS2:ERG, as it involves the transcription factor ERG, which leads to cell-cycle progression. ERG
fuses with the AR-regulated TMPRSS2 gene promoter to form an oncogenic fusion gene that is espe-
cially common in hormone-refractory prostate cancer, conferring androgen responsiveness to ERG. A
literature search reveals that ERG directly regulates EZH2, oncogene c-Myc and many other targets in
prostate cancer (Kunderfranco et al., 2010).

We modelled the gene fusion with activation of ERG by the decoupling of ERG in a special node
AR_ERG that is only activated by the AR when the fused_event input node is active. In the healthy
case, fused_event (that represents TMPRSS2:ERG fusion event) is fixed to O or inactive. The occur-
rence of the gene fusion is represented with the model perturbation where fused_event is fixed to 1.
This AR_ERG node is further controlled by tumour suppressor NKX3-1 that accelerates DNA_repair
response, and avoids the gene fusion TMPRSS2:ERG. Thus, loss of NKX3-1 favours recruitment to
the ERG gene breakpoint of proteins that promote error-prone non-homologous end-joining (Bowen
et al., 2015).

The network was further documented using up-to-date literature and was constructed using
GINsim (Chaouiya et al., 2012), which allowed us to study its stable states and network properties.

Boolean model construction

We converted the network to a Boolean model by defining a regulatory graph, where each node
is associated with discrete levels of activity (0 or 1). Each edge represents a regulatory interaction
between the source and target nodes and is labelled with a threshold and a sign (positive or negative).
The model is completed by logical rules (or functions), which assign a target value to each node for
each regulator level combination (Abou-Jaoudé et al., 2016; Chaouiya et al., 2012). The regulatory
graph was constructed using GINsim software (Chaouiya et al., 2012) and then exported in a format
readable by MaBoSS software (see below) in order to perform stochastic simulations on the Boolean
model.

The final model has a total of 133 nodes and 449 edges (Supplementary file 1) and includes path-
ways such as androgen receptor and growth factor signalling, several signalling pathways (Wnt, NFkB,
PI3K/AKT, MAPK, mTOR, SHH), cell cycle, epithelial-mesenchymal transition (EMT), Apoptosis, DNA
damage, etc. This model has nine inputs (EGF, FGF, TGF beta, Nutrients, Hypoxia, Acidosis, Androgen,
TNF alpha, and Carcinogen presence) and six outputs (Proliferation, Apoptosis, Invasion, Migration,
(bone) Metastasis, and DNA repair). Note that a node in the network can represent complexes or
families of proteins (e.g. AMPK represents the genes PRKAA1, PRKAA2, PRKAB1, PRKAB2, PRKAGT,
PRKAG2, PRKAG3). The correspondence can be found in “Montagud2022_interactions_sources.xlsx”
and “Montagud2022_nodes_in_pathways.xlsx” in Supplementary file 1.

This model was deposited in the GINsim Database with identifier 252 (http://ginsim.org/
model/signalling-prostate-cancer) and in BioModels (Malik-Sheriff et al., 2020) with identifier
MODEL2106070001 (https://www.ebi.ac.uk/biomodels/MODEL2106070001). Supplementary file 1
is provided as a zipped folder with the model in several formats: MaBoSS, GINsim, SBML, as well as
images of the networks and their annotations. An extensive description of the model construction can
be found in the Appendix 1, Section 1.

Stochastic Boolean model simulation

MaBoSS (Stoll et al., 2017; Stoll et al., 2012) is a C++ software for stochastically simulating contin-
uous/discrete-time Markov processes defined on the state transition graph (STG) describing the
dynamics of a Boolean model (for more details, see Abou-Jaoudé et al., 2016; Chaouiya et al., 2012).
MaBoSS associates transition rates to each node’s activation and inhibition, enabling it to account for
different time scales of the processes described by the model. Probabilities to reach a phenotype (to
have value ON) are thus computed by simulating random walks on the probabilistic STG. Since a state
in the STG can combine the activation of several phenotypic variables, not all phenotype probabilities
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are mutually exclusive (like the ones in Appendix 1, Section 6.1, Appendix 1—figure 28). Using
MaBoSS, we can study an increase or decrease of a phenotype probability when the model variables
are altered (nodes status, initial conditions and transition rates), which may correspond to the effect of
particular genetic or environmental perturbation. In the present work, the use of MaBoSS was focused
on the readouts of the model, but this can be done for any node of the model.

MaBoSS applies Monte-Carlo kinetic algorithm (i.e. Gillespie algorithm) to the STG to produce
time trajectories (Stoll et al., 2017; Stoll et al., 2012), so time evolution of probabilities are estimated
once a set of initial conditions are defined and a maximum time is set to ensure that the simulations
reach asymptotic solutions. Results are analysed in two ways: (1) the trajectories for particular model
states (states of nodes) can be interpreted as the evolution of a cell population as a function of time
and (2) asymptotic solutions can be represented as pie charts to illustrate the proportions of cells in
particular model states. Stochastic simulations with MaBoSS have already been successfully applied
to study several Boolean models (Calzone et al., 2010; Cohen et al., 2015; Remy et al., 2015).
A description of the methods we have used for the simulation of the model can be found in the
Appendix 1, Section 2.

Data tailoring the Boolean model

Logical models were tailored to a dataset using PROFILE to obtain personalised models that capture
the particularities of a set of patients (Béal et al., 2019) and cell lines (Béal et al., 2021). Proteomics,
transcriptomics, mutations and CNA data can be used to modify different variables of the MaBoSS
framework, such as node activity status, transition rates and initial conditions. The resulting ensemble
of models is a set of personalised variants of the original model that can show great phenotypic differ-
ences. Different recipes (use of a given data type to modify a given MaBoSS variable) can be tested
to find the combination that better correlates to a given clinical or otherwise descriptive data. In the
present case, TCGA patient-specific models were built using mutations, CNA and/or RNA expression
data. After studying the effect of these recipes in the clustering of patients according to their Gleason
grading (Appendix 1, Section 4.1, Appendix 1—figures 10-14), we chose to use mutations and CNA
as discrete data and RNA expression as continuous data.

Likewise, we tried different personalisation recipes to personalise the GDSC prostate cell lines
models, but as they had no associated clinical grouping features, we were left with the comparison of
the different values for the model’s outputs among the recipes (Appendix 1, Section 5, Appendix 1—
figure 23). We used mutation data as discrete data and RNA expression as continuous data as it
included the most quantity of data and reproduced the desired results (Appendix 1, Section 5,
Appendix 1—figure 23). We decided not to include CNA as discrete data as it forced LNCaP prolif-
eration to be zero by forcing the E2F1 node to be 0 and the SMAD node to be 1 throughout the
simulation (for more details, refer to Appendix 1, Section 5).

More on PROFILE’s methodology can be found in its own work (Béal et al., 2019) and at its dedi-
cated GitHub repository (https://github.com/sysbio-curie/PROFILE; Béal, 2022). A description of the
methods we have used for the personalisation of the models can be found in the Appendix 1, Section
3. The analysis of the TCGA personalisations and their patient-specific drug treatments can be found
in Appendix 1, Section 4. The analysis of the prostate cell lines personalisations can be found in
Appendix 1, Section 5, with a special focus on the LNCaP cell line model analysis in Section 6.

High-throughput mutant analysis of Boolean models
MaBoSS allows the study of knock-out or loss-of-function (node forced to 0) and gain-of-function
(node forced to 1) mutants as genetic perturbations and of initial conditions as environmental pertur-
bations. Phenotypes’ stabilities against perturbations can be studied and allow to determine driver
mutations that promote phenotypic transitions (Montagud et al., 2019).

Genetic interactions were thoroughly studied using our pipeline of computational methods for
Boolean modelling of biological networks (available at https://github.com/sysbio-curie/Logical
modelling_pipeline; Montagud, 2022b). The LNCaP-specific Boolean model was used to perform
single and double knock-out (node forced to 0) and gain-of-function (node forced to 1) mutants for
each one of the 133 nodes, resulting in a total of 32,258 models. These were simulated under the
same initial conditions, their phenotypic results were collected, and a PCA was applied on the wild
type-centred matrix (Appendix 1, Section 6.1, Appendix 1—figures 28 and 29). In addition, we
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found that the LNCaP model is very robust against perturbations of its logical rules by systematically
changing an AND for an OR gate or vice versa in all of its logical rules (Appendix 1, Section 6.2,
Appendix 1—figures 30 and 31).

The 488 TCGA patient-specific models were studied in a similar way, but only perturbing 16 nodes
from Table 1 shortlisted for their therapeutic target potential (AKT, AR, Caspase8, cFLAR, EGFR, ERK,
GLUT1, HIF-1, HSPs, MEK1_2, MYC_MAX, p14ARF, PI3K, ROS, SPOP, and TERT). Then, the nodes that
mostly contributed to a decrease of Proliferation (Appendix 1, Section 4.2, Appendix 1—figure 19)
or an increase in Apoptosis (Appendix 1, Section 4.2, Appendix 1—figure 20) were gathered from
the 488 models perturbed.

Additionally, the results of the LNCaP model’s double mutants were used to quantify the level of
genetic interactions (epistasis or otherwise) (Drees et al., 2005) between two genetic perturbations
(resulting from either the gain-of-function mutation of a gene or from its knock-out or loss-of-function
mutation) with respect to wild type phenotypes’ probabilities (Calzone et al., 2015). The method was
applied to the LNCaP model studying Proliferation and Apoptosis scores (Appendix 1, Section 7.3.2,
Appendix 1—figures 34 and 35).

This genetic interaction study uses the following equation for each gene pair, which is equation 2
in Calzone et al., 2015:

e (4.B) =13 — v (3. ) (1)

where f; and fg are phenotype ¢ fitness values of single gene defects, fq‘bB is the phenotype ¢
fitness of the double mutant, and 1 (x,y) is one of the four functions:

YAPP (x,y) = x + y (additive)

PEOS(x,y) = logy ((2° — 1) (2 — 1) +1) (log)

YMT(x,y) = x * y (multiplicative)

MM (x,y) = min(x, y) (min)

To choose the best definition of ¢ (x,y) , the Pearson correlation coefficient is computed between
the fitness values observed in all double mutants and estimated by the null model (more information
on Drees et al., 2005). Regarding the ﬁé fitness value, to a given phenotype ¢, ffb < 1 represents
deleterious, ji > 1 beneficial and ﬁj) ~ 1 neutral mutation.

Drug simulations in Boolean models

Logical models can be used to simulate the effect of therapeutic interventions and predict the
expected efficacy of candidate drugs on different genetic and environmental backgrounds by using
our PROFILE_v2 methodology. MaBoSS can perform simulations changing the proportion of activated
and inhibited status of a given node. This can be determined in the configuration file of each model
(see, for instance, the ‘istate’ section of the CFG files in the Supplementary files 1; 3 and 5). For
instance, out of 5,000 trajectories of the Gillespie algorithm, MaBoSS can simulate 70% of them with
an activated AKT and 30% with an inhibited AKT node. The phenotypes’ probabilities for the 5000
trajectories are averaged, and these are considered to be representative of a model with a drug that
inhibits 30% of the activity of AKT. The same applies for a combined drug inhibition: a simulation of
50% AKT activity and 50% PI3K will have 50% of them with an activated AKT and 50% with an acti-
vated PI3K. Combining them, this will lead to 25% of the trajectories with both AKT and PI3K active,
25% with both nodes inactive, 25% with AKT active and 25% with PI3K active.

In the present work, the LNCaP model has been simulated with different levels of node activity,
with 100% of node inhibition (proper knock-out), 80%, 60%, 40%, 20%, and 0% (no inhibition), under
four different initial conditions, a nutrient-rich media that simulates RPMI Gibco media with DHT
(androgen), with EGF, with both and with none. In terms of the model, the initial conditions are
Nutrients is ON and Acidosis, Hypoxia, TGF beta, Carcinogen, and TNF alpha are set to OFF. EGF
and Androgen values vary upon simulations. We simulated the inhibition of 17 nodes of interest.
These were the 16 nodes from Table 1 with the addition of the fused AR-ERG (Appendix 1, Section
7.3.1, Appendix 1—figures 34 and 35) and their 136 pairwise combinations (Appendix 1, Section
7.3.2, Appendix 1—figures 36 and 37). As we used six different levels of activity for each node, the
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resulting Appendix 1—figures 36 and 37 comprise a total of 4,998 simulations for each phenotype
(136 x 6x 6+ 17 x 6).

Drug synergies have been studied using Bliss Independence. The Combination Index was calcu-
lated with the following equation (Foucquier and Guedj, 2015):

Cl = (Ea+Ep — Ea % Ep) [Egp (3)

where E, and E}, is the efficiency of the single drug inhibitions and E,; is the inhibition resulting
from the double drug simulations. A Combination Index (Cl) below 1 represents synergy among drugs
(Appendix 1, Section 7.3.2, Appendix 1—figures 36 and 37).

This methodology can be found in its own repository: https://github.com/ArnauMontagud/
PROFILE_v2.

Identification of drugs associated with proposed targets

To identify drugs that could act as potential inhibitors of the genes identified with our models (Table 1),
we explored the drug-target associations in DrugBank (Wishart et al., 2018). For those genes with
multiple drug-target links, only those drugs that are selective and known to have relevance in various
forms of cancer are considered here.

In addition to DrugBank searches, we also conducted exhaustive searches in ChEMBL (Gaulton
et al.,, 2017) (http://doi.org/10.6019/CHEMBL.database.23) to suggest potential candidates for
genes whose information is not well documented in Drug Bank. From the large number of bioactiv-
ities extracted from ChEMBL, we filtered human data and considered only those compounds whose
bioactivities fall within a specific threshold (IC50/Kd/ Ki <100 nM).

We performed a target set enrichment analysis using the fgsea method (Korotkevich et al., 2016)
from the piano R package (Varemo et al., 2013). We targeted pathway information from the GDSC1
and GDSC2 studies (lorio et al., 2016) as target sets and performed the enrichment analysis on the
normalised drug sensitivity profile of the LNCaP cell line. We normalised drug sensitivity across cell
lines in the following way: cells were ranked from most sensitive to least sensitive (using In(IC50) as
the drug sensitivity metrics), and the rank was divided by the number of cell lines tested with the
given drug. Thus, the most sensitive cell line has 0, while the most resistant cell line has 1 normalised
sensitivity. This rank-based metric made it possible to analyse all drug sensitivities for a given cell line
without drug-specific confounding factors, like mean IC50 of a given drug, etc. (Appendix 1, Sections
7.1 and 7.2).

Cell culture method

For the in vitro drug perturbation validations, we used the androgen-sensitive prostate adenocar-
cinoma cell line LNCaP purchased from American Type Culture Collection (ATCC, Manassas, WYV,
USA). ATCC found no Mycoplasma contamination and the cell line was identified using STR profiling.
Cells were maintained in RPMI-1640 culture media (Gibco, Thermo Fisher Scientific, Waltham, MA,
USA) containing 4.5 g/L glucose, 10% foetal bovine serum (FBS, Gibco), 1 X GlutaMAX (Gibco), 1%
PenStrep antibiotics (Penicillin G sodium salt, and Streptomycin sulfate salt, Sigma-Aldrich, St. Louis,
MI, USA). Cells were maintained in a humidified incubator at 37 °C with 5% CO, (Sanyo, Osaka, Japan).

Drugs used in the cell culture experiments

We tested two drugs targeted at Hsp90 and two targeted at PI3K complex. 17-DMAG is an Hsp90
inhibitor with an IC50 of 62 nM in a cell-free assay (Pacey et al., 2011). NMS-E973 is an Hsp90 inhib-
itor with DC50 of <10 nM for Hsp90 binding (Fogliatto et al., 2013). Pictilisib is an inhibitor of PI3K
a/é with IC50 of 3.3 nM in cell-free assays (Zhan et al., 2017). PI-103 is a multi-targeted PI3K inhibitor
for p110 o/f/6/7y with IC50 of 2-3 nM in cell-free assays and less potent inhibitor to mTOR/DNA-PK
with IC50 of 30 nM (Raynaud et al., 2009). All drugs were obtained from commercial vendors and
added to the growth media to have concentrations of 2, 8, 32, 128, and 512 nM for NMS-E973 and 1,
5, 25, 125, and 625 nM for the rest of the drugs in the endpoint cell viability and of 3.3, 10, 30 uM for
all the drugs in the RT-CES cytotoxicity assay.
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Endpoint cell viability measurements
In vitro toxicity of the selected inhibitors was determined using the viability of LNCaP cells, deter-
mined by the fluorescent resazurin (Sigma-Aldrich, Germany) assay as described previously (Szebeni
et al., 2017). Briefly, the ~10,000 LNCaP cells were seeded into 96-well plates (Corning Life Sciences,
Tewksbury, MA, USA) in 100 uL RPMI media and incubated overnight. Test compounds were dissolved
in dimethyl sulfoxide (DMSO, Sigma-Aldrich, Germany), and cells were treated with an increasing
concentration of test compounds: 2, 8, 32, 128, and 512 nM for NMS-E973 and 1, 5, 25, 125, and
625 nM for the rest of the drugs. The highest applied DMSO content of the treated cells was 0.4%.
Cell viability was determined after 48 hours of incubation. Resazurin reagent (Sigma-Aldrich, Buda-
pest, Hungary) was added at a final concentration of 25 pg/mL. After 2 hr at 37 °C 5%, CO, (Sanyo)
fluorescence (530 nm excitation/580 nm emission) was recorded on a multimode microplate reader
(Cytofluord000, PerSeptive Biosystems, Framingham, MA, USA). Viability was calculated with relation
to blank wells containing media without cells and to wells with untreated cells. Each treatment was
repeated in two wells per plate during the experiments, except for the PI-103 treatment with 1 nM in
which only one well was used.

In these assays, a deviation of 10-15% for in vitro cellular assays is an acceptable variation as it is
a fluorescent assay that detects the cellular metabolic activity of living cells. Thus, in our analyses, we
consider changes above 1.00 to be the same value as the controls.

Real-time cell electronic sensing (RT-CES) cytotoxicity assay

A real-time cytotoxicity assay was performed as previously described (Ozsvari et al., 2010). Briefly,
RT-CES 96-well E-plate (BioTech Hungary, Budapest, Hungary) was coated with gelatin solution (0.2%
in PBS, phosphate buffer saline) for 20 min at 37 °C; then gelatin was washed twice with PBS solution.
Growth media (50 pL) was then gently dispensed into each well of the 96-well E-plate for background
readings by the RT-CES system prior to the addition of 50 pL of the cell suspension containing 2 x
10* LNCaP cells. Plates were kept at room temperature in a tissue culture hood for 30 min prior to
insertion into the RT-CES device in the incubator to allow cells to settle. Cell growth was monitored
overnight by measurements of electrical impedance every 15 min. The next day cells were co-treated
with different drugs with concentrations of 3.3, 10 and 30 uM. Treated and control wells were dynami-
cally monitored over 72 hr by measurements of electrical impedance every 5 min. Each treatment was
repeated in two wells per plate during the experiments, except for the 3.3 uM ones in which only one
well was used. Continuous recording of impedance in cells was used as a measurement of the cell
growth rate and reflected by the Cell Index value (Solly et al., 2004).

Note that around hour 15, our RT-CES reader had a technical problem caused by a short blackout
in our laboratory and the reader detected a minor voltage fluctuation while the uninterruptible power
supply (UPS) was switched on. This caused differences that are consistent across all samples and repli-
cates: all wild type and drug reads decrease at that time point, except Pictilisib that slightly increases.
For the sake of transparency and as the overall dynamic was not affected, we decided not to remove
these readings.
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cell.2016.06.017 respectively.

The following previously published datasets were used:

Author(s) Year Dataset title Dataset URL Database and Identifier
Hoadley KA, YauC, 2018 Prostate Adenocarcinoma  https://www. cBioPortal, prad_tcga_pan_
Hinoue T (TCGA, PanCancer Atlas)  cbioportal.org/study/ can_atlas_2018

summary?id=prad_
tcga_pan_can_atlas_

2018

lorio F 2016 GDSC 1and?2 https://www. Genomics of Drug
cancerrxgene.org/ Sensitivity in Cancer,
downloads/bulk_ GDSC1/2
download
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Appendix 1

1. Prostate Boolean model construction
Building the model is done in three steps:

1. Identifying signalling pathways or particular genes and proteins that are especially relevant to
describe the prostate cancer tumorigenesis and tumour growth. Most of them are components
that are known to be frequently altered in cancers.

2. Building a regulatory network that includes simplified representations of pathways identified as
relevant for prostate cancer, as well as all individually identified genes. Each pathway is charac-
terised by the key players that regulate it. This network takes the form of a directed graph for
which positive and negative influences between components are represented.

3. From this network, a logical model is derived describing the network dynamics in specific
contexts (dependent on initial conditions or perturbations). To this end, logical rules are asso-
ciated with each node of the network to indicate how it is activated or inhibited by different
combinations of its regulators.

1.1. Prior knowledge network construction
We started by using a published logical model of human signalling network (Fumia and Martins,
2013), which is based on integrated experimental evidence of signal transduction. This model
integrates major signalling pathways that have a role in regulating cell death and proliferation in many
tumours. They include those involving receptor tyrosine kinase (RTKs), phosphatidylinosital 3-kinase
(PI3K)/AKT, WNT/B-Catenin, transforming growth factor-b (TGF-B)/Smads, cyclins, retinoblastoma
protein (Rb), hypoxia-inducible transcription factor (HIF-1), p53 and ataxia-telangiectasia mutated
(ATM)/ataxia-telangiectasia and Rad3-related (ATR) protein kinases. The pathways reveal substantial
cross-talks.

This initial generic network was then extended to include prostate cancer-specific genes and
proteins using several approaches presented below.

1.1.1. Definition of inputs and outputs

Our Boolean model aims at predicting prostate phenotypic behaviours for healthy and cancer cells in
different “physiological” conditions. To account for these conditions, we considered nine inputs that
represent different physiological conditions of interest. These are EGF, FGF, TGF beta, Nutrients,
Hypoxia, Acidosis androgen, TNF alpha, and Carcinogen presence. These input nodes have no
regulation and their values are fixed for each simulation, representing the cell’s microenvironmental
characteristics.

For simplicity, we choose to clearly define phenotype variables as output nodes allowing the
integration of multiple phenotypic signals and obtaining a 0/1 value for each phenotype. Our model
has a total of 11 outputs. We define three main phenotypes representing the growing status of the
cell: Proliferation, Apoptosis, and Quiescence. Apoptosis is activated by Caspase 8 or Caspase 9,
while Proliferation is activated by cyclins from the cell cycle. We define Quiescence as the absence
of Proliferation and Apoptosis and these two, although not directly linked, are always mutually
exclusive in simulations.

The proliferation output is sometimes described in already published models as specific stationary
protein activation patterns, namely the following sequence of activation of cyclins: Cyclin D, then
Cyclin E, then Cyclin A, then Cyclin B. This sequence can easily be detected in complex attractors
in synchronous dynamics. However, since asynchronous dynamics was chosen for this work and it is
more difficult to analyse complex attractors with it, we define Proliferation as activated by either of
the four cyclins. Transient dynamics in MaBoSS simulations allow us to check the correct oscillation
of cyclins.

Furthermore, we define several phenotypic outputs that are not mutually exclusive but detect
the activation of some markers of cancer hallmarks: Invasion, Migration, (bone) Metastasis, and DNA
repair.

1.1.2. Identification of new components based on literature search:
Several studies have focused on identifying main subtypes among the heterogeneous molecular
abnormalities in prostate cancer. In particular, a TCGA study (Cancer Genome Atlas Research
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Network, 2015) reported a comprehensive molecular analysis of 333 primary prostate carcinomas.
Seven subtypes, containing 74% of these tumours, were defined by specific gene fusions (ERG,
ETV1/4, and FLI1) or mutations (SPOP, FOXA1, and IDH1). Epigenetic profiles allowed us to identify
a methylator phenotype in the IDH1 mutant subset. SPOP and FOXA1 mutant tumours show the
highest levels of AR-induced transcripts. Lesions in the PI3K or MAPK signalling pathways are
observed in 25% of the prostate cancers and DNA repair genes inactivation in 19%.

The following list of frequently mutated genes extracted from this study indicate components that
could be included in the model, provided that enough information is available on their mechanistic
roles:

e gene fusions: ERG, ETV1, ETV4, FLI

o deletions: SPOP, FOXA1, IDH1, TP53, PTEN, PIK3CA, BRAF, CTNNB1, HRAS, MED12, ATM,
CDKN1B, RB1, NKX3-1, AKT1, ZMYM3, KMT2C, KMT2D, ZNF595, CHD1, BRCA2, CDK12,
SPINK1

e amplifications: CCND1, MYC, FGFR1, WHSC1L1.

Comparing with a published cohort of 150 castration-resistant metastatic prostate cancer samples
(Robinson et al., 2015), the authors find a similar subtype distribution as in Cancer Genome Atlas
Research Network, 2015, with increased alteration rates in the metastatic samples and more
frequent amplification or mutation of AR, as well as DNA repair and PI3K pathway alterations.

Other studies such as (Altieri et al., 2009) focus on the role of specific pathways which play a
critical role in prostate cancer maintenance, such as chaperone-mediated mitochondrial homeostasis
(in particular with HSP90 found very abundant in prostate cancer), integrin-dependent cell signalling
and RUNX2-regulated gene expression in the metastatic bone microenvironment.

Notably, a set of regulatory maps of signalling pathway maps and altered circuitries of various cell
biological events associated with the pathogenesis of human prostate cancer have been published
recently (Datta et al., 2016). The authors manually constructed networks based on the literature.
These networks constitute an important resource for retrieving information on prostate cancer
specific components. Although not exhaustive, these maps are synthetic pictures of the existing
knowledge on molecular events involved in prostate cancer hallmarks.

The covered hallmarks include: (1) classical cancer hallmarks: insensitivity to anti-growth signal,
self-sufficiency in growth signal, tumour promoting inflammation, genome instability, mutation and
perturbation, angiogenesis, metastasis, cell death resistance, metabolic reprogramming, avoidance
of immune destruction, enabling replicative immortality, tumour microenvironment; and (2) prostate
cancer specific hallmarks: androgen receptor signalling androgen independence, castration
resistance.

This study points toward some candidate nodes to extend our network in order to take into
account, at least in a simplified way, most pathways present in the maps. In particular, it shows
that the initial network obtained through combinations of published models ignore any pathways
related to inflammation, metabolism, immune evasion, or the tumour microenvironment. However,
the resource contains few mechanistic details for the interactions between its components, which are
a mix of genes, proteins, molecules, processes and phenotypes.

Finally, among all these genes associated with prostate cancer, a subset has been chosen for
further research: AR, PTEN, SPOP, TP53, EZH2, FOXA1, BRCA1, BRCA2, PIK3CA, AKT1, NCOA2,
NCOR1, NCOR2, EP300, MYC, RB1, CHD1, CDKN1B, MED12, ZNF595, HOXB13.

1.1.3. Identification of new components/pathways based on data analysis
ROMA (Martignetti et al., 2016) is a software package written in Java for the quantification
and representation of biological module activity using expression data. It uses the first principal
component of a PCA analysis to summarise the coexpression of a group of genes in the gene set.

We apply ROMA analysis on the transcriptomics data of TCGA. We define gene sets as they are
described in the atlas of cancer signalling networks, ACSN (Kuperstein et al., 2015) (http://www.acsn.
curie.fr/) and in the Hallmarks (Liberzon et al., 2015). ACSN is centred on signalling pathways such as
DNA repair, cell death, EMT, cell adhesion, cell cycle, etc. and the Hallmarks gene sets provide a list of
genes that participate in biological processes integrating information from other pathway databases.

Using ROMA, we are able to identify some pathways significantly overdispersed over the samples
that should have relevant roles in prostate cancer and need therefore to be correctly described in
the model.
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The results show that, for ACSN database, among the 140 pathways from the database, 65
modules reveal a high variance of protein expression across all samples (Appendix 1—figure 1).
The gene sets linked to the cell cycle seem to show a progressive activation from normal to high
grade tumours, so does the DNA repair pathway with differences in the mechanisms that participate
in DNA repair, whereas some gene sets such as the one related to immunosuppressive cytokine
pathway show opposite behaviour. We performed the same analysis with the Hallmarks database
and found 16 out of the 50 pathways that showed high variance. We can confirm the role of the cell
cycle in tumour progression (E2F_targets and G2_M checkpoints).

Note that in both analyses, we see that group three is the most heterogeneous group, with a
score that does not always follow the trend of increasing or decreasing pathway scores from group
1 to group 5.

ROMA provides some hints on where to extend the network to fully grab the alterations that
are found in prostate cancer patients. For instance, the Hedgehog pathway was not described in
the already published logical models that we used as a starting point of this model. Moreover, both
the cell cycle and the DNA repair pathways were overly simplified, and were thus extended in this
version.

Some pathways related to the immune response seem to be highly represented in ACSN and
would need to be included in future extended versions of the prostate network, probably in the form
of interacting networks of different cell types.

1.1.4. Model extension with Omnipath via pypath
OmniPath (Tiirei et al., 2016; Tiirei et al., 2021) is a comprehensive collection of high confidence,
literature curated, human signalling pathways. It is accompanied and developed together with
Pypath, a Python module for cellular signalling pathways analysis.

Pypath is a python module used to query the content of Omnipath in order to retrieve components
and interactions in the human protein-protein signalling network associated with annotations,
especially sources, literature references, direction, effect signs (stimulation/inhibition), and enzyme-
substrate interactions.

The development of pypath allows us to build personalised queries. For instance, existing
interaction paths between a protein of interest and a list of user-defined proteins can be found, with
a given size for the paths. We use this in the extension process of our network to automatically find
new interactions between a new gene and the genes already included in the network. We filter the
interactions found to select the ones for which the direction and sign are known.

For example, when extending the network with the chaperone protein HSP?0AA1, we generate
the graph displayed in Appendix 1—figure 2, which shows all signed directed interactions linking
HSPY0AAT1 to the network. The associated references given as annotations are useful to check the
mechanism behind each interaction and manually infer a logical rule.

1.1.5. Model extension with the literature
Protein-protein interactions (PPl) and signalling databases are useful to find quickly established
interactions between genes and proteins. However, they are not exhaustive and in particular
they often lack recent findings. It is therefore necessary to rely on manual literature search to find
information on specific prostate cancer components.

The roles of the fusion gene TMPRSS2:ERG and the tumour suppressor NKX3-1 are examples
where the information from databases retrieved from Omnipath or PPI databases is lacking, and for
which we found additional information from the literature.

Fusion genes are frequently found in human prostate cancer and have been identified as a
specific subtype marker (Cancer Genome Atlas Research Network, 2015). The most frequent is
TMPRSS2:ERG. It involves the transcription factor ERG, which leads to cell-cycle progression. ERG
fuses with the AR-regulated TMPRSS2 gene promoter to form an oncogenic fusion gene that is
especially common in hormone-refractory prostate cancer, conferring androgen responsiveness
to ERG. This fusion is not found with Pypath, nor is any target of ERG (Appendix 1—figure 3A).
However, literature search reveals that ERG directly regulates EZH2, oncogene c-Myc and tumour
suppressor NKX3-1 and many other targets in prostate cancer (Kunderfranco et al., 2010).

We model the gene fusion with an activation of ERG by the decoupling of ERG in a special node
AR_ERG that is only activated by the AR & fused_event node. In the healthy case, fused_event (that
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represents TMPRSS2) is fixed to O or inactive. The occurrence of the gene fusion is represented with
the model perturbation where fused_event is fixed to 1. Moreover, ERG expression has a major
impact on cell invasion and epithelial-mesenchymal transition (EMT) through the upregulation of the
FZD4 gene, a member of the frizzled family of receptors. In our model, we choose for simplicity to
consider ERG as a marker of EMT, with a direct activation of the output node EMT by ERG (Adamo
and Ladomery, 2016).

NKX3-1 has been identified as a tumour suppressor for prostate cancer. Since it is frequently
mutated, it should be included in the model. Some of its regulations can be found with Pypath
(Appendix 1—figure 3B), in particular its activation by AR and PKC. However, its role is not identified.
The literature search highlighted its role in accelerating the DNA repair response and in particular
in avoiding the gene fusion TMPRSS2:ERG. NKX3-1 binds to AR at the ERG gene breakpoint and
inhibits both the juxtaposition of the TMPRSS2 and ERG gene loci and also their recombination, by
influencing the recruitment of proteins that promote homology-directed DNA repair. Thus, loss of
NKX3-1 favours recruitment to the ERG gene breakpoint of proteins that promote error-prone non-
homologous end-joining (Bowen et al., 2015).

We therefore add the absence of the node NKX3-1 as a new requirement for the activation of
ERG by AR and TMPRSS2 in the model. The effect of the gene fusion can be seen in combination
with the perturbation that maintains NKX3-1 to the null level.

In contrast with these examples where some knowledge can be retrieved from the literature,
some new nodes cannot be included in the model in a satisfactory manner, because of missing
information about their regulation or role. High-throughput studies have allowed us to identify
genes with mutations or expression levels associated with prostate cancer progression or prognosis.
Nevertheless, for many of them, the precise mechanisms behind this association remains to be
elucidated.

For example, IDH1 (isocitrate dehydrogenase 1) exhibits a recurrent mutation in 1% of primary
prostate cancers that defines a specific subtype (Cancer Genome Atlas Research Network, 2015).
This mutant status is associated with a DNA hypermethylation phenotype. Despite a lack of detailed
mechanisms linking this gene to the regulation network, we can still reflect a candidate association
in the model by including IDH1 as regulated by mTOR and MEK1_2, whose absence (level 0) induces
the activation of the output node Hypermethylation. The regulation of both new nodes IDH1 and
Hypermethylation should be refined when new knowledge is found.

In some cases, we cannot provide any link for a new node, either to an existing node or to a
phenotypic output, even qualitatively. For example, ZNF595 has been linked to prostate cancer
progression. However, this gene encodes a protein belonging to the Cys2His2 zinc finger protein
family, whose members function as transcription factors that can regulate a broad variety of
developmental and cellular processes. This knowledge is not detailed enough to add this node in
the model yet. However, future mutation data from prostate cancer samples, associated with clinical
data, will allow us to test several hypotheses.

This model includes several signalling pathways as well as the substantial cross-talks among them.
These pathways range from receptors such as receptor tyrosine kinase (RTKs), androgen receptor
(AR) and growth factors pathways (EGF, FGF, TGF-B); downstream gene regulation pathways such
as phosphatidylinositol 3-kinase (P13K)/AKT, Wnt/B-Catenin, NFkB, MAPK, mTOR, SHH, MYC, ETS1,
p53, hypoxia-inducible transcription factor (HIF-1) and Smad pathways; cell cycle descriptions with
cyclins, E2F1, retinoblastoma protein (Rb) and p21; epithelial-mesenchymal transition (EMT) and
migration-related genes; DNA damage and apoptosis-related genes; as well as prostate cancer
characteristic genes such as p53, ataxia-telangiectasia mutated (ATM)/ataxia-telangiectasia and
Rad3-related (ATR) protein kinases, NKX3.1, TMPRSS2 and TMPRSS2:ERG fusion.

A complete list of the references for all the nodes and edges included in the model can be found
in the XLS file of Supplementary file 1.

1.2 Boolean model construction

1.2.1. Primer on Boolean modelling
Boolean models are based on the logical formalism that relies on a regulatory graph and a list of
logical rules associated with each of the nodes of the graph. We hereby present a small introduction
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of the principal terms of this modelling. For further information, we refer readers to other works
(Béal et al., 2019; Saadatpour and Albert, 2013; Abou-Jaoudé et al., 2016).

The aforementioned prior knowledge network is composed of nodes and edges, where nodes
correspond to entities (e.g. genes, proteins, complexes, phenotypes or processes) and edges
to influences, either positive or negative, which illustrate the possible interactions between two
entities. Such regulatory networks are easily translatable to Boolean models. A node that has
no regulator is denoted as input and a node that does not regulate another node is denoted as
output. Input represent different physiological initial conditions and outputs represent biological
read-outs.

Each node of the regulatory network has a corresponding Boolean variable associated that can
take two values: O for inactive or OFF, and 1 for active or ON. These variables change their value
according to a logical rule assigned to them. The state of a variable will thus depend on its logical
rule, which is based on logical statements: a function of the node regulators linked with logical
connectors AND, OR and NOT. More on this in Section 1.2.2 “Establishing the rules of the Boolean
model”.

These operators can account for what is known about the biology behind these edges. If two
input nodes are needed for the activation of the target node, they will be linked by an AND gate; to
list different means of activation of a node, an OR gate will be used. For negative influences, a NOT
gate will be utilised.

Finally, the state transition graph (STG) is another network that recapitulates all the states of the
nodes and the possible transitions from one model state to another depending on the logical rules.
The form of the graph will depend on the updating strategy chosen -either all nodes are updated
at once or nodes are updated one at a time. In addition, the state transition graph informs on the
existence of the two types of attractors of the model: stable steady states or limit cycles. More on
this in Section 1.2.3 “State transition graph and the update mechanism”.

1.2.2. Establishing the rules of the Boolean model

When building our regulatory graph, there were many instances of concurrent activation and
inhibition of a node. As a general rule, and unless evidence was found for the contrary, we decided
to add the activators with OR gates and the inhibitors with AND NOT.

Usually the OR links activators from two different pieces of information extracted from different
articles. For the inhibitors, the AND NOT allows to take into account their effect and overrule the
activators.

This is an assumption that we make as a first try and when we have no further knowledge. If there
is evidence that one of the activators is not affected when an inhibitor is present, then we adapt the
logical formulas accordingly. For instance, if we know that two inhibitors only inhibit when both are
present, we include that information and overwrite the previous formula.

Some of the possible combinations that we may find in Boolean models can be found in the
following toy model (Appendix 1—figure 4). Node D and E are self-regulated, meaning they are
inputs: their initial value will rule their activation. Node A can be activated by B and any combination
of C and/or E. Node B is activated if D is not present and when A or C are present. C is activated by
A and only when D and E are both not present. This means that C can still be activated when A and
D are present, or A and E, but not D and E.

1.2.3. State transition graph and the update mechanism

In a Boolean framework, the variables associated to each node can take two values, either 0 or 1. We
define a model state as a vector of all node states. All the possible transitions from any model state
to another are dependent on the set of logical rules that define the model.

These transitions can be viewed into a graph called a state transition graph, or STG, where nodes
are model states and edges are the transitions from one model state to another.

The resulting dynamics of the Boolean model can be represented in terms of a state transition
graph (STG), where the nodes denote the states of the system (i.e. vectors giving the levels of
activity of all the variables) and the arcs represent state transitions (i.e. changes in variable values,
according to the corresponding logical functions). This way, trajectories from an initial condition to
all the final states can be determined. The STG can contain up to 2" model state nodes; thus, if nis
too big, the construction and the visualisation of the graph becomes resource consuming.
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The attractors of the model are the long-term asymptotic behaviours of the system. We have two
types: stable states, when the system has reached a model state whose successor in the transition
graph is itself; and cyclic attractors, when trajectories in the transition graph lead to a group of model
states that are cycling. For more details, see Chaouiya et al., 2012; Abou-Jaoudé et al., 2016.

When concurrent variable changes are enabled at a given state, the resulting state transition
depends on the chosen updating assumptions. Numerous studies use the fully synchronous strategy
where all variables are updated through a unique transition. This assumption leads to relatively
simple transition graphs and deterministic dynamics. The proportion of initial conditions leading to
given attractors is measured as the attractor landscape (Helikar et al., 2008; Fumia and Martins,
2013; Cho et al., 2016). However, the synchronous updating assumption approximation often
leads to spurious cyclic attractors. On the other hand, the fully asynchronous updating assumption
considers separately all possible transitions and therefore allows the consideration of alternative
dynamics in the absence of kinetic data. The resulting dynamics has a branching structure which
makes it more difficult to evaluate. In this project, we consider asynchronous dynamics mixed with
stochastic simulations.

The regulatory graph was constructed using GINsim software (Chaouiya et al., 2012) and then
exported in a format readable by MaBoSS software (see below) in order to perform stochastic
simulations on the Boolean model.

The final model accounts for 133 nodes and 449 edges (Appendix 1—figure 1 and
Supplementary file 1) and includes pathways such as androgen receptor and growth factor
signalling, different signalling pathways (Wnt, NFkB, PI3K/AKT, MAPK, mTOR, SHH), cell cycle,
epithelial-mesenchymal transition (EMT), Apoptosis, DNA damage, etc. This model has nine
inputs (EGF, FGF, TGF beta, Nutrients, Hypoxia, Acidosis, Androgen, TNF alpha and Carcinogen
presence) and six outputs (Proliferation, Apoptosis, Invasion, Migration, (bone) Metastasis and
DNA repair).

2. Boolean model simulation
2.1. Primer on MaBoSS methodology

In the present study, all simulations have been performed with MaBoSS that stands for Markovian
Boolean Stochastic Simulator. We hereby present a small introduction of the MaBoSS simulations.
For further information, we refer readers to other works (Béal et al., 2019; Stoll et al., 2012; Stoll
et al., 2017).

This framework is based on an asynchronous update scheme combined with a continuous time
feature obtained with the Gillespie algorithm (Gillespie, 1976), allowing simulations to be continuous
in time. This algorithm is particularly useful when the state transition graph is too big, as it allows to
stochastically sample trajectories from a given initial condition to all possible asymptotic solutions
and associate a probability to each model state and final stable states.

Gillespie algorithm provides a stochastic way to choose a specific transition among several
possible ones and to infer a corresponding time for this transition. Thus, MaBoSS computation
results in one stochastic trajectory as a function of time when objective transition rates, seen as
qualitative activation or inactivation rates, are specified for each node. These transition rates can be
set either all to the same value by default or in various levels reflecting different orders of magnitude
of biological processes’ time or due to difference among different patients’ omics datasets (See
Section 3.1 “Primer on PROFILE methodology”). These transition rates are translated as transition
probabilities in order to determine the actual transition. All in all, this modelling framework is at the
intersection of logical modelling and continuous dynamic modelling.

Since MaBoSS computes stochastic trajectories, it is highly relevant to compute several trajectories
to get an insight of their average behaviour. In present work, all simulations have consisted on the
average of 5,000 computed trajectories.

To capture the gradual inhibition of drugs (Section 7.3), we have taken advantage of the simulation
of a population of trajectories, so initial values of each node can be defined with a continuous
value between 0 and 1 representing the probability for the node to be defined to one for each
new trajectory. For instance, a node with a 0.7 initial condition will be set to 1 in 70% of simulated
trajectories and to 0 in 30% of the trajectories.
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2.2. Wild type simulation

Our prostate Boolean model recapitulates known phenotypes of prostate cells by stochastic
simulations in each of the studied “physiological” conditions. The model can be considered as a
model of healthy prostate cells when no mutants or fused genes are present, called wild type model
in present work. These healthy cells mostly exhibit quiescence in absence of any input. Because the
initial conditions of all components of the model are set to random values and input nodes are OFF,
there is a possibility to activate transiently the pathways but not to maintain them, and all pathways
are eventually turned off.

Our prostate Boolean model was simulated using MaBoSS and asynchronous updates and
recapitulates known phenotypes of prostate cells under physiological conditions (Main text,
Appendix 1—figure 2). Model states distribution at the end of the simulation with growth factors,
Nutrients and Androgen as inputs can be seen in Appendix 1—figure 2B. Note that some outputs
are not mutually exclusive, therefore the presence of cells with Invasion and Proliferation. In
Appendix 1—figure 2C, the same model with cell death factors ON.

In proliferating conditions, transient probabilities of the cyclins can be used to check that the
order of activations of these nodes in the paths leading to the cyclic attractor is consistent with a
proper cell cycle progression (Appendix 1—figure 5).

These analyses can be performed using model files from Supplementary file 1 and the jupyter
notebook from Supplementary file 2.

2.3. Mutants simulation

A mutant in the logical framework is simulated by setting the node corresponding to the gene
mutated to 0 in the case of loss of function and to 1 in the case of gain of function. The effect of a
mutation is assessed, like the change of initial conditions, by comparing the mutant's probabilities of
reaching a phenotype with respect to the wild type model. Therefore, mutations change the model
phenotypes: Apoptosis, Proliferation, Invasion, Migration, (bone) Metastasis and DNA repair.

2.3.1. Single mutations
The single mutations of some of the main nodes of the network show some changes in the
probabilities of reaching the phenotypes when compared to wild type conditions.

The examples on Appendix 1—figure 6 show that a loss-of-function mutation of FOXA1 in
proliferative conditions (nutrients and growth factors) results in the activation of migration and
invasion but not metastasis. A loss-of-function mutation of TP53 in the same condition with the
addition of carcinogen does not lead to loss of the apoptosis induced by DNA damage because of
the activation of caspase three pathway.

2.3.2. Multiple mutations

Cancer progression is characterised by the accumulation of genetic alterations that affect multiple
pathways in the signalling network. The logical model allows to easily simulate all possible
combinations of mutations and study the potential redundancy or synergy of alteration effects and
the importance of order. An example of double mutation is shown in Appendix 1—figure 7, where
the combination of the gene fusion TMPRSS2:ERG and the loss-of-function of NKX3-1 activates
bone metastasis signals in proliferative conditions with androgen induction.

The model allows to study easily all possible associations of mutations to assess synergies or
redundancies. It can also reproduce sets of mutations observed in tumours. Different sequences
of possible acquired mutations can be simulated and compared to what is already known about
patients harbouring these mutations.

3. Personalisation of Boolean models
3.1. Primer on PROFILE methodology

We give here an intuitive idea of how the personalization is done with PROFILE for both discrete data
(mutation and copy number alteration data) and continuous data (RNAseq and/or proteomics data
when available). For more thorough details on the methodology, readers can refer to Appendix 17—
figure 8 and the work described in Béal et al., 2019.

For discrete data: if the mutation is an activating mutation, the corresponding node will be set to
1; if the mutation is an inhibiting mutation, the corresponding node will be set to 0.
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For continuous data, the data is normalised at first. Then, depending on the expression of the
gene compared to others, the corresponding transition rate will be set to a high value if it is higher
and to a low value if it is lower. A high transition rate will be favoured when travelling through the
state transition graph. Initial values for these genes are also set accordingly. This personalisation can
be observed in the CFG file for the LNCaP cell line (Appendix 1—table 1). The full file is available
in the Supplementary file 5.

Appendix 1—table 1. Excerpt of the CFG file of the personalised LNCaP Boolean model.

Transition rates for LNCaP personalised model

Initial conditions for LNCaP personalised model

$u_Acidosis = 1;

[Acidosis].istate = 0.5[1], 0.5 [0];

$d_Acidosis = 1;

[Androgen].istate = 0.5[1], 0.5 [0];

$u_AKT = 1.15285;

[Carcinogen].istate = 0.5[1], 0.5 [0];

$d_AKT = 0.86742;

[Hypoxia].istate = 0.5[1], 0.5 [O];

$u_AMP_ATP = 0.06407,

[Nutrients].istate = 0.5[1], 0.5 [0];

$d_AMP_ATP = 15.60793;

[AKT].istate = 0.51544[1], 0.48456 [0];

$u_AMPK = 0;

[AMP_ATP.istate = 0.20167[1], 0.79833 [0];

$d_AMPK = 0.91263;

[ATR].istate = 0.32278[1], 0.677219 [0];

$u_Androgen = 1;

[AXIN1].istate = 0.38829[1], 0.61171 [O];

$d_Androgen = 1;

[BAD].istate = 0.65311[1], 0.34689 [O];

$u_Angiogenesis = 1;

[Bak].istate = 0.32278[1], 0.677219 [0];

$d_Angiogenesis = 1;

[Bel_XL].istate = 0.36264[1], 0.637359 [O];

$u_Apoptosis = 1;

[BCL2Z].istate = 1e-05[1], 0.99999 [0];

$d_Apoptosis = 1;

[BIRCS].istate = 0.34426[1], 0.65574 [0];

$u_AR = 100.0; [BRCA1].istate = 0.42294(1], 0.57706 [O];
$d_AR =0; [Caspase8].istate = 0.21981[1], 0.780189 [0];
$u_AR_ERG = 1; [Caspase9].istate = 0.32278[1], 0.677219 [0];
$d_AR_ERG = 1; [CDH2].istate = 0.0[1], 1.0 [C];

$u_ATM = 0; [cFLAR].istate = 0.5[1], 0.5 [0];

$d_ATM = 5.81395; [CyclinB].istate = 0.23353[1], 0.76647 [0];

3.2. Differences of PROFILE with the state of the art

Personalised models should be able to capture heterogeneity among cancer cell lines, cells of a
tumour and cells from different patients. Until now, personalisation of models has used in vitro
perturbation experiments, as studying this kind of cell-level heterogeneity between patients’
responses to treatments is complicated in vivo. In vitro studies such as the ones from Saez-Rodriguez
et al.,, 2009 and Dorier et al., 2016 showed how perturbation data could be used to capture
differences in the models of different cell lines and patients.

Moreover, in vitro perturbation results are best when researchers can isolate the cells from their
surrounding environment and study a small set of them, as happens with microfluidics techniques.
Eduati et al., 2020 showed a procedure in which cells from two cell lines and four biopsies were
tested against a panel of 8 drugs and their combinations. These drug responses were then used to
personalise a generic model.

Our PROFILE methodology does not use in vitro perturbation experiments, but rather bulk omics
data. We are capable of having results specific for each cell line and patient without the need of in vitro
testing. The perturbation data does not lack any kind of information to have these personalised models,
but we consider that being able to personalise models without needing further experimentation is an
asset of our method. In any case, note that the present PROFILE_v2 methodology and perturbation
tools as the ones above are compatible and complementary as they use different kinds of data as inputs.
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4. Personalised Boolean models of TCGA patients

Our prostate Boolean model was tailored to a set of 488 TCGA prostate cancer patients using our
PROFILE personalisation method (Béal et al., 2019). The distribution of the 488 patients’ Gleason
score can be seen in Appendix 1—figure 9. The prostate cancer patients recipe that has a better
correlation with their Gleason score was using mutations and copy number alterations (CNA) as
node activity status and RNA as initial conditions and transition rates (Appendix 1—figure 10). All
the 488 TCGA prostate cancer patients’ models can be found in MaBoSS format in Supplementary
file 3.

4.1. Phenotype distribution of TCGA patients
One of the quality checks performed in PROFILE is to build models using different recipes, i.e. using
different data to modify different model variables, and to compare them to some clinical grouping
or expression signature to rank them and select the most performing one. In our case, we used five
different recipes (only mutations, mutations and CNA, mutations and RNA data, mutations, CNA
and RNA data and only RNA data), we grouped the patients by their GG (either 3- or 5-stage) and
studied the distributions of the different phenotypes scores: Apoptosis (Appendix 1—figure 10),
DNA repair (Appendix 1—figure 11), Invasion (Appendix 1—figure 12), Migration (Appendix 1—
figure 13) and Proliferation (Appendix 1—figure 14). Finally, we chose the recipe that uses
mutations, CNA and RNA data as it included the most quantity of data and reproduced desired
results (Supplementary file 3). Note that the correspondence between 3- and 5-stage GG is the
following: GG Low is GG 1, GG Intermediate is GG 2 and 3 and GG High is GG 4 and 5. We used the
Kruskal-Wallis rank sum test to identify if the phenotype distributions across 3- and 5-stage GG could
originate from different distributions and, if significant, used the Dunn’s nonparametric pairwise
multiple comparisons test to identify which pairs of groups are statistically different.

Next, we took the personalised models that used mutations, CNA and RNA data and performed
a PCA analysis on the 488 TCGA patients (Supplementary file 3) and their five phenotype scores
that result from simulating them using MaBoSS. For these PCA, we grouped the patients by 3-stages
GG (Appendix 1—figure 15) and 5-stages GG (Appendix 1—figure 16). In addition and for the
sake of clarity, we reduced each of these groups to their barycenter (Appendix 1—figure 17 for
3-stages GG and Appendix 1—figure 18 for 5-stages GG), where we can see that higher GG move
towards Proliferation, Invasion and Migration variables.

4.2. Analysis of drugs that inhibit the activity of genes of TCGA patients
Using our pipeline of tools (Montagud et al., 2019), we performed the analysis of all single
perturbations that reduce Proliferation or increase Apoptosis together with the combined
perturbations of a set of selected genes that are targets of already-developed drugs relevant in
cancer progression (Table 1). Then, we aggregated the results of the 488 patients to identify which
inhibitions affected Proliferation (Appendix 1—figure 19) and Apoptosis (Appendix 1—figure 20)
the most in this cohort.

Interestingly, we found several genes that were found as suitable points of intervention in most
of the patients (MYC_MAX complex and SPOP were identified in more than 80% of the cases)
(Appendix 1—figure 19 and Appendix 1—figure 20), but others were specific to only some of the
patients (MXI1 was identified in only 4 patients, 1% of the total, GLI in only 7% and WNT in 8% of
patients).

The inactivation of some of the targeted genes had greater effect in some patients than in others,
suggesting the possibility for the design of personalised drug treatments (Main text). Nevertheless,
knowing that some treatments that inhibit one gene are already able to reduce Proliferation
phenotypes considerably, we explored the possibility of finding combinations of treatments that
could lead to the same types of outcomes. One reason for searching for coupled drugs is that these
combinations allow the use of lower doses of each of the two drugs and thus reduce their toxicity. It
is important to note, though, that the analyses performed with the mathematical model do not aim
at predicting drug dosages per se but to help in the identification of potential candidates.

The exhaustive search for combinations of drugs for each patient of the cohort requires an
extensive amount of computation time (9 days and 7 hr on a personal computer or 3 hr on 20
nodes with 48 CPUs each, per model) as all variables of the model are automatically overexpressed
and inhibited, one by one and in pairs, leading to a vast amount of simulations. For this reason,
we have narrowed the list of potential candidates to reduce Proliferation or increase Apoptosis by
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performing the analysis of all single perturbation and selecting the combined perturbations of a set
of selected genes that are targets of already-developed drugs relevant in cancer progression (Main
text, Table 1).

We used the models to grade the effects that the combined treatments would have in each one
of the 488 TCGA patient-specific models. The resulting list of combinations vary greatly from patient
to patient, making it infeasible economically for labs and companies to pursue true patient-specific
treatments. It also poses challenges in clinical trial designs aimed at validating the model based
on the selection of treatments. Because of these constraints, it is more interesting commercially to
target group-specific treatments, which can be more easily related to clinical stages of the disease.
Mathematical modelling of patient profiles would then help to classify them in these groups,
providing, in essence, a grade-specific treatment.

The TCGA mutants and their normalised phenotype scores in regards to the wild type model can
be found in Supplementary file 4.

5. Personalised Boolean models of prostate cell lines

We tailored our generic prostate model to eight prostate-specific cell lines: 22RV1 (Sramkoski et al.,
1999), BPH-1 (Hayward et al., 1995), DU-145 (Stone et al., 1978), LNCaP-Clone-FGC (Horoszewicz
et al., 1983), NCI-H660 (Johnson et al., 1989, Lai et al., 1995; Castoria et al., 2011), PC-3 (Kaighn
et al., 1979), PWR-1E (Webber et al., 1996), and VCaP (Korenchuk et al., 2001). These cell lines
had available datasets in the GDSC resource (lorio et al., 2016) and these were used to personalise
models using our PROFILE framework (Béal et al., 2019) and using mutation data as discrete data
and RNA as continuous data (Appendix T—figure 21).

We simulated the prostate cell line-specific models under random initial conditions and observed
that they generated distinctive phenotype probabilities and captured some of the differences
described in literature (Appendix 1—figure 21 and Appendix 1—figure 22). For instance, it has
been described that PC-3 cell line has high migratory potential compared to DU-145 cells, which
have a moderate migratory potential, and to LNCaP cells, which have low migratory potential
(Cunningham and You, 2015). In our simulations, we capture that PC-3 has greater invasiveness,
migration and proliferation than DU-145. However, the invasiveness and proliferation potential of
LNCaP is much higher than PC3. Note that these results come from a collection of datasets from
GDSC and a Boolean model that includes a subset of the interactions of 312 proteins. Distortions
from real-life behaviour are expected and will be the focus of further research, such as the high
LNCaP invasiveness or the lack of difference of the benign cell lines (BPH-1 and PWR-1E) with the
rest of the cell lines.

As we did for the TCGA patients’ study, we tried different personalisation recipes to personalise
these cell lines, but as they had no associated clinical features, we were left with the comparison of
the different values for the model’s outputs among the recipes. We chose the aforementioned recipe
as it included two different data types (RNAseq and mutations) and reproduced desired results
(Appendix 1—figure 21 and Appendix 1—figure 22). Nevertheless, we could have considered
using mutation and CNA as discrete data and RNA as continuous data, but the inclusion of CNA data
forced LNCaP proliferation to be zero (Appendix 1—figure 23). This is due to the fact that CNA
data used as discrete data forces several nodes to be active or inactive throughout the simulation, as
if they were mutants. Notably, CNA data forces E2F1 node to be 0, which forces Cyclin B to be 0 and
it forces SMAD node to be 1, which forces MYC_MAX node to be 0 and p21 node to be 1, forcing
Cyclin D to be 0. Without either Cyclin B or D, the model cannot activate the Proliferation node.

In addition, we wanted to study these different personalisation recipes to try to better match
simulated phenotypes and cell line phenotypes described experimentally, but we had similar results
(Appendix Appendix 1—figure 23). Furthermore and due to the mismatches of cell line models with
their described biology characteristics, we went back to the source data to study if these mismatches
were something we could correct on the model or a problem of the dataset we used to personalise
the model. We performed principal component analysis (PCA, using FactoMineR R package) (Lé
et al., 2008, Appendix 1—figure 24) on the dataset used to personalise the models: an RNAseq
dataset of 111 genes. We found that the cell lines do not cluster by their characteristics: DU-145, an
invasive cell line, is close to BPH-1 and PWR-1E, non-invasive cell lines.

Furthermore, we digged into the pathways that are characteristic of each of these cell lines by
using single sample GSEA (using ssGSEA 2.0 R package) (Krug et al., 2019; Appendix 1—figure
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25) on the same RNA dataset using the Hallmarks molecular signatures. We found that out of the 50
Hallmarks, 21 have an overlap of more than five genes with the model’s genes. Thus, we set to cluster
the cell lines by using the signatures of each one of them in these 21 pathways. The results are quite
telling of the lack of clear clustering of these cell lines with their different characteristics (Appendix
Appendix 1—figures 24 and 25): invasive and non-invasive cell lines have similar signature values
in EMT or G2M checkpoint pathways, BPH-1 clusters with NCI-H660 and PWR-1E with DU-145, etc.

Allinall, itis unrealistic to expect thata model of different cellular behaviours will match all biological
aspects and characteristics as models are, by definition, abstractions of reality (Rosenblueth and
Wiener, 1945; Korzybski, 1995). For instance, if one were to match the cell lines’ doubling times,
of which Proliferation phenotype should be a good proxy (St John et al., 2012, Cunningham and
You, 2015), such a study would need a deeper understanding of the cell’s biology, the modelling
of many more processes, with many more parameters, and a more complete simulation framework
both multi-scaled and finer-grained, which is beyond the scope of the present work.

All the cell line-specific personalised models are publicly available in Supplementary file 5.

6. Personalised LNCaP Boolean model

LNCaP model was selected to study its genetic interactions and its uses for drug discovery.
The simulation of the LNCaP-specific model under random initial conditions leads to four most
probable phenotypes: Invasion-Migration, Invasion-Migration-Proliferation, Invasion-Proliferation
and Invasion. Using MaBoSS software, we were able to assign probabilities to each one of these
phenotypes (Appendix 1—figure 26 and Supplementary files 1 and 2).

Additionally, we studied the LNCaP model under four different growth conditions that could be
reproduced in experiments. These are a nutrient-rich media that mimics the RPMI supplemented
with glucose and foetal bovine serum with additional androgen, EGF, both or none (Appendix 1—
figure 27).

6.1. High-throughput mutant analysis of LNCaP model

A mutant in the logical framework is simulated by setting the node corresponding to the gene
mutated to O in the case of loss of function and to 1 in the case of gain of function. The effect
of a mutation is assessed, likewise to the change of initial conditions, by comparing the mutant’s
probability of reaching a phenotype with respect to the wild type model. Therefore, mutations
change the model phenotypes’ probabilities and this can be compared to the wild type model.

The logical model allows us to easily simulate all possible combinations of mutations and study
the potential redundancy or synergy of these perturbations. To perform this, tools like our high-
throughput mutant analysis pipeline (Montagud et al., 2019) are ideally suited. This pipeline of
tools was applied to the LNCaP-specific model in order to study all single and double mutants of the
LNCaP model (32,258 mutants) and their probabilities of reaching all the phenotypes of the model.

The double mutants of the high-throughput mutant analysis were used to identify genetic
interaction relationships, such as epistasis, among the single mutants. Phenotype probabilities’
variations of all 32,258 models were compared to the wild type model and were used to identify
relevant combinations of perturbations that affect phenotypes of interest (Appendix 1—figure 28)
and single phenotypes (Appendix 1—figure 29). In these figures, a PCA was applied to the matrix
of the seven phenotype probabilities of the 32,258 mutants and was then normalised with the PCA
values of the wild type. The result is a PCA centred around the wild type using the phenotypes as
variables, where the distance between a given point and the wild type orange point at the centre is
representative of the distance in the phenotype scores among them.

We were particularly interested in identifying knock-out (KO) and over-expression (OE) mutants
that depleted Proliferation and/or increased Apoptosis with regard to the wild type LNCaP model.
Using MaBoSS, we were able to quantify and rank the effect of all the 32,258 mutants on the
probabilities of reaching Proliferation and Apoptosis (Supplementary file 6).

The double mutants that mostly depleted Proliferation were combinations of p21_oe, MXI1_
oe, HIF1_oe, AR_ko and E2F1_ko. Likewise, the double mutants that mostly increased Apoptosis
were combinations of GLI_oe, Caspase3_oe, Caspase8_oe, Caspase9_oe and PTCH1_oe. The
single mutants that mostly depleted Proliferation were HIF_oe, MXI_oe, p21_oe, Caspase3_oe
and Caspase8_oe. Likewise, those that mostly increased Apoptosis were GLI_oe, Caspase3_oe,
Caspase8_oe, Caspase9_oe and SMO_oe
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It was in our interest to identify drugs that could inhibit some of these genes, thus, we filtered
these lists to find the best single KO mutations. We found that the single KO that mostly depleted
Proliferation were AR_ko, VHL ko, AKT_ko, E2F1_ko, PIP3_ko, EGFR_ko, PI3K ko, CDH2_ko,
TWIST1_ko, ERK ko. Likewise, the single KO that mostly increased Apoptosis were AKT_ko, AR_
ko, ERK ko, cFLAR_ko, SPOP_ko, PIP3_ko, PI3K ko, EGFR_ko, HSPs_ko and ATR_ko. Another
knockout, p53_ko, was identified in our analysis, but was later discarded upon closer analysis. From
topological analyses, p53 deletion should increase Proliferation, as p21, a cyclin inhibitor, is therefore
not transcribed. Nevertheless, p53 has a dual effect on Apoptosis in the network: p53 activates CytC
and Apaf1, which activate Apoptosis, but p53 also inhibits BIRC5, an activator of Apoptosis. The
model should be closely inspected to correct this mismatch in future works. In any case, the effects
of p53's mutations are not further analysed in present work, nor their results are further discussed.

We gathered the 20 top nodes from each of those lists and ended with 29 nodes that could
be knocked out to deplete Proliferation and/or increase Apoptosis (AKT, AR, ATR, AXIN1, Bak,
BIRC5, CDH2, cFLAR, CyclinB, CyclinD, E2F1, eEF2, eEF2K, EGFR, ERK, HSPs, MED12, mTORC1,
mTORC2, MYC, MYC_MAX, PHDs, PI3K, PIP3, SPOP, TAK1, TWIST1, VHL). We used this ranking, the
genes corresponding to these nodes and known drugs that target these genes to shortlist potential
therapeutic target candidates tailored to LNCaP cell line (Main text, Table 1).

6.2. Robustness analysis of the logical model
We performed a perturbation on the logical rules stability of the LNCaP model, following our
previous work (Montagud et al., 2019). In Section 6.1 we forced the value of a node to be 0 or 1
throughout the simulation. Now, we have changed one and two logical gates from each logical rule
of the LNCaP model and studied the effects on the phenotype scores. In short, we have changed an
AND in OR gate and vice versa in each logical rule (what we call level 1 analysis with 372 simulations
in this model) or twice in the same rule (level 2 analysis with 1,263 simulations in this model).
Overall, we see that all of the most probable phenotypes (as the ones from Appendix 1—figure
28) are very robust to this kind of perturbation. Even the less stable phenotype, Invasion-Migration-
Proliferation, only has 2.69% of the single (level 1) perturbations that reduce this phenotype’s
probability to zero (Appendix 1—figure 30A) and 3.33% of the double (level 2) perturbations
(Appendix 1—figure 30B). Most of these perturbations were focused on HIF1 and AR_ERG nodes
for single perturbations (Appendix 1—figure 31A) and HIF1 and p53 nodes for double perturbations
(Appendix 1—figure 31B).

7. Drug studies in prostate cell lines

7.1. Drugs associated to genes included in the model

We tested if the drugs that targeted the genes included in the model allowed us to identify cell line
specificities. We analysed drug sensitivity data from GDSC1 and GDSC2 studies (lorio et al., 2016)
and for each drug we calculated a normalised sensitivity of the eight prostate cell lines considered
in present study (22RV1, BPH-1, DU-145, LNCaP-Clone-FGC, NCI-H660, PC-3, PWR-1E, and VCaP).
We normalised drug sensitivity across cell lines in the following way: cells were ranked from most
sensitive to least sensitive using In(IC50) as the drug sensitivity metrics, and the rank was divided by
the number of cell lines tested with the given drug. Thus, the most sensitive cell line scored 0, while
the most resistant cell line scored one normalised sensitivity. This rank-based metric made it possible
to analyse all drug sensitivities for a given cell line, without drug-specific confounding factors, such
as the mean IC50 of a given drug or others.

We observed that cell lines described as resistant (DU-145 and PC-3) have a skewed distribution
towards least sensitive values (Appendix 1—figure 32D and E), while cell lines such as LNCaP have
a skewed distribution towards more sensitive values (Appendix 1—figure 32A). Meaning that the
drugs that target the genes in the personalised model are not very effective against the resistant cell
lines, but that LNCaP is significantly more sensitive to these. Additionally, we found that BPH-1 is
generally sensitive to all drugs, let them be model-specific or not (Appendix 1—figure 32C). For the
other cell lines, there is no significant difference between model-specific drugs or not.

In addition, we performed a target set enrichment analysis using the fgsea method (Korotkevich
et al., 2016) from the piano R package (Vdremo et al., 2013). Again, we targeted pathway
information from the GDSC1 and GDSC2 studies (lorio et al., 2016) as target sets, and performed
the enrichment analysis on the aforementioned normalised drug sensitivity profile of the LNCaP cell
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line. This target enrichment analysis showed that LNCaP cell lines are especially sensitive to PI3K/
AKT/MTOR, hormone related (AR targeting) and Chromatin targeting (bromodomain inhibitors,
regulating Myc) drugs (Appendix 1—table 2, adjusted p-values from target enrichment: 0.001,
0.001 and 0.037, respectively), which corresponds to the model predictions (Main text, Table 1).

Appendix 1—table 2. Target enrichment for LNCaP-specific drug sensitivities.

Drugs were sorted based on rank normalised drug sensitivity 0: most sensitive, 1 most resistant,
based on GDSC AUC drug sensitivity metric for LNCaP. Target pathway enrichment analysis was
performed based on the pathway membership of drug targets. Direction represents whether
pathway-targeting drugs were enriched in sensitive or resistant drugs.

Drug target pathway p-value adj. p-value Direction
PI3K/MTOR signalling 0.00011563 0.0011106 sensitive
Hormone-related 0.00014808 0.0011106 sensitive
Chromatin other 0.0065661 0.03283 sensitive
Chromatin histone methylation 0.01216 0.045601 sensitive
p53 pathway 0.079554 0.23866 sensitive
DNA replication 0.10466 0.26164 sensitive
WNT signalling 0.13583 0.29107 sensitive
Unclassified 0.20391 0.38233 sensitive
Genome integrity 0.54186 0.90311 sensitive
Cytoskeleton 0.63153 0.93981 sensitive
Other, kinases 0.81647 0.93981 sensitive
RTK signalling 0.85985 0.93981 sensitive
Other 0.87572 0.93981 sensitive
Protein stability and degradation 0.88166 0.93981 sensitive
EGFR signalling 0.93981 0.93981 sensitive
Apoptosis regulation 0.96036 0.96036 resistant
Chromatin histone acetylation 0.73164 0.83616 resistant
JNK and p38 signalling 0.63484 0.83616 resistant
IGF1R signalling 0.23538 0.37662 resistant
Cell cycle 0.19382 0.37662 resistant
Metabolism 0.053352 0.14227 resistant
Mitosis 0.027536 0.11014 resistant
ERK MAPK signalling 0.00050075 0.004006 resistant

7.2. Drugs associated to the proposed targets of LNCaP

We wanted to test if the LNCaP cell line is more sensitive than the rest of the prostate cell lines to
the LNCaP-specific drugs identified in Table 1 from the main text. We compared GDSC's Z-score of
these drugs in LNCaP with their Z-scores in all GDSC cell lines (Appendix 1—figure 5). We observed
that LNCaP is more sensitive to drugs targeting AKT or TERT than the rest of the studied prostate
cell lines. In Appendix 1—figure 33, we can observe that trend in comparison to the other prostate
cell lines and to the rest of the GDSC cell lines. In addition, we see that AKT sensibility in LNCaP is
one of the highest in the GDSC records.

7.3. Gradual inhibition of genes in LNCaP model

Logical models can be used to simulate the effect of therapeutic interventions by using our PROFILE _
v2 methodology. For this, we can take advantage of MaBoSS as it can perform simulations using a
population of trajectories by changing the proportion of activated and inhibited status of a given
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node. Using MaBoSS method (see Section 2.1), initial values of each node can be defined with a
continuous value between 0 and 1 representing the probability for the node to be defined as 1
for each new trajectory. This can be determined in the configuration file of each model (see, for
instance, ‘istate’ section of the CFG files in the Supplementary files 13 and 5). For instance, out of
5,000 trajectories of the Gillespie algorithm, MaBoSS can simulate 70% of them with an activated
AKT and 30% with an inhibited AKT node. The phenotypes’ probabilities for the 5,000 trajectories
are averaged and these are considered representative of a model with a drug that inhibits 30% of
the activity of AKT.

All these inhibitions were performed using our PROFILE_v2 framework (https://github.com/
ArnauMontagud/PROFILE_v2) that allow to study the effect of single and double mutations (knock-
out and overexpression) in the phenotypes’ probabilities using MaBoSS as well as to study the Bliss
Independence synergy score of these combinations.

7.3.1. Single inhibitions

We studied the variations of all the phenotype scores upon the 17 nodes’ inhibitions under EGF
growth condition (Appendix 1—figure 34) and under AR, EGF, 00 and AR_EGF growth conditions
(Appendix 1—figure 35).

7.3.2. Double inhibitions
Thoroughly, we studied the effect of the inhibition of the 17 combined nodes under EGF
growth condition in the Proliferation (Appendix 1—figure 36) and Apoptosis phenotype score
(Appendix 1—figure 37).

This combined scores allowed us to study the Bliss Independence synergies scores and
their variations in these combined nodes' inhibitions under EGF growth conditions. We studied
Proliferation (Appendix 1—figure 38) and Apoptosis phenotypes (Appendix 1—figure 39).

8. Analyses of drug experiments

We present the dose-dependent changes in the LNCaP cell line growth upon drug addition of Hsp0
(Appendix 1—figure 40) and PI3K/AKT inhibitors (Appendix 1—figure 41) with insets to show the
cytotoxicity assay results at 24, 48, and 72 hr after drug addition.
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Appendix 1—figure 1. Mean activities by subgroups for gene modules defined from pathways described in
ACSN. (A) And in Hallmarks' gene sets (B) and that are significantly overdispersed over all samples. Blue indicates
low pathway activity, red indicates high pathway activity.
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Appendix 1—figure 3. shortest paths found between ERG and TMPRSS2 or NKX3-1 by Pypath: no direct
interaction is found.
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Appendix 1—figure 4. Boolean toy model to showcase different examples of Boolean formulas.
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Appendix 1—figure 5. Mean probabilities of the nodes characterising the cyclins and proliferation, with nutrients
and growth factors as inputs. We choose initial states for the nodes involved in the cell cycle that correspond

to quiescence (cyclins OFF, cell cycle inhibitors Rb and p21 ON), in order to visualise the order of activation

of the cyclins: first Cyclin D, then Cyclin B. The mean probabilities reach asymptotic levels because of the
desynchronisation of stochastic trajectories in the population.
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Appendix 1—figure 6. Mean probabilities in simulations of mutated models. (A) Loss-of-function mutation of
FOXA1. (B) Loss-of-function mutation of TP53.
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Appendix 1—figure 7. Mean probabilities in simulations of the model with a multiple simulation: the gene fusion
TMPRSS2:ERG and a loss-of-function of NKX3-1.
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Appendix 1—figure 8. Data integration in Boolean models to have personalised Boolean models.
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Appendix 1—figure 9. Distribution of 488 TCGA prostate cancer patients’ samples per Gleason grade.
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Appendix 1—figure 10. Associations between simulations and Gleason grades (GG). Distribution histograms

of Apoptosis scores according to GG in three groups (A) and five groups (B). Columns correspond to different
personalisation recipes (see Béal et al., 2019 for more details). We found that across 3-stage GG Kruskal-Wallis
rank sum test is significant for Apoptosis under the ‘Mut, CNA, and RNA' recipe (p-value = 2.83E-6) and significant
across 5-stage GG (p-value = 1.88E-5). Additionally, we used Dunn'’s test to identify which pairs of groups are
statistically different focusing on the 3-stage GG and found that grade High is statistically different from grades
Low (Bonferroni's adjusted p-value = 3.3E-3) and Intermediate (Bonferroni's adjusted p-value = 9.47E-6).
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Appendix 1—figure 11. Associations between simulations and Gleason grades (GG). Distribution histograms
of DNA_repair scores according to GG in three groups (A) and five groups (B). Columns correspond to different
personalisation recipes (see Béal et al., 2019 for more details). Kruskal-Wallis rank sum test across 3-stage GG is
neither significant for DNA_Repair under the ‘Mut, CNA and RNA' recipe (p-value = 0.217) nor across 5-stage GG
(p-value = 0.0995).
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Appendix 1—figure 12. Associations between simulations and Gleason grades (GG). Distribution histograms

of Invasion scores according to GG in three groups (A) and five groups (B). Columns correspond to different
personalisation recipes (see Béal et al., 2019 for more details). Kruskal-Wallis rank sum test across 3-stage GG is
significant for Invasion under the ‘Mut, CNA, and RNA' recipe (p-value = 0.0358), but not significant across 5-stage
GG (p-value = 0.134). Using Dunn’s test on the 3-stage GG, we found that grade High is statistically different from
grade Intermediate (Bonferroni's adjusted p-value = 0.037).
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Appendix 1—figure 13. Associations between simulations and Gleason grades (GG). Distribution histograms
of Migration scores according to GG in three groups (A) and five groups (B). Columns correspond to different
personalisation recipes (see Béal et al., 2019 for more details). Kruskal-Wallis rank sum test across 3-stage GG is
neither significant for Migration under the ‘Mut, CNA, and RNA' recipe (p-value = 0.173) nor across 5-stage GG
(p-value = 0.275).
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