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Abstract: Bacillus anthracis adenylyl cyclase toxin edema factor (EF) is one component 

of the anthrax toxin and is essential for establishing anthrax disease. EF activation by the 

eukaryotic Ca2+-sensor calmodulin (CaM) leads to massive cAMP production resulting in 

edema. cAMP also inhibits the nicotinamide adenine dinucleotide phosphate (NADPH)-oxidase, 

thus reducing production of reactive oxygen species (ROS) used for host defense in 

activated neutrophils and thereby facilitating bacterial growth. Methionine (Met) residues 

in CaM, important for interactions between CaM and its binding partners, can be oxidized 

by ROS. We investigated the impact of site-specific oxidation of Met in CaM on EF 

activation using thirteen CaM-mutants (CaM-mut) with Met to leucine (Leu) substitutions. 

EF activation shows high resistance to oxidative modifications in CaM. An intact structure 

in the C-terminal region of oxidized CaM is sufficient for major EF activation despite 

altered secondary structure in the N-terminal region associated with Met oxidation.  
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The secondary structures of CaM-mut were determined and described in previous studies 

from our group. Thus, excess cAMP production and the associated impairment of host 

defence may be afforded even under oxidative conditions in activated neutrophils. 

Keywords: Bacillus anthracis edema factor; adenylyl cyclase toxin; (oxidized) calmodulin; 

(oxidized) calmodulin mutants 

 

1. Introduction 

Anthrax disease caused by Bacillus anthracis infection continues to be a significant anthropozoonosis 

in developing countries, despite the successes of veterinary vaccines [1–3]. Anthrax is also a threat as  

a bioterrorism weapon [3,4], and newer problems are deaths from use of illegal injectable drugs like 

heroin contaminated with anthrax spores [3]. Two component proteins of the anthrax toxin,  

the adenylyl cyclase (AC), referred to as edema factor (EF), and lethal factor (LF), respectively, 

penetrate into host cells via interaction with protective antigen (PA) protein [5,6]. PA builds a prepore 

complex with EF and LF after binding to CM2G2/TEM8 receptors located on host immune cells.  

The complex internalizes into acid vacuoles, and pH-dependent processes mediate the release of the 

toxins into host cytosol [5,6]. Because EF is central to the pathology of anthrax by inducing edema and 

shock [7,8], potent and selective EF inhibitors would be very useful tools for combating anthrax [9]. 

Currently, the most potent EF inhibitors target the catalytic site, but membrane-permeability and 

selectivity of compounds are of concern [9]. 

Another potential target for EF inhibitors is the interaction site of EF with its activator calmodulin 

(CaM) [5,6,10]. CaM is a eukaryotic Ca2+-sensor in host cells including neutrophils, a preferential 

target cell of EF [11]. The high AC activity of CaM-stimulated EF induces a massive increase of 

cAMP levels that severely disrupt cellular signalling and homeostasis [12]. The high intracellular 

cAMP levels also significantly inhibit production of superoxide that is catalyzed by nicotinamide 

adenine dinucleotide phosphate (NADPH)-oxidase, an important component of the host defense 

system in activated neutrophils [11]. Thus, EF facilitates bacterial growth and promotes development 

of anthrax disease by interrupting this important host defense mechanism [3,6]. 

Superoxide and other reactive oxygen species (ROS) can also damage mammalian proteins by 

oxidation of susceptible amino acid residues, including methionine (Met) [13,14]. In CaM all nine Met 

(M36, M51, M71, M72, M76, M109, M124, M144 and M145) can be oxidized in vivo and in vitro to 

the (S)- and (R)-diastereoisomers of methionine sulfoxide (MetSO) [15,16]. 

Activation of CyaA of Bordetella pertussis, a CaM-stimulated AC toxin exhibiting similar catalytic 

and regulatory mechanisms to EF [10,17], is dramatically impaired by in vitro oxidized CaM [18].  

All these data prompted us to study activation of EF by in vitro oxidized CaM. In order to analyze  

the impact of the redox state of distinct Met on EF activation, we used 13 CaM-mutants (CaM-mut) 

with site-specific Met to leucine (Leu) substitutions (Table 1), which were previously analyzed with 

regard to activation of mammalian membranous adenylyl cyclase 1 (AC1) [19]. Leu is comparable to 

Met in terms of hydrophobicity, volume, and the preference for forming α-helices [20]. However,  

in contrast to Met, Leu is non-oxidizable. In addition, we used methionine sulfoxide reductases (Msr) A 
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and isoform B3A, which reduce stereospecifically (S)- and (R)-MetSO, respectively [21,22],  

to determine EF activation by Met-reduced CaM. 

Table 1. Nomenclature of analyzed CaM-mut with Met (M) to Leu (L) substitutions [19]. 

CaM 
Position in CaM 

36 51 71 72 76 109 124 144 145 

wt M M M M M M M M M 
L9 L L L L L L L L L 

M36/L8 M L L L L L L L L 
M51/L8 L M L L L L L L L 
M71/L8 L L M L L L L L L 
M72/L8 L L L M L L L L L 
M76/L8 L L L L M L L L L 

M144/L8 L L L L L L L M L 
M145/L8 L L L L L L L L M 

M36,M51/L7 M M L L L L L L L 
M71,M72,M76/L6 L L M M M L L L L 

M109,M124/L7 L L L L L M M L L 
M144,M145/L7 L L L L L L L M M 

L2 M M M M M M M L L 

2. Results 

2.1. Ca2+-Dependence of CaM Stimulation of EF 

No remarkable differences were observed in the AC activity of EF stimulated by native CaM-wt in 

the absence of free Ca2+ or in the presence of 10 μM, 50 μM, and 100 μM free Ca2+ (Figure 1A).  

The result of stimulation with completely oxidized CaM-wt was similar, except that the level of basal 

stimulation was much lower compared to stimulation by native CaM-wt (Figure 1B). 

These findings suggest that Ca2+-binding to CaM is not necessary for CaM activation of EF 

although previous studies reviewed in Ref. 6 point to an important role of Ca2+ in the regulation of  

the catalytic activity of EF by CaM. It remains to be determined how Mn2+ (used instead of Mg2+ in  

the present study) affects EF regulation by CaM. Based on these results, a concentration of 10 μM free 

Ca2+, analogously to experiments analyzing AC1 activation [19], was used for subsequent studies 

analyzing CaM stimulation of EF. 

2.2. Regulation of EF by the Degree of Met Oxidation in CaM 

The effect of Met oxidation in CaM on the ability of CaM to activate EF was performed using 

samples of CaM oxidized with 0.05 mM, 0.5 mM, 5 mM, or 50 mM H2O2 (Figure 2). The treatment of 

CaM with H2O2 resulted only in Met oxidation whereas no other protein modifications generated were 

confirmed by the restoration of full EF activation after reduction of MetSO by Msr enzymes (Figure 3). 
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Figure 1. Effect of Ca2+-concentration on AC activity of EF stimulated by native or 

oxidized CaM-wt. The calculation of free Ca2+-concentrations, the oxidation of CaM-wt 

using 50 mM H2O2 and 0.1 mM CaCl2 for 24 h at 25 °C and the AC activity assay were 

performed as described in the “Experimental Section”. A concentration of 10 μM of native 

CaM-wt (A) or oxidized CaM-wt (B) and free Ca2+-concentrations of 0 μM, 25 μM,  

50 μM, 75 μM, and 100 μM were used in the reaction. The AC activities show  

the means ± SD of three independent experiments performed in duplicates. A one-way 

analysis of variances with a Dunnett’s multiple comparison post-test with native or 

oxidized CaM-stimulated AC activity and 10 μM Ca2+ as control was performed to detect 

significant differences in native or oxidized CaM-stimulated AC activities with various  

Ca2+-concentrations (no *: p-value > 0.05; **: 0.001 < p-value < 0.01; ***: p-value < 0.001). 

All calculations were performed using GraphPad Prism 5.04. 

 

Figure 2. Regulation of EF by the degree of Met oxidation in CaM. Met oxidation using 

0.05 mM, 0.5 mM, 5 mM, and 50 mM H2O2 and 0.1 mM CaCl2 for 24 h at 25 °C and  

the AC activity assay were performed as described in the “Experimental Section”.  

The concentrations of (oxidized) CaM-wt varied from 1 nM to 10 μM. Concentration-response 

curves of native CaM-wt (black) and oxidized CaM-wt (0.05 mM H2O2 (brown), 0.5 mM 

H2O2 (green), 5 mM H2O2 (blue), and 50 mM H2O2 (orange)) were analyzed by nonlinear 

regression (three parameters) using GraphPad Prism 5.04. The AC activity of EF with  

30 mM Tris-HCl, pH 7.5 was set to 0% and with 10 μM native CaM-wt to 100%. The AC 

activities show the means ± SD of three independent experiments performed in duplicates. 
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Figure 3. Restoration of CaM activation of EF by reduction of MetSO in oxidized CaM 

catalyzed by MsrA and MsrB3A. Met oxidation using 50 mM H2O2 and 0.1 mM CaCl2 for 

24 h at 25 °C, the treatment of oxidized CaM-wt with MsrA or/and MsrB3A and the AC 

activity assay were performed as described in the “Experimental Section”. The concentrations 

of different forms of CaM-wt varied from 1 nM to 10 μM. The concentration-response 

curves of native (black), oxidized (brown), MsrA- (green), MsrB3A- (blue), and 

MsrA/MsrB3A-treated (orange) CaM-wt were analyzed by nonlinear regression  

(three parameters) using GraphPad Prism 5.04. The AC activity of AC1 with 30 mM Tris-HCl, 

pH 7.5 was set to 0% and with 10 μM native CaM-wt to 100%. The AC activities show the 

means ± SD of three independent experiments performed in duplicates. 

The concentration-response curves of CaM-wt oxidized with 0.05 mM and 0.5 mM H2O2 were 

similar to unoxidized CaM-wt in terms of potency and efficacy. The potency of CaM-wt oxidized with 

5 mM H2O2 was markedly decreased. The decrease in the AC activity of EF in the presence of 10 μM 

oxidized CaM was marginal relative to the maximal EF activity in the presence of native CaM-wt.  

No activation of EF was observed by CaM-wt that was heavily oxidized with 50 mM H2O2 at 

concentrations of up to 10 μM of oxidized CaM. These results suggest that only the affinity of EF and 

CaM is affected by the degree of Met oxidation using 5 mM H2O2, but the maximal CaM stimulation 

of EF is only affected by completely oxidized CaM with 50 mM H2O2. In fact, CaM oxidized with  

5 mM or 50 mM H2O2 showed similar degrees of Met oxidation analyzed by SDS-PAGE in a previous 

study of our group [19], but the above observations confirm the hypothesis that SDS-PAGE is not  

a suitable method for analyzing subtle differences in the degree of Met oxidation of CaM [19]. 

2.3. Regulation of EF Activation by Native CaM-mut with Met to Leu Substitutions 

It was necessary first to analyze the impact of Met to Leu substitution on CaM stimulation of EF 

prior to evaluating the impact of site-specific Met oxidation. Therefore, concentration-response curves 

of CaM-wt and CaM-mut were recorded (Figure 4). 
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Figure 4. Concentration-response curves for the stimulation of EF by native CaM-wt and 

CaM-mut. The AC activity assay was performed as described in the “Experimental Section”. 

Concentrations of CaM-wt (black) and CaM-mut (green) varied from 1 nM to 10 μM. 

Concentration-response curves were analyzed by nonlinear regression (three parameters) 

using GraphPad Prism 5.04. The AC activity of EF with 30 mM Tris-HCl, pH 7.5 was set 

to 0% and with 10 μM CaM-wt to 100%. The AC activities show the means ± SD of three 

independent experiments performed in duplicates. 

Site-specific substitutions of Met to Leu in CaM-mut did not alter the maximal AC activity of EF. 

The potencies of CaM-mut M144/L8, M145/L8 and M144, M145/L7 were not majorly decreased 

compared to the potency of CaM-wt whereas the potencies of all other CaM-mut were slightly 

decreased. These observations indicate that the potency is least affected if one Met in position 144 or 

145 or two Met in position 144 and 145 are conserved. 
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2.4. Regulation of EF Activation by Site-Specific N- and C-Terminal Met Oxidation 

Figure S1 shows that DTT (required for subsequent Msr reactions with oxidized CaM to evaluate 

the recovery of EF activation by Msr restored oxidized CaM) did not affect the basal AC activity of 

EF. The results of the recovery of EF activation upon MetSO reduction catalyzed by Msr enzymes are 

further described in Section 2.5. In order to analyze the impact of site-specific Met oxidation in CaM 

on EF activation, concentration-response curves shown in Figure S2 were recorded and AC activities, 

relative to AC activity with each corresponding native CaM-mut, are summarized in Table 2. 

Corresponding pEC50 values are summarized in Table 3. 

Table 2. Activity of EF stimulated native, oxidized, and MsrA-treated oxidized  

CaM-wt and CaM-mut. AC activities with 10 μM CaM sample were collected from  

the corresponding concentration-response curves shown in Figure S2. Met oxidation using  

50 mM H2O2 and 0.1 mM CaCl2 for 24 h at 25 °C, the reaction of oxidized CaM-wt and 

CaM-mut with MsrA and the AC activity assay were performed as described in  

the “Experimental Section”. Concentration-response curves were analyzed by nonlinear 

regression (three parameters). The AC activity of EF in the presence of 30 mM Tris-HCl, 

pH 7.5 was set to 0% and in the presence of 10 μM native CaM-wt or each native  

CaM-mut was set to 100%. The AC activities show the means ± SD of three independent 

experiments performed in duplicates. A one-way analysis of variances with a Dunnett’s 

multiple comparison post-test with native CaM-wt or each corresponding native CaM-mut 

as control was performed to detect significant differences in AC activities with 10 μM 

oxidized or with MsrA-treated oxidized CaM-wt or CaM-mut in comparison to native 

CaM-wt or CaM-mut (**: p-value < 0.01; ***: p-value < 0.001). All calculations were 

performed using GraphPad Prism 5.04. 

CaM 
AC Activity with 10 μM CaM-wt/CaM-mut [%] 

Oxidized Oxidized 

wt 3.3 ± 2.1 *** 86.3 ± 6.9 *** 
L9 100.3 ± 15.9 100.6 ± 5.2 

M36/L8 95.7 ± 7.5 97.7 ± 5.0 
M51/L8 85.9 ± 15.7 99.1 ± 10.0 
M71/L8 91.2 ± 3.0 99.1 ± 4.7 
M72/L8 94.9 ± 7.8 101.3 ± 5.2 
M76/L8 84.7 ± 12.8 102.7 ± 10.4 

M144/L8 101.5 ± 15.4 95.7 ± 2.4 
M145/L8 104.9 ± 16.6 100.8 ± 16.7 

M36,M51/L7 90.9 ± 9.7 108.4 ± 7.2 
M71,M72,M76/L6 86.4 ± 12.5 111.0 ± 7.1 

M109,M124/L7 82.4 ± 11.4 106.9 ± 6.9 
M144,M145/L7 96.2 ± 6.7 96.3 ± 3.9 

L2 74.8 ± 5.8 ** 91.3 ± 7.0 
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Table 3. Potencies of EF with native, oxidized, and MsrA-treated oxidized CaM-wt and 

CaM-mut. pEC50 values were calculated from the corresponding concentration-response 

curves shown in Figure S2 as described in the “Experimental Section”. Concentration-response 

curves were analyzed by nonlinear regression (three parameters). The pEC50 values show 

the means ± SD of three independent experiments performed in duplicates. A one-way 

analysis of variances with a Dunnett’s multiple comparison post-test with each corresponding 

native CaM as control was performed to detect significant differences in potencies of 

oxidized or MsrA-treated oxidized CaM in comparison to native CaM (**: p-value < 0.01; 

***: p-value < 0.001). All calculations were performed using GraphPad Prism 5.04. 

CaM 
pEC50 

Native Oxidized MsrA-treated 

wt 7.61 ± 0.05 - 6.35 ± 0.09 *** 
L9 7.40 ± 0.10 7.31 ± 0.13 ** 6.96 ± 0.05 *** 

M36/L8 6.81 ± 0.06 6.50 ± 0.06 *** 6.29 ± 0.04 *** 
M51/L8 6.96 ± 0.09 6.83 ± 0.14 ** 6.50 ± 0.07 *** 
M71/L8 6.83 ± 0.08 6.35 ± 0.05 *** 6.35 ± 0.05 *** 
M72/L8 7.05 ± 0.07 6.75 ± 0.07 *** 6.57 ± 0.05 *** 
M76/L8 6.81 ± 0.10 6.47 ± 0.10 *** 6.37 ± 0.06 *** 

M144/L8 7.54 ± 0.11 7.08 ± 0.10 *** 6.86 ± 0.04 *** 
M145/L8 7.73 ± 0.05 7.14 ± 0.10 *** 6.97 ± 0.07 *** 

M36,M51/L7 6.88 ± 0.07 6.19 ± 0.06 *** 6.29 ± 0.04 *** 
M71,M72,M76/L6 6.94 ± 0.06 6.30 ± 0.07 *** 6.27 ± 0.04 *** 

M109,M124/L7 6.95 ± 0.05 5.90 ± 0.06 *** 6.35 ± 0.04 *** 
M144,M145/L7 7.56 ± 0.09 6.52 ± 0.06 *** 6.92 ± 0.05 *** 

L2 7.40 ± 0.10 5.33 ± 0.07 *** 6.62 ± 0.05 *** 

In addition to the complete loss of EF activation upon stimulation with oxidized CaM-wt,  

a significant decrease (25%) in EF activation was evident for oxidized L2-CaM. The remaining results 

show that maximal EF activation was not affected by oxidation of one, two, or three Met in other  

CaM-mut. The potencies were substantially decreased for all oxidized CaM-mut, except for L9-CaM, 

demonstrating only a nominal decrease in potency. This indicates that Met oxidation has a remarkable 

impact for the affinity of CaM to EF, but not for the maximal stimulation. 

2.5. Restoration of CaM Stimulation of EF by Msr Catalyzed Reduction of MetSO 

To investigate the recovery of CaM stimulation of EF by restored oxidized CaM, MsrA and 

MsrB3A were used to reduce (S)-and (R)-MetSO, respectively. The restoration of (R)-MetSO by 

MsrB3A was performed exemplarily using oxidized CaM-wt, but not all CaM-mut, because the 

restoration in detail was not the aim of this study. Figure 4 shows that maximal CaM activation of EF 

was almost completely restored by MsrA or MsrB3A catalyzed reduction of MetSO in oxidized CaM. 

The potency of oxidized CaM-wt that was treated with either of the Msr enzymes, was decreased in 

comparison to native CaM-wt. In contrast, full EF activation and potency levels of native CaM-wt 

were obtained upon treatment of oxidized CaM-wt with both Msr enzymes. Complete recovery of EF 

activation was also observed for oxidized L2-CaM upon MsrA treatment (Table 2). However, 
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decreased potencies of oxidized CaM-mut were not regained by MsrA restoration possibly due to 

structural changes accompanying Met oxidation that were not restored by MetSO reduction.  

In L9-CaM, all Met that were prone to oxidation were substituted with Leu and, as expected, this 

CaM-mut was resistant to oxidation and unaffected by MsrA treatment. 

3. Discussion 

3.1. Impact of Intact C-Terminal Structure of CaM on EF Activation 

Regulation of EF by oxidized CaM has pathophysiological relevance because ROS, generated by 

the NADPH-oxidase in activated neutrophils [11], can oxidize susceptible amino acid residues in host 

proteins like CaM [13,14]. EF was fully activated by CaM-wt oxidized with 5 mM H2O2 with only  

a moderate decrease in potency. However, with completely oxidized CaM-wt (50 mM H2O2) with all 

nine Met residues oxidized to MetSO (as shown by previous mass spectrometry analysis [19,23]),  

no EF activation was observed (Table 2). In contrast, EF activation was not affected by oxidized  

CaM-mut, which contains up to three MetSO (Table 2). Furthermore, the oxidation of seven Met in  

L2-CaM resulted only in a modest decrease of EF activation of about 25%. Evidently, for any 

particular Met in CaM, the polarity and rigidity differences accompanying oxidation to MetSO [20,24] 

do not affect the ability to activate EF. Only the apparent affinity between EF and CaM is decreased by 

oxidation (Table 3) supporting the concept that binding of CaM to EF and EF activation are tightly 

coupled, and there is little nonproductive binding [6,10]. Thus, binding of CaM to EF is impaired by 

CaM Met oxidation, but if the CaM-EF complex is already built, full EF activation is possible even 

though Met in CaM are oxidized. The data also indicate that binding of CaM to EF is affected by  

the secondary structure of CaM, which is suggested to be associated with Met oxidation. We have 

shown that the α-helical content of CaM-wt and L2-CaM decreases only moderately, but significantly, 

upon oxidation [19]. It is reasonable that the reduction of the α-helical content, especially in  

the N-terminal region due to oxidation of the N-terminal Met residues (M36, M51, M71, M72 and M76), 

is critical for binding of CaM to EF. Our data confirm that the N-terminal region of CaM is important 

for the initiation of CaM-EF binding [6,25]. 

A remarkable finding of this study is that EF was still activated to 75% by oxidized L2-CaM  

(Leu residues at positions 144 and 145), compared to the complete loss of EF activation with oxidized 

CaM-wt, at the highest concentrations of CaM used. Furthermore, the data for L2-CaM (Figure S2) 

suggest that higher concentrations of L2-CaM would fully activate EF, again suggesting a lack of 

nonproductive binding. From the crystal structure of CaM and EF it is known that M109, M124, 

M144, and M145 are potentially important for EF activation because of the large surface area they 

contribute to the CaM-EF interface [10]. These Met residues are in mainly hydrophobic contact to 

amino acids in switch A of EF within the CaM-EF complex that is in contrast to the N-terminal Met 

residues (this is demonstrated via molecular modeling illustrated in Figure 5). 
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Figure 5. Positions of Met residues in CaM within the CaM-EF complex. The models were 

generated with Sybyl 8.0 (Certara, St. Louis, MO, USA) using the crystal structure PDB 

1xfv [26]. Met residues are drawn as ball and stick models. Atom colors: C, grey; O, red; 

N, blue; P, orange; S, yellow; Mg2+, purple; Ca2+, magenta. CaM, calmodulin; Met, 

methionine; Sw, switch. (A) Overview of the CaM structure and surrounding EF domains. 

Helices are presented as cylinders, β-sheets as arrows, loops and turns as tubes, 3′-deoxy-ATP 

as space fill model. (B) Interaction of C-terminal M109, M124, M144, and M145 with 

other amino acids of C-CaM and switch A of EF. All residues within a sphere of 3 Å 

around at least one Met are shown. C-CaM, orange; switch A of EF, blue. 

The above data indicate that an intact structure in the C-terminal region of oxidized CaM, especially 

next to positions 144 and 145, is sufficient for effective EF activation. This is evident despite  

the structural changes associated with Met oxidation in the N-terminal region [6,25]. Furthermore, full 

EF activation was restored by treatment of oxidized CaM-wt and L2-CaM with either MsrA or MsrB 

(Table 2 and Figure 3), suggesting that partial restoration of CaM-structure by only one Msr enzyme is 

sufficient for EF activation [18,23]. Upon restoration of oxidized CaM-wt by both Msr enzymes full 

CaM potency was regained (Figure 3). 

The decrease in Ca2+-affinity of CaM upon Met oxidation has to be considered as well [24]. Full EF 

activation was obtained with oxidized CaM-mut M109,M124/L7 and M144,M145/L7, where two 

oxidized Met residues are located in vicinity to the C-terminal Ca2+-binding sites, respectively [27]. 

These findings reveal that Ca2+-binding in the C-terminal region of CaM (important for EF activation 

(in contrast to Ca2+-binding in the N-terminal region) [10,28]) is sufficient for EF activation upon 

oxidation of either M109 and M124 or M144 and M145. Moreover, effective EF activation generally 

seems to be not necessarily dependent on Ca2+-binding to CaM (Figure 1), initiation of binding of CaM 

and EF [6,25] is ensured by an intact N-terminal structure of these CaM-mut and a partially intact 

structure of the C-terminal region. The importance of M144 and M145 for EF activation is further 

shown by analysis of native CaM-mut with Met to Leu substitutions because only if M144 and M145 

(in CaM-mut M144/L8, M145/L8 and M144,M145/L7) are not substituted to Leu, the affinity to EF is 

almost identical to the affinity of CaM-wt to EF (Figure 4). 
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3.2. Comparison of CaM-EF Interaction to Other CaM-Target Interactions 

The results for CaM activation of EF observed in this study are consistent with previous findings 

demonstrating that CaM regulation of EF is very different from CaM regulation of a mammalian 

membranous AC1 [6,10]. Site-specific Leu substitutions in CaM-mut enhanced AC1 activation 

dramatically in comparison with CaM-wt [19]. In contrast, EF activation is not affected by Met to Leu 

substitutions (Figure 3). Only the affinity of EF and CaM was altered accompanying particular Met to 

Leu substitutions (Figure 3). AC1 was also more sensitive to site-specific Met oxidation than EF. It is 

worth mentioning that AC1 activation by CaM is strongly Ca2+-dependent, whereas EF is also 

activated by apo-CaM (Figure 1 and [19]), indicating that the CaM binding surface of EF is more 

adaptable to different tertiary structures of CaM. Furthermore, CaM activates AC1 with relatively low 

affinity, whereas CaM activates EF with relatively high affinity [19]. 

Similar results to the current EF activation by oxidized CaM and Msr-treated CaM were obtained 

for CyaA, another CaM-stimulated AC toxin. CyaA is the AC toxin of Bordetella pertussis,  

the causative agent of whooping cough [18]. EF and CyaA exhibit similar catalytic and regulatory 

mechanisms, but their CaM-binding sites possess different characteristics [6,10,17]. For CyaA 

activation, M109, M124, and M145 were identified as the most important Met residues in CaM [18].  

In the current study, especially Met at position 144 and 145, were identified as important for effective 

EF activation. In accordance with previous findings [6,25], our data suggest that N-terminal Met 

residues in CaM are critical for binding to EF (Table 2 and Figure 5). In contrast, CyaA activation is 

possible with only the C-terminal region of CaM [25]. A comparison of particular Met residues 

important for CaM activation of three CaM-stimulated ACs (membranous AC1, Bacillus anthracis AC 

toxin EF and Bordetella pertussis AC toxin CyaA) is summarized in Table 4. 

Hydrophobicity, flexibility, and size of amino acids in distinct positions play important roles in 

AC1 activation, as shown by the increased activation of AC1 by several CaM-mut [19], in comparison 

to minimal or no differences for activation of EF, CyaA, plasma membrane Ca2+-ATPase (PMCA), 

neuronal or endothelial nitric oxide synthase (NOS), and cyclic nucleotide phosphodiesterase (PDE) 

based on Met to Leu substitutions in positions 144 or 145 [29–32]. 

For most CaM-targets, including EF, that have been analyzed so far, Met residues in the C-terminal 

region are essential for activation [16,18,31,32]. For instance, oxidation of M144 or M145 impairs 

activation of EF, PMCA, and neuronal NOS. The oxidation of M109, M124, and M145 and Met to 

Leu substitution of M145 impair CyaA activation, suggesting that M109, M124, and M145 are 

important for CaM-CyaA interaction, whereas N-terminal Met residues and M144 are less  

relevant [18,29]. Concerning the simultaneous oxidation of M144 and M145, the findings are not 

consistent among all targets: CaM with two MetSO in positions 144 and 145 did not fully activate 

PMCA [31], but did fully activate EF (Table 2), AC1 [19], and neuronal and endothelial NOS [32]. 

Structural changes in the position of the linker and the globular domains resulting from oxidation of 

M144 and M145 [33] apparently have different importance for individual CaM-targets, but not for all. 

For activation of PMCA, structural changes following Met oxidation are more important than  

the changes of the polarity by MetSO per se [34]. In contrast, for the CaM-AC1 interaction, changes in  

the flexibility and the polarity of distinct amino acids are also of great importance, in addition to 

perturbations of the CaM structure. 
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Table 4. Relevance of specific Met residues in CaM for regulation of membranous AC1, 

Bacillus anthracis AC toxin edema factor and Bordetella pertussis AC toxin CyaA by 

oxidation to MetSO. 

M a Membranous AC1 b Bacillus anthracis AC toxin EF Bordetella pertussis AC Toxin CyaA c 

36 

High relevance: Single Met in  

the N-terminal region of CaM 

enhances AC1 activation and MetSO 

impairs AC1 activation 

Moderate relevance: Important for  

CaM-EF binding, oxidation decreases 

CaM-EF affinity; structure: No contact to 

CaM within the CaM-EF complex 

No relevance: Met is accessible to 

oxidation within the CaM-CyaA complex; 

oxidation does not prevent binding to 

CyaA 

51 
High relevance: MetSO impairs AC1 

activation 
Moderate relevance: Like M36 No relevance: Like M36 

71 

Only relevant in combination of 

oxidized M72, M72 and M76: AC1 

activity decreases significantly 

Moderate relevance: Like M36 No relevance: Like M36 

72 Like M71 Moderate relevance: Like M36 No relevance: Like M36 

76 Like M71 Moderate relevance: Like M36 No relevance: Like M36 

109 

High relevance in combination of 

oxidized M109 and M124: AC1 

activity decreases significantly 

Low relevance: Oxidation of M109 and 

M124 does not affect EF activation; 

structure: Met is in contact with CaM 

within the CaM-EF complex 

High relevance: Crystallographic studies 

reveal important hydrophobic interactions 

with CyaA; preservation of this Met from 

oxidation within the CaM-CyaA complex 

and prevention of binding to CyaA in 

oxidized state suggest an involvement in 

the formation of CaM-CyaA complex 

124 High relevance: Like M109 Low relevance: Like M109 High relevance: Like M109 

144 

High relevance: Met enhances AC1 

activation and MetSO impairs AC1 

activation; no altered AC1 activation 

in combination of two Met or MetSO 

at position 144 and 145 

High relevance: An intact C-terminal 

region next to M144 and M145 is sufficient 

for effective EF activation also upon 

oxidation of all other Met, important for 

the high affinity of EF to CaM; molecular 

modeling: Met is in contact with CaM 

within the CaM-EF complex 

Moderate relevance: Crystallographic 

studies reveal important hydrophobic 

interactions with CyaA; Met is accessible 

to oxidation within the CaM-CyaA 

complex; site-specific oxidation does not 

prevent binding to CyaA but in 

combination with other C-terminal Met 

oxidation prevents binding to CyaA 

145 High relevance: Like M144 High relevance: Like M144 
High relevance: Like M109, additionally: 

Important for CyaA activation 

a M, methionine; b Based on experimental data shown in [19]; c Based on experimental data shown in [17,18,29]. 

The sensitivity to oxidative modifications in CaM differs also between CaM-targets. An about  

half-maximal stimulation of PMCA and CyaA was preserved with oxidized CaM-wt compared to 

unoxidized CaM-wt [18,31]. A complete loss of function of oxidized CaM-wt oxidized was observed 

for AC1 and EF activation (Table 2 and [19]), revealing a higher sensitivity of these targets to 

oxidative modifications in CaM. However, CaM-wt that is not completely oxidized (oxidized with 

only 5 mM H2O2) led to a major loss of AC1 activation, but not of EF activation (Figure 2 and [19]), 

indicating that AC1 is the most sensitive enzyme among CaM-targets compared. A similar pattern was 

detected after reduction/repair of oxidized CaM-wt catalyzed by MsrA or/and MsrB. Partial repair of 

distinct Met residues by MsrA or MsrB, and the associated restoration of native-like structure of  

CaM-wt, was sufficient for full activation of EF (Figure 4), CyaA [18], and PMCA [23], whereas full 



Toxins 2015, 7 2610 

 

 

activation of AC1 was only restored when oxidized CaM-wt was treated with both Msr enzymes in 

combination [19]. Hence, restoration of all nine MetSO is important for full AC1 activation but not for 

full EF, CyaA, or PMCA activation, where restoration of the native-like CaM structure by MetSO 

reduction is apparently more relevant. [18,19,23]. 

To summarize, the contribution of individual Met residues in CaM to activation of AC1 is more 

intricate than activation of both AC toxins EF and CyaA. The toxins are well adapted to oxidative 

stress conditions (occurring in activated neutrophils during inflammation) and to tertiary structure 

perturbations of CaM accompanying Met oxidation. These differences in CaM stimulation of the three 

ACs suggest good prospects for developing new inhibitors of EF and CyaA, targeting their interactions 

with CaM, that would selectively inhibit the toxins, but not mammalian AC1 [6,9]. 

4. Experimental Section 

4.1. Materials 

Bovine serum albumin was purchased from Sigma-Aldrich (Taufkirchen, Germany). Bio-Rad DC 

protein assay kit was obtained from Bio-Rad (Hercules, CA, USA). [α-32P]ATP (3000 Ci/mmoL) was 

purchased from Hartmann (Braunschweig, Germany). Sources of other materials for EF expression 

and purification, AC activity assay and CaM oxidation and reduction were obtained as previously 

described [19,35]. 

4.2. Expression and Purification of EF 

The plasmid pProExH6-EF was prepared and amplified in Escherichia coli BL 21(DE3)/pUBS520 

cells as previously described [10,25,26,36]. Expression and purification of EF were performed as 

previously described [25] with minor modifications [35]. 

4.3. Cloning, Expression, and Purification of CaM-wt and CaM-mut 

Mutagenesis, expression in Escherichia coli and purification of CaM-wt and all CaM-mut were 

performed as previously described [19,31] and based on the coding region for chicken CaM (Uni-Prot 

entry P62149). This gene code is identical to human CaM (Uni-Prot entry P62158). The numbering of the 

amino acids used in this study (A1-K148) neglects an N-terminal Met because it is cleaved during expression. 

The CaM (in 1 mM imidazole, pH 6.5, 0.1 mM KCl and 10 mM CaCl2) was exhaustively dialyzed 

against deionized water before its usage to remove all buffer components and Ca2+. CaM concentration 

was determined by the Lowry method [37] using the Bio-Rad DC protein assay kit. Therefore, bovine 

serum albumin serves as the standard. The nomenclature of analyzed CaM-mut is shown in Table 1. 

4.4. Oxidation of Met and Reduction of MetSO 

Met oxidation was performed as previously described [19]. Briefly, 60 μM CaM dissolved in 

deionized water was incubated for 24 h at 25 °C with 0.1 mM CaCl2 and H2O2 at various 

concentrations. After the oxidation step, Ca2+ and H2O2 were exchanged against deionized water for 

AC assays or against 30 mM Tris-HCl, pH 7.5 for the treatment with the Msr enzymes. 
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Expression and purification of Msr enzymes and reduction of MetSO were performed as previously 

described [19,38–40]. For the reduction of oxidized Met, 60 μM oxidized CaM was incubated either 

with 4 μM MsrA or MsrB3A or with 2 μM of each MsrA and MsrB3A in the presence of 10 mM DTT 

for 1 h at 37 °C. Msr enzymes or DTT did not affect the AC activity of EF (Figure S1). 

4.5. AC Activity Assay 

AC activity of EF was determined as previously described [35] with some modifications. Briefly, 

EF (10 pM, dissolved in 20 μL of 45 mM HEPES (2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic 

acid), pH 7.4, containing bovine serum albumin (0.1% (m/v))), was pre-incubated for 2 min at 25 °C 

with 10 μL of 30 mM Tris-HCl, pH 7.5 in the presence or absence of native, oxidized, or oxidized 

CaM-wt/CaM-mut that were treated with MsrA and/or MsrB3A. The concentration of CaM samples 

varied from 1 nM to 10 μM. Reactions were initiated by adding 20 μL of a reaction mixture consisting 

of 100 μM cAMP, 40 μM ATP, 100 mM KCl, 5 mM MnCl2, 100 μM EGTA and 0.2 μCi [α-32P]ATP. 

The concentration of CaCl2 was generally chosen to achieve a free Ca2+-concentration of 10 μM except 

for the data determined in Figure 1 in the presence of 25 μM, 50 μM, 75 μM, and 100 μM free Ca2+ 

and in the absence of free Ca2+. EGTA was added to keep the free Ca2+ concentration constant. 

WebMax C standard (http://www.stanford.edu/~cpatton/webmaxcE.htm) was used to calculate free 

Ca2+- and Mn2+-concentrations under consideration of buffer components, free metal concentration, 

pH, and temperature. Reactions were conducted for 10 min at 25 °C and were stopped by adding 20 μL 

HCl. In order to separate the radioactive labeled product from the educt, samples were transferred onto 

columns filled with 1.3 g of aluminium oxide (MP Alumina N Super I). [32P]cAMP was eluted from 

columns with 4 mL of 0.1 M ammonium acetate, pH 7.0 and its concentration was measured by 

Čerenkov radiation. 

4.6. Statistics 

Concentration-response curves of AC activity were analyzed by non-linear regression (three parameters) 

using GraphPad Prism 5.04 (GraphPad Software Inc., La Jolla, CA, USA). The AC activities with 10 μM 

(oxidized) CaM-wt/CaM-mut were compared with ANOVA with Dunnett’s multiple comparison post-test. 

5. Conclusions 

In conclusion, our results suggest that bacterial EF activation is highly resistant to oxidative 

modifications in CaM. This is necessary in order for the bacteria to evade host defenses, in this case 

the oxidative conditions in activated neutrophils. The unusually large binding region between CaM and 

EF [10] contributes to the compensatory mechanism for activation by oxidative damaged CaM. 

Furthermore, our results suggest that an intact structure of the C-terminal region of oxidized CaM is 

important for EF activation. Interestingly, M144 and M145 are rarely sensitive to oxidation in vivo [33] 

supporting the idea that EF activation is evolutionarily well adapted to oxidative conditions. 

Supplementary Materials 

Supplementary materials can be accessed at: http://www.mdpi.com/2072-6651/7/7/2598/s1. 



Toxins 2015, 7 2612 

 

 

Acknowledgments 

The authors thank Juliane von der Ohe for expert technical assistance, Henry Niedermaier for 

purifying many of the CaM-mutants and Vadim Gladyshev for proving the expression vector for 

human MsrB3A. This work was supported by Research Training Programme GRK 1991 to Stefan Dove, 

and Roland Seifert and by funds from the Vice President for Research at the University of Georgia to 

Jeffrey Urbauer and Ramona J. Bieber Urbauer. 

Author Contributions 

C.L. performed experiments, analyzed data and contributed to writing. S.D. analyzed experiments and 

contributed to writing. W.-J. Tang contributed materials. R.B.U. contributed materials. J.M. contributed 

materials and to writing. J.L.U. contributed materials, analyzed data and contributed to writing.  

R.S. initiated, supervised and coordinated the research project, analyzed data and contributed to writing. 

Conflicts of Interest 

The authors declare no conflict of interest. 

References 

1. Klinman, D.M.; Yamamoto, M.; Tross, D.; Tomaru, K. Anthrax prevention and treatment: Utility 

of therapy combining antibiotic plus vaccine. Expert Opin. Biol. Ther. 2009, 9, 1477–1486. 

2. Doganay, M.; Metan, G.; Alp, E. A Review of cutaneous anthrax and its outcome. J. Infect.  

Public Health 2010, 3, 98–105. 

3. Hicks, C.W.; Sweeney, D.A.; Cui, X.; Li, Y.; Eichacker, P.Q. An overview of anthrax infection 

including the recently identified form of disease in injection drug users. Intensive Care Med. 

2012, 38, 1092–1104. 

4. Inglesby, T.V.; O’Toole, T.; Henderson, D.A.; Bartlett, J.G.; Ascher, M.S.; Eitzen, E.; 

Friedlander, A.M.; Gerberding, J.; Hauer, J.; Hughes, J.; et al. Anthrax as a biological weapon, 

2002: Updated recommendations for management. JAMA 2002, 287, 2236–2252. 

5. Ahuja, N.; Kumar, P.; Bhatnagar, R. The adenylate cyclase toxins. Crit. Rev. Microbiol. 2004, 30, 187–196. 

6. Tang, W.J.; Guo, Q. The adenylyl cyclase activity of anthrax edema factor. Mol. Aspects Med. 

2009, 30, 423–430. 

7. Hicks, C.W.; Cui, X.; Sweeney, D.A.; Li, Y.; Barochia, A.; Eichacker, P.Q. The potential contributions 

of lethal and edema toxins to the pathogenesis of anthrax associated shock. Toxins 2011, 3, 1185–1202. 

8. Li, Y.; Cui, X.; Solomon, S.B.; Remy, K.; Fitz, Y.; Eichacker, P.Q.B. Anthracis edema toxin 

increases cAMP levels and inhibits phenylephrine-stimulated contraction in a rat aortic ring 

model. Am. J. Physiol. Heart Circ. Physiol. 2013, 305, H238–H250. 

9. Seifert, R.; Dove, S. Inhibitors of Bacillus anthracis edema factor. Pharmacol. Ther. 2013, 140, 

200–212. 

10. Drum, C.L.; Yan, S.Z.; Bard, J.; Shen, Y.Q.; Lu, D.; Soelaiman, S.; Grabarek, Z.; Bohm, A.; 

Tang, W.J. Structural basis for the activation of anthrax adenylyl cyclase exotoxin by calmodulin. 

Nature 2002, 415, 396–402. 



Toxins 2015, 7 2613 

 

 

11. Crawford, M.A.; Aylott, C.V.; Bourdeau, R.W.; Bokoch, G.M. Bacillus anthracis toxins inhibit 

human neutrophil NADPH oxidase activity. J. Immunol. 2006, 176, 7557–7565. 

12. Leppla, S.H. Anthrax toxin edema factor: A bacterial adenylate cyclase that increases cyclic amp 

concentrations of eukaryotic cells. Proc. Natl. Acad. Sci. USA 1982, 79, 3162–3166. 

13. Squier, T.C. Oxidative stress and protein aggregation during biological aging. Exp. Gerontol. 

2001, 36, 1539–1550. 

14. Finkel, T. Signal transduction by reactive oxygen species. J. Cell Biol. 2011, 194, 7–15. 

15. Sharov, V.S.; Ferrington, D.A.; Squier, T.C.; Schöneich, C. Diastereoselective reduction of protein-

bound methionine sulfoxide by methionine sulfoxide reductase. FEBS Lett. 1999, 455, 247–250. 

16. Bigelow, D.J.; Squier, T.C. Redox modulation of cellular signaling and metabolism through reversible 

oxidation of methionine sensors in calcium regulatory proteins. Biochim. Biophys. Acta 2005, 1703, 

121–134. 

17. Guo, Q.; Shen, Y.; Lee, Y.S.; Gibbs, C.S.; Mrksich, M.; Tang, W.J. Structural basis for the interaction 

of bordetella pertussis adenylyl cyclase toxin with calmodulin. EMBO J. 2005, 24, 3190–3201. 

18. Vougier, S.; Mary, J.; Dautin, N.; Vinh, J.; Friguet, B.; Ladant, D. Essential Role of Methionine 

Residues in Calmodulin Binding to Bordetella pertussis Adenylate Cyclase, as Probed by Selective 

Oxidation and Repair by the Peptide Methionine Sulfoxide Reductases. J. Biol. Chem. 2004, 279, 

30210–30218. 

19. Lübker, C.; Urbauer, R.J.; Moskovitz, J.; Dove, S.; Weisemann, J.; Fedorova, M.; Urbauer, J.L.; 

Seifert, R. Membranous adenylyl cyclase 1 activation is regulated by oxidation of N- and  

C-terminal methionine residues in calmodulin. Biochem. Pharmacol. 2015, 93, 196–209. 

20. Richardson, J.S.; Richardson, D.C. Principles and patterns of protein conformation. In Prediction 

of Protein Structure and the Principles of Protein Conformation; Fasman, G.D., Ed.; Springer: 

Boston, MA, USA, 1989; pp. 1–98. 

21. Moskovitz, J.; Poston, J.M.; Berlett, B.S.; Nosworthy, N.J.; Szczepanowski, R.; Stadtman, E.R. 

Identification and characterization of a putative active site for peptide methionine sulfoxide 

reductase (MsrA) and its substrate stereospecificity. J. Biol. Chem. 2000, 275, 14167–14172. 

22. Sharov, V.S.; Schöneich, C. Diastereoselective protein methionine oxidation by reactive oxygen 

species and diastereoselective repair by methionine sulfoxide reductase. Free Radic. Biol. Med. 

2000, 29, 986–994. 

23. Sun, H.; Gao, J.; Ferrington, D.A.; Biesiada, H.; Williams, T.D.; Squier, T.C. Repair of oxidized 

calmodulin by methionine sulfoxide reductase restores ability to activate the plasma membrane 

Ca-ATPase. Biochemistry 1999, 38, 105–112. 

24. O’Neil, K.T.; de Grado, W.F. How calmodulin binds its targets: Sequence independent 

recognition of amphiphilic α-Helices. Trends Biochem. Sci. 1990, 15, 59–64. 

25. Shen, Y.; Lee, Y.S.; Soelaiman, S.; Bergson, P.; Lu, D.; Chen, A.; Beckingham, K.; Grabarek, Z.; 

Mrksich, M.; Tang, W.J. Physiological calcium concentrations regulate calmodulin binding and 

catalysis of adenylyl cyclase exotoxins. EMBO J. 2002, 21, 6721–6732. 

26. Shen, Y.; Zhukovskaya, N.L.; Guo, Q.; Florian, J.; Tang, W.J. Calcium-independent calmodulin 

binding and two-metal-ion catalytic mechanism of anthrax edema factor. EMBO J. 2005, 24, 929–941. 

27. Jones, E.M.; Squier, T.C.; Sacksteder, C.A. An altered mode of calcium coordination in 

methionine-oxidized calmodulin. Biophys. J. 2008, 95, 5268–5280. 



Toxins 2015, 7 2614 

 

 

28. Laine, E.; Martinez, L.; Blondel, A.; Malliavin, T.E. Activation of the edema factor of  

Bacillus anthracis by calmodulin: Evidence of an interplay between the EF-calmodulin interaction 

and calcium binding. Biophys. J. 2010, 99, 2264–2272. 

29. Schuler, D.; Lübker, C.; Lushington, G.H.; Tang, W.J.; Shen, Y.; Richter, M.; Seifert, R. 

Interactions of Bordetella pertussis adenylyl cyclase toxin CyaA with calmodulin mutants and 

calmodulin antagonists: Comparison with membranous adenylyl cyclase I. Biochem. Pharmacol. 

2012, 83, 839–848. 

30. Zhang, M.; Li, M.; Wang, J.H.; Vogel, H.J. The effect of met → Leu mutations on calmodulin’s 

ability to activate cyclic nucleotide phosphodiesterase. J. Biol. Chem. 1994, 269, 15546–15552. 

31. Bartlett, R.K.; Bieber Urbauer, R.J.; Anbanandam, A.; Smallwood, H.S.; Urbauer, J.L.;  

Squier, T.C. Oxidation of Met144 and Met145 in calmodulin blocks calmodulin dependent 

activation of the plasma membrane Ca-ATPase. Biochemistry 2003, 42, 3231–3238. 

32. Montgomery, H.J.; Bartlett, R.; Perdicakis, B.; Jervis, E.; Squier, T.C.; Guillemette, J.G. 

Activation of constitutive nitric oxide synthases by oxidized calmodulin mutants. Biochemistry 

2003, 42, 7759–7768. 

33. Gao, J.; Yin, D.H.; Yao, Y.; Sun, H.; Qin, Z.; Schöneich, C.; Williams, T.D.; Squier, T.C. Loss of 

conformational stability in calmodulin upon methionine oxidation. Biophys. J. 1998, 74, 1115–1134. 

34. Anbanandam, A.; Bieber Urbauer, R.J.; Bartlett, R.K.; Smallwood, H.S.; Squier, T.C.; Urbauer, J.L. 

Mediating molecular recognition by methionine oxidation: Conformational switching by oxidation 

of methionine in the carboxyl-terminal domain of calmodulin. Biochemistry 2005, 44, 9486–9496. 

35. Taha, H.M.; Schmidt, J.; Göttle, M.; Suryanarayana, S.; Shen, Y.; Tang, W.J.; Gille, A.; Geduhn, J.; 

König, B.; Dove, S.; et al. Molecular analysis of the interaction of anthrax adenylyl cyclase toxin, 

edema factor, with 2′(3′)-O-(N-(methyl)anthraniloyl)-substituted purine and pyrimidine nucleotides. 

Mol. Pharmacol. 2009, 75, 693–703. 

36. Guo, Q.; Shen, Y.; Zhukovskaya, N.L.; Florian, J.; Tang, W.J. Structural and kinetic analyses of 

the interaction of anthrax adenylyl cyclase toxin with reaction products cAMP and pyrophosphate. 

J. Biol. Chem. 2004, 279, 29427–29435. 

37. Lowry, O.H.; Rosebrough, N.J.; Farr, A.L.; Randall, R.J. Protein measurement with the folin 

phenol reagent. J. Biol. Chem. 1951, 193, 265–275. 

38. Moskovitz, J.; Berlett, B.S.; Poston, J.M.; Stadtman, E.R. The yeast peptide-methionine sulfoxide 

reductase functions as an antioxidant in vivo. Proc. Natl. Acad. Sci. USA 1997, 94, 9585–9589. 

39. Bar-Noy, S.; Moskovitz, J. Mouse methionine sulfoxide reductase B: Effect of selenocysteine 

incorporation on its activity and expression of the seleno-containing enzyme in bacterial and 

mammalian cells. Biochem. Biophys. Res. Commun. 2002, 297, 956–961. 

40. Kim, H.Y.; Gladyshev, V.N. Methionine sulfoxide reduction in mammals: Characterization of 

methionine-R-sulfoxide reductases. Mol. Biol. Cell 2004, 15, 1055–1064. 

© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article 

distributed under the terms and conditions of the Creative Commons Attribution license 

(http://creativecommons.org/licenses/by/4.0/). 


