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A B S T R A C T

The outbreak of Coronavirus Disease 2019 (COVID-19) is an ongoing pandemic affecting over 200 countries and
regions. Inference about the transmission dynamics of COVID-19 can provide important insights into the speed of
disease spread and the effects of mitigation policies. We develop a novel Bayesian approach to such inference
based on a probabilistic compartmental model using data of daily confirmed COVID-19 cases. In particular, we
consider a probabilistic extension of the classical susceptible-infectious-recovered model, which takes into ac-
count undocumented infections and allows the epidemiological parameters to vary over time. We estimate the
disease transmission rate via a Gaussian process prior, which captures nonlinear changes over time without the
need of specific parametric assumptions. We utilize a parallel-tempering Markov chain Monte Carlo algorithm to
efficiently sample from the highly correlated posterior space. Predictions for future observations are done by
sampling from their posterior predictive distributions. Performance of the proposed approach is assessed using
simulated datasets. Finally, our approach is applied to COVID-19 data from six states of the United States:
Washington, New York, California, Florida, Texas, and Illinois. An R package BaySIR is made available at
https://github.com/tianjianzhou/BaySIR for the public to conduct independent analysis or reproduce the results
in this paper.

1. Introduction

The outbreak of Coronavirus Disease 2019 (COVID-19), caused by
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), was
declared a pandemic on March 11, 2020 by the World Health
Organization. As of September 3, 2020, the number of confirmed
COVID-19 cases worldwide has exceeded 26 million, and the death toll
has surpassed 864,000. In order to control the spread of the virus,
countries around the world have implemented unprecedented non-
pharmaceutical interventions, such as case isolation, closure of schools,
stay-at-home orders, banning of mass gatherings, and local and national
lockdowns. At the same time, social distancing and mask wearing by
the public also contribute to the containment of COVID-19.

Researchers have made substantial efforts to study the transmission
dynamics of COVID-19, evaluate the effects of government interven-
tions, and forecast infection and death counts. The modeling ap-
proaches taken by existing works can be broadly categorized into three
groups: (i) curve fitting, (ii) compartmental modeling, and (iii) agent-
based modeling. Curve fitting approaches, by definition, fit a curve to
the observed number of confirmed cases or deaths. For example, an

early model (IHME COVID-19 health service utilization forecasting
team and)[22] uses a Gaussian error function to model the cumulative
death rate at a specific location, and Woody et al. [50] use negative
binomial regression to model the daily deaths. Compartmental mod-
eling approaches consider a partition of the population into compart-
ments corresponding to different stages of the disease, and characterize
the transmission dynamics of the disease by the flow of individuals
through compartments. Examples of compartmental modeling ap-
proaches include Aguilar et al. [1], Chen and Qiu [8], Flaxman et al.
[12], Giordano et al. [16], Gu et al. [18], Li et al. [32], Sun et al. [42],
Wang et al. [45], Wang et al. [46], Wu et al. [51], Zhang et al. [53],
among many others. Finally, agent-based modeling approaches (e.g.,
[17,21]) use computer simulations to study the dynamic interactions
among the agents (e.g., people in epidemiology) and between an agent
and the environment.

In this paper, we develop a novel semiparametric Bayesian ap-
proach to modeling the transmission dynamics of COVID-19, which is
critical for characterizing disease spread. We aim to address a few issues
related to the COVID-19 pandemic. First, we provide estimation of key
epidemiological parameters, such as the effective reproduction number
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of COVID-19. The Bayesian framework allows us to elicit informative
priors for parameters that are difficult to estimate due to lack of data
based on clinical characteristics of COVID-19, and also offers coherent
uncertainty quantification for the parameter estimates. Our second goal
is to make predictions about the future trends of the spread of COVID-
19 (e.g., future case counts), which will be done by calculating the
posterior predictive distributions for the future observations. Although
such predictions are technically straightforward, we avoid over-
interpretation of the predictions because they rely on extrapolation of
highly unpredictable human behaviors and the number of diagnostic
tests that will be deployed. Nevertheless, such predictions may be
useful for the public and decision makers to understand the trends and
future impacts of COVID-19 based on current rates of transmission. We
shall see this in our case studies later. Our analysis will be based on a
probabilistic compartmental model motivated by the classical suscep-
tible-infectious-recovered model [27]. Therefore, our approach belongs
to the compartmental modeling group. We will use data of daily con-
firmed COVID-19 cases reported by the Center for Systems Science and
Engineering at Johns Hopkins University (JHU CSSE) [9]. We provide
an R package BaySIR, available at https://github.com/tianjianzhou/
BaySIR, that can be used to conduct independent analysis of COVID-19
data or reproduce the results in this paper.

The proposed Bayesian approach attempts to improve COVID-19
modeling in at least four aspects. First, we explicitly model the number
of undocumented infections, which is only considered by some, but not
all, existing works. Due to the potentially limited testing capacity and
the existence of pre-symptomatic and asymptomatic COVID-19 cases
[19,41], many infected individuals may not have been detected as
having the disease. Therefore, modeling of undocumented infections is
essential for accurate inference. Second, we estimate the disease
transmission rate via Gaussian process regression (GPR), a semipara-
metric regression method. The GPR approach is highly flexible and
captures nonlinear and non-monotonic relationships without the need
of specific parametric assumptions. Third, we develop a parallel-tem-
pering Markov chain Monte Carlo (PTMCMC) algorithm to efficiently
sample from the posterior distribution of the epidemiological para-
meters, which leads to improvements in convergence and mixing
compared to a standard MCMC procedure. We find that standard MCMC
cannot produce reliable inference due to poor mixing. Lastly, we rig-
orously assess our approach through simulation studies, sensitivity
analyses, cross-validation and goodness-of-fit tests. Such validations
provide insights into the modeling of COVID-19 data, not only for our
approach, but also for others based on similar assumptions such as the
popular compartmental modeling approaches.

The remainder of the paper is organized as follows. In Section 2, we
provide a brief review of the susceptible-infectious-recovered (SIR)
compartmental model. In Section 3, we develop a probabilistic state-
space model for COVID-19 motivated by the classical SIR model. In
Section 4, we present strategies for posterior inference. In Section 5, we
carry out simulation studies to assess the performance of our method in
estimating the epidemiological parameters. In Section 6, we apply our
method to COVID-19 data from six states of the United States (U.S.):
Washington, New York, California, Florida, Texas, and Illinois. We
conclude with a discussion in Section 7.

2. Review of the susceptible-infectious-recovered model

We start with a review of the susceptible-infectious-recovered (SIR)
model [27,48], a simple type of compartmental model. The purpose of
this review is to introduce the reader to the basics of epidemic modeling
and motivate our proposed approach.

Consider a closed population of size N. Here, “closed” means that N
does not vary over time. It is a good approximation for a fast-spreading
and less fatal pandemic like COVID-19. The SIR model divides the po-
pulation into the following three compartments:

(S) Susceptible individuals: those who do not have the disease but

may be infected;
(I) Infectious individuals: those who have the disease and are able to

infect the susceptible individuals;
(R) Recovered/removed individuals: those who had the disease but

are then removed from the possibility of being infected again or
spreading the disease. Here, the removal can be due to several possible
reasons, including death, recovery with immunity against reinfection,
and quarantine and isolation from the rest of the population.

At time t (t ≥ 0), denote by St, It and Rt the numbers of individuals
in the S, I and R compartments, respectively, and write Vt = (St, It,Rt).
We have St + It + Rt ≡ N.

2.1. Deterministic SIR models

The classical SIR model [27] describes the flow of people from S to I
to R via the following system of differential equations:

= = =dS
dt N

S I dI
dt N

S I I dR
dt

I, ,t
t t

t
t t t

t
t (1)

here, β is the disease transmission rate, and α is the removal rate. The
rationale behind the first equation in Eq. (1) is as follows: suppose each
infectious individual makes effective contacts (sufficient for disease
transmission) with β others per unit time; therefore, βS/N of these
contacts are with susceptible individuals per unit time, and as a result, I
infectious individuals lead to a rate of new infections (βS/N) ⋅ I. The
third equation in Eq. (1) describes that the infectious individuals leave
the infective class at a rate of αI. The second equation in Eq. (1) follows
immediately from the first and third equations. The parameters β and α
are determined according to the natural history of the disease. The
quantities ℛ0 = β/α and ℛe = (βS0)/(αN) are referred to as the basic
reproduction number and effective reproduction number, respectively,
where S0 is the initial number of susceptibles at time t = 0.

In some applications, it may be convenient to consider a discrete-
time approximation of the differential equations in Eq. (1), which can
be expressed as follows:

=
= +

= +
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for t= 1, 2, …. This discretization replaces the derivatives in Eq. (1) by
the differences per unit time.

The SIR models given by Eqs. (1) and (2) are both deterministic
models, meaning that their behaviors are completely determined by
their initial conditions and parameter values.

2.2. Stochastic SIR models

The deterministic SIR models are appealing due to their simplicity.
However, the spread of disease is naturally stochastic. The disease
transmission between two individuals is random rather than determi-
nistic. Therefore, a stochastic formulation of the SIR model may be
preferred for epidemic modeling, because it allows one to more readily
capture the randomness of the epidemic process.

In a stochastic SIR model, {Vt : t ≥ 0} is treated as a stochastic
process. A commonly used formulation is as follows ([15; 38; 4]).
Suppose that an infectious individual makes effective contacts with any
given individual in the population at times given by a Poisson process of
rate β/N, and assume all these Poisson processes are independent of
each other. Therefore, the expected number of effective contacts made
by each infectious individual is β per unit time. Furthermore, suppose
each infectious individual remains so (before being removed) for a
period of time, known as the infectious period. Lastly, assume that the
length of the infectious period for each individual is independent and
follows an exponential distribution with mean α−1. It can be shown that
{Vt : t ≥ 0} is a Markov process with transition probabilities:
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here, δ is a small increment in time.

2.3. State-space SIR models

There are, of course, other ways to model the uncertainty of the
epidemic process. Probabilistic state-space modeling approaches that
build on deterministic models have recently been popular in the sta-
tistics literature [11,36,37]. A state-space SIR model typically consists
of two components: An evolution model for the epidemic process, and
an observation model for the data. As an example, the model in Osthus
et al. [37] has the form

p f
I p I I

V V VEvolution: ~ [ | ( , , ), ]
Observation: ~ ( | , )

t t t

t t t

1

for t = 1, 2, …. In the evolution model, f(Vt−1,β,α) is the solution to
Eq. (1) at time t with a initial value of Vt−1 at time (t − 1) and para-
meters β and α, and Vt is assumed to be centered at f(⋅) with its variance
characterized by κ. In other words, κ measures the derivation of Vt from
the solution given by the deterministic model. In the observation
model, It is the number of patients seen with the disease reported by
healthcare providers, which can be thought of as a proxy to the true
number of infectious individuals It. The observation It is assumed to be
centered at It with variance characterized by λ. State-space epidemic
models are quite flexible and are in general more computationally
manageable compared to stochastic epidemic models as in Eq. (3).

The SIR model can be extended in many different ways, such as by
considering vital dynamics (births and deaths) and demographics,
adding more compartments to the model, and allowing more possible
transitions across compartments. For example, the susceptible-exposed-
infectious-recovered (SEIR) model includes an additional compartment
for exposed individuals who are exposed to the disease but are not yet
infectious, and the susceptible-infectious-recovered-infectious (SIRS)
model allows recovered individuals to return to a susceptible state.
These extensions may better capture the characteristics of the disease
under consideration. For a comprehensive review of deterministic epi-
demic models, see, for example, Anderson and May [3], Hethcote [20]
or Brauer [6]. For a comprehensive review of stochastic epidemic
models, see, for example, Becker and Britton [5], Andersson and Britton
[4] or Allen [2].

3. Proposed model for COVID-19

We now turn to our proposed model for the COVID-19 data, which
belongs to the state-space model category (Section 2.3). Our approach
integrates the discrete-time deterministic SIR model (Eq. (2)) and
semiparametric Bayesian inference. To capture some unique features of
COVID-19, we consider the following extensions of the classical SIR
model. First, we split the infectious individuals into two subgroups:
undocumented infectious individuals and documented infectious in-
dividuals. The reason is that many people infected with SARS-CoV-2
have not been tested for the virus thus are not detected or reported as
having the infection [32]. Second, we allow some epidemiological
parameters (such as the disease transmission rate β) to be time-varying
to reflect the impact of mitigation policies such as stay-at-home orders
and the change of public awareness of the disease over time. For the
COVID-19 application, many existing works have considered time-
varying epidemiological parameters, such as Flaxman et al. [12], Gu
et al. [18], Sun et al. [42], and Wang et al. [46]. We discuss details next.

3.1. Model for the epidemic process

Consider the transmission dynamics of COVID-19 in a specific

country or region (e.g., a state, province or county). For simplicity, we
consider a closed population (with no immigration and emigration) and
also ignore nature births and deaths. Let N denote the population size.
At any time point, we assume that each individual in the population
precisely belongs to one of the following four compartments:

(S) Susceptible individuals who do not have the disease but are
susceptible to it;

(UI) Undocumented infectious individuals who have the disease and
may infect the susceptible individuals. However, they have not been
detected as having the disease for several possible reasons. For example,
they may have limited symptoms and are thus not tested for the disease;

(DI) Documented infectious individuals who have been confirmed
as having the disease and are capable of infecting the susceptible in-
dividuals;

(R) Removed individuals who had the disease but are then removed
from the possibility of being infected again or spreading the disease.

We further assume that the infectious individuals (including both
the UI- and DI-individuals) infect the S-individuals with a transmission
rate of β. After being infected, a S-individual first becomes an UI-in-
dividual before being detected as a DI-individual. All the infectious (UI-
and DI-) individuals recover or die with a removal rate of α. Those UI-
individuals who have not been removed are diagnosed with the disease
with a diagnosis rate of γ. In total, there are four possible transitions
across compartments: S to UI, UI to R, UI to DI, and DI to R. See Fig. 1.
Note that it is possible to assume different transmission rates for the UI-
and DI-individuals, or to further split the UI and DI compartments into
smaller subgroups (e.g., quarantined, hospitalized, etc.) with each
subgroup having its distinct transmission rate. It is also possible to
consider an extra compartment for the exposed (but not yet infectious)
individuals as in the SEIR model. Here, we use a more parsimonious
model without the exposed compartment for simplicity and char-
acterize the average transmission rate for all infectious individuals with
a single parameter β (β depends on time, which will be clear later).
Finally, we assume recovery from COVID-19 confers immunity to re-
infection, although there is only limited evidence for this assumption
[28,34].

We define day t= 0 as the date when the 100th case is confirmed in
the country/region under consideration, and index subsequent dates by
t= 1, 2, …, T, where T is the current date. The reason for choosing day
0 in this way is because we believe the transmission dynamics of the
disease is more trackable after a sufficient number of infectious in-
dividuals are reported in the country/region, although the choice of
“the 100th case” is arbitrary and can be modified. Denote by St, ItU, ItD

and Rt the numbers of individuals belonging to compartments S, UI, DI
and R on day t, respectively. We have St + ItU + ItD + Rt ≡ N. The
transmission rate and diagnosis rate are allowed to vary over time and
are hereafter denoted by βt and γt, respectively. The number of in-
dividuals diagnosed with the disease between day (t − 1) and day t is
observed and is denoted by Bt−1. This is our data. We propose modeling
the transmission dynamics of COVID-19 over time by the following
equations:

Fig. 1. Compartmental model for COVID-19. We consider four compartments
and four possible transitions across compartments. The number under each
arrow indicates the transition rate between two compartments.
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for t = 1, …, T. Denote by Vt = (St, ItU, ItD,Rt). The epidemic process,
{Vt, t= 0,1,…,T}, is determined by its initial value V0, the parameters
{βt,α}, and the observations {Bt}. Rigorously speaking, Vt should be a
vector of non-negative integers, but for computational convenience, we
relax this restriction and only require it to be a vector of non-negative
real numbers. Model (4) is a simple extension of (2) by adding a
component of IU, the undocumented infections, and by incorporating
the observed daily new cases Bt−1 into the equations. Later, we in-
troduce a model for the observation Bt−1 to complete the state-space
model.

With time-varying disease transmission rates, the basic reproduction
number and effective reproduction number are also functions of time.
That is, ℛ0(t) = βt/α and

=t S N( ) ( )/( )e t t

here, ℛe(t) is interpreted as the rate of secondary infections generated
by each infectious case at time t, scaled by the length of the infectious
period (α−1). If ℛe(t) < 1 for t ≥ t∗, then the number of infectious
individuals (ItU+ ItD) will monotonically decrease after time t∗, because
each infectious individual will only be able to infect less than 1 other
during the course of his/her infectious period. In other words, an ℛe

(t) < 1 indicates containment of the disease. Due to the important role
of ℛe(t) in characterizing disease spread, we consider the estimation of
ℛe(t) as our main interest.

3.2. Model for the observed data

Our observations only consist of the daily new confirmed COVID-19
cases, Bt. Assume that on day t, the UI-individuals who have not been
removed are diagnosed with the disease with a diagnosis rate of γt.
Mathematically, this means Bt= γt(1 − α)ItU, where γt is between 0 and
1. We consider the logit transformation of γt,

= logit( ) log[ /(1 )]t t t t . Other transformations, such as the probit
and complementary log-log transformations, can also be specified in the
BaySIR package. Empirically we find the proposed model to be robust
to different specifications of the link function (see appendix C). We
assume a prior transformation

y~N( , )t t
2 (5)

where yt is a vector of covariates that are thought to be related to the
diagnosis rate. In other words, the sampling model for Bt can be written
as

B
I

I ylogit
(1 )

, ~N( , )t

t
U t

U
t

2

(6)

In the simulation studies and real data analyses, we use a simple
choice of yt = 1, assuming the mean diagnosis rate is a constant. It is
possible to include other covariates in yt, such as the number of tests
(available at the COVID Tracking Project, https://covidtracking.com/),
but empirically we find it hard to detect the effects of these covariates.
In the BaySIR package, the user has the option to include any covari-
ates. The parameters η and σγ2 are the regression coefficients and var-
iance term, respectively, where σγ2 captures random fluctuations of
confirmed case counts and report errors.

For some countries and regions, the numbers of recoveries and
deaths are also available, and one may think of using them as the ob-
served number of removed individuals. We choose not to use these data
for two reasons. First, many infected individuals, even with confirmed
disease, are not hospitalized, and their recoveries are not recorded. In
other words, the reported number of recoveries and deaths is a

significant underestimate of the size of the removed population.
Second, according to Wölfel et al. [49] and He et al. [19], the ability of
a COVID-19 patient to infect others becomes negligible several days
before the patient recovers or dies, suggesting that “removal” in our
application is not equivalent to “recovery or death”.

3.3. Prior specification

In what follows, we discuss prior specification for the initial con-
dition and parameters. Due to the limited amount of observable in-
formation, many latent variables and parameters in the proposed model
are unidentifiable. See Appendix A for a detailed discussion with an
example showing that two epidemic processes with distinct parameters
lead to exactly the same observed data. We note that this problem is
pervasive in most existing methods, and a typical solution to the pro-
blem is to prespecify some parameter values based on prior knowledge.
Here, we elicit informative priors for some parameters based on the
clinical characteristics of COVID-19, which favor more clinically plau-
sible estimates.

3.3.1. Initial condition
The initial condition of the epidemic process refers to the vector

V0 = (S0, I0U, I0D,R0). We assume that there are no removed individuals
on day 0, i.e., R0 = 0. As a result, the number of DI-individuals on day
0, I0D, equals to the cumulative number of confirmed cases on that day
and is observed. We further assume

I I/ ~Ga( , )U D
0 0 1 2

where Ga(ν1,ν2) refers to a gamma distribution with shape and rate
parameters ν1 and ν2, respectively. We set ν1 = 5 and ν2 = 1, such that
E(I0U/I0D) = 5. This choice is based on the findings in Li et al. [32] that
86% of all infections were undocumented at the beginning of the epi-
demic in China. Lastly, note that S0 = N − I0U − I0D − R0.

3.3.2. Transmission rate
The disease transmission rate βt must be non-negative. We consider

=t( ) log( )t and assume

t m t C t t( )~GP[ ( ), ( , )]

where GP[m(t),C(t, t′)] refers to a Gaussian process (GP) with mean
function m(t) and covariance function C(t, t′). The GP [39] is a very
flexible prior model for a stochastic process. It enables one to capture
potential non-linear relationships between t and t( ) without the need
to impose any parametric assumptions. Specifically, for any t1, …,
tn ≥ 0, the vector …t t( ( ), , ( ))n1 follows a multivariate Gaussian
distribution with mean (m(t1),…,m(tn))⊤ and covariance matrix C with
the (i, j)-th entry being C(ti, tj). For applications of GP to epidemic
modeling, see, for example, Xu et al. [52] and Kypraios and O'Neill
[29].

We specify m(t) and C(t, t′) as below:

= =µm t C t tx( ) , ( , )t
t t2 (7)

here, xt is a vector of covariates that are thought to be related to the
transmission rate, and μ is a vector of regression coefficients. In the
simulation studies and real data analyses, we use xt = (1, t)⊤, which
contains an intercept term and the time. Other covariates, such as in-
dicators for mitigation policies at time t, may also be included in xt.
Nevertheless, in practice, we find our GP model with a time trend is
sufficient to capture the change of t( ) over time and the potential
effects of mitigation policies and public awareness. Users of our soft-
ware may include other covariates using the R package BaySIR. The
variance parameter σβ2 characterizes the amplitude of the difference
between t( ) and m(t), and the correlation parameter ρ characterizes
the correlation between t( ) and t( ) for any t and t′. We note that
based on our specification of the covariance function, our GP model is
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equivalent to a first-order autoregressive model. Indeed, autoregressive
models of any orders are discrete-time equivalents of GP models with
Matérn covariance functions [40].

We place the following priors on μ, σβ and ρ:

µ µ~N( , ), ~Inv Ga(11, 1), ~Beta(4, 1)µ
2

such that E(σβ2) = 0.1 and E(ρ) = 0.8. Here, Inv − Ga(⋅, ⋅) refers to an
inverse gamma distribution, and Beta(⋅, ⋅) refers to a beta distribution.
The prior choices for σβ2 and ρ shrink t( ) toward its mean function
(i.e., a linear regression model) and impose a strong prior correlation
between the transmission rates for two consecutive days. For the prior
of μ, we use μ∗ = (−1.31,0)⊤ and Σμ = diag (0.32,12), where diag(⋅)
represents a diagonal matrix. In this way, the prior median of the basic
reproduction number on day 0 is 2.5 (with 95% credible interval 1.4 to
4.5), assuming the infectious period is 9.3 days. This is based on the
findings in Li et al. [31] and Wu et al. [51]. The prior also induces a
mild shrinkage (toward 0) for the regression coefficient of the time
trend.

3.3.3. Removal rate
The removal rate is between 0 and 1. The inverse of the removal

rate, α−1, corresponds to the average time to removal after infection.
We assume

1~Ga( ) ( 1)1
1 2

1

We take ν1α = 325.5 and ν1α = 35, such that E(α−1) = 9.3 with
prior 95% credible interval between 8.3 and 10.3 days. The mean in-
fectious period of 9.3 days is chosen based on the findings in He et al.
[19], who estimated that the infectiousness of COVID-19 starts from
around 2.3 days before symptom onset and declines quickly within
7 days after symptom onset.

Diagnosis rate. We place the following standard weakly informative
priors on η and σγ2, the regression coefficients and variance term in the
diagnosis rate model (Eq. (5)):

~N( , ), ~Inv Ga(1, 1)2

when yt only has an intercept term, we use η ~ N(0,12).

4. Inference

4.1. Posterior sampling

Let θ = {I0U,β,α,μ,σβ,ρ,η,σγ2} denote all model parameters and
hyperparameters, where β = (β0,β1,…,βT), and let B = (B0,B1,…,BT)
be the vector of daily increments in confirmed cases. The joint posterior
distribution of θ is given by

=
IB y( | , ) ( | , ) ( )D

t

T

t t0
0

2

where ϕ(⋅|μ,σ2) denotes the density function of a normal distribution
with mean μ and standard deviation σ2, and π∗(θ) represents the prior
density of θ. Recall that = B Ilogit{ /[(1 ) ]}t t t

U .
We use a Markov chain Monte Carlo (MCMC) algorithm (see, e.g.,

[33]), in particular the Gibbs sampler, to simulate from the posterior
distribution and implement posterior inference. Metropolis-Hastings
steps are used when the conditional posterior distribution of a para-
meter is not available in closed form. The regular Gibbs sampler is not
very efficient in our application because of the strong correlations
among the model parameters. This issue was also noted by Osthus et al.
[37]. We therefore use parallel tempering (PT) to improve the con-
vergence and mixing of the Markov chains [14]. Consider J parallel
Markov chains with a target distribution of

=
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for the j-th chain, where Δj is the temperature. The temperatures {Δ1,Δ2,
…,ΔJ} are decreasing with ΔJ= 1. Thus the target distribution of the J-
th chain is the original posterior π(θ|B, I0D). At each MCMC iteration,
we first independently update all J chains based on Gibbs transition
probabilities. Then, for j= 1, 2, …, J− 1, we propose a swap between
θj and θj+1 and accept the proposal with probability
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The draws from the J-th chain are kept. A chain with a higher
temperature can more freely explore the posterior space, and the swap
proposal allows interchange of states between adjacent chains.
Therefore, the PT scheme helps the Markov chain avoid getting stuck at
local optima. In Appendix B, we demonstrate the advantage of the PT
scheme with an example.

In the simulation studies and real data analyses, we run J = 10
parallel Markov chains with a temperature of Δj = 1.510−j for the j-th
chain. We run MCMC simulation for 50,000 iterations, discard the first
20,000 draws as initial burn-in, and keep one sample every 30 itera-
tions. This leaves us a total of 1000 posterior samples.

4.2. Predictive inference

In addition to the estimation of epidemiological parameters, one
may be interested in the prediction of a future observation, which can
be achieved by sampling from its posterior predictive distribution. As
an example, let B∗ = (BT+1,…,BT+T∗) denote the vector of daily con-
firmed cases for future days t = T + 1, …, T + T∗. The posterior
predictive distribution of B∗ is given by

=I I IB B B B B( | , ) ( | , , ) ( | , )dD D D
0 0 0 (8)

Sampling from Eq. (8) involves computing
=I IB B( | , ) ( | ) ( | , )dD D

0 0 for = …+ +( , , )T T T1 . We
have

+µ µX C C X C C C C~N[ ( ), ]1 1

where X = (x0,…,xT)⊤, X∗ = (xT+1,…,xT+T∗)⊤, C∗ is a T∗ × (T + 1)
matrix with the (i, j)-th entry being C(T+ i, j− 1), and C∗∗ is a T∗ × T∗

matrix with the (i, j)-th entry being C(T+ i,T+ j). This is based on a GP
prediction rule [39].

5. Simulation studies

We assess the performance of the proposed method in estimating the
epidemiological parameters by applying it to simulated epidemic time
series. Consider a closed population of size N=20,000,000. We assume
the initial condition on day 0 is I0D = 100, I0U = 800, R0 = 0, and
S0 = N − I0D − I0U. We set the removal rate α = 9.3−1. For the
transmission rate, we consider the following three scenarios:

(Scn. 1) βt = b ⋅ α/[(t+ 1)c − a], where a, b and c are chosen such
that ℛ0(0) = 3, ℛ0(14) = 2 and ℛ0(49) = 1;

(Scn. 2) βt = α ⋅ exp [a ⋅ sin (0.2t) − bt+ c], where a, b and c are
chosen such that ℛ0(0) = 2.5, ℛ0(14) = 2.2 and ℛ0(49) = 1;

(Scn. 3) βt = α ⋅ exp [log(2.5) − 0.4 ⋅ [(t/20)]], where [a] re-
presents the largest integer that is smaller than a.

Recall that ℛ0(t) = βt/α. In all the scenarios, ℛ0(t) → 0+ as t→∞.
For scenario 2, ℛ0(t) is non-monotonic, and for scenario 3, ℛ0(t) is
discontinuous. Next, we generate ~N[logit(0.2),0.25 ]t

2 and
= 1 exp( exp( ))t t . Finally, for each scenario, we generate a hy-

pothetical epidemic process for 80 days according to Eq. (4) with
Bt = γt(1 − α)ItU. We keep B = (B0,…,BT) and I0D as our observations
(T = 79). The simulated datasets, shown in Fig. 2 (upper panel), are
similar to a real COVID-19 dataset (e.g., Fig. 3).

We fit the proposed model to the simulated datasets using the
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PTMCMC algorithm. Fig. 2 (lower panel) shows a comparison of the
estimated time-varying effective reproduction numbers (posterior
medians) with the simulation truth. The simulation truth is nicely re-
covered, and the 95% credible intervals of ℛe(t)’s always cover the true
values. To further quantify the accuracy of our ℛe estimates, we define
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here, RMSE stands for the (average) root mean square error, t( )e de-
notes the estimated ℛe (posterior median) at time t, {ℛe

(ℓ)(t), ℓ = 1,
…,L} represents the set of posterior samples of ℛe(t), and ℛe

(0.025)(t)

and ℛe
(0.975)(t) represent the 2.5% and 97.5% posterior quantiles of ℛe

(t), respectively. Table 1 (columns 2–4) reports these accuracy mea-
surements for the three simulated datasets. The small estimation errors
and RMSEs indicate good recovery of the truth.

We also carry out sensitivity analyses to explore how the choice of

Fig. 2. The upper panel shows the simulated daily confirmed cases for the three scenarios. The lower panel shows the estimated time-varying effective reproduction
numbers (solid black line), 95% credible intervals (grey band), and simulation truth (dashed red line) for the three scenarios. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 3. Observed number of daily confirmed cases (solid red line) for six U.S. states: Washington, New York, California, Florida, Texas, and Illinois. The dashed
vertical lines correspond to the start dates of statewide stay-at-home orders and state reopening plans. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

Table 1
Summary of simulation results. For each scenario, columns 2–4 report the bias,
root mean square error (RMSE) and coverage of the ℛe estimates on one si-
mulated dataset, and columns 5–7 show averages of these metrics over 100
repeat simulations with their standard deviations in subscripts.

Scn. A single dataset Average over 100 datasets

Bias RMSE Coverage Bias RMSE Coverage

1 0.029 0.192 1.000 0.050 0.012 0.210 0.019 1.000 0.000

2 0.077 0.267 1.000 0.093 0.017 0.280 0.013 1.000 0.000

3 0.102 0.308 1.000 0.104 0.015 0.287 0.020 0.999 0.003
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the link function (Eq. (6)) and priors can affect the performance of the
proposed method. Details of the sensitivity analyses are reported in
Appendix C. In general, our method is robust to different specifications
of the link function. The choice of the priors, on the other hand, may
have an impact on the parameter estimates, because of parameter
unidentifiability issues (see Appendix A).

Next, to evaluate the frequentist properties and reproducibility of
the proposed method, under each simulation scenario, we repeatedly
generate 100 datasets with the assumed sampling model using different
random seeds. We apply our method to each simulated dataset and
calculate the bias, RMSE and coverage of the ℛe estimates. The results
over repeated simulations are summarized in Table 1 (columns 5–7),
which do not give rise to concerns regarding the reproducibility of the
proposed method.

Lastly, we explore the computation time of our MCMC im-
plementation for epidemic processes of different lengths. As expected,
running time increases with the length of the epidemic processes. See
Appendix C and Fig. C.2 for more details. For an epidemic process of
80 days, the MCMC implementation takes around 540 s (based on
50,000 MCMC iterations using an Intel Xeon E5-2650 v4 2.20 GHz
processor).

6. Case studies

To illustrate the practical application of the proposed method, we
carry out data analysis based on daily counts of confirmed COVID-19
cases reported by JHU CSSE [9]. This is the Bt in our model. We limit
our analysis to six U.S. states (Washington, New York, California,
Florida, Texas, and Illinois) to keep the paper in reasonable length. The
reader can carry out independent analysis for other states, countries or
regions using the R package BaySIR. The populations of these states are
obtained from U.S. Census Bureau [43].

6.1. Estimation of the effective reproduction number

Fig. 3 shows the observed number of daily confirmed cases for the
six states, and Fig. 4 shows the estimated ℛe(t). The start dates of
statewide stay-at-home orders and state reopening plans are also dis-
played in Fig. 4 for reference (data source: [35] and [47]). The esti-
mated initial ℛe ranges from 2.7 to 4.4. Specifically, ℛe(0) = 2.8, 4.4,
2.7, 3.4, 2.9 and 3.0 for Washington, New York, California, Florida,
Texas and Illinois, respectively. During the early stage of the outbreak,
the ℛe generally has a decreasing trend. We suspect that the decline in

ℛe may be associated with the implementation of mitigation policies
(e.g., statewide stay-at-home orders, shown in Fig. 4) and the increase
of public awareness. Starting from April, the ℛe for these states is
maintained around or below 1, indicating (partial) containment of the
disease. However, with the gradual lift of stay-at-home orders and re-
opening of businesses, we can clearly observe rebounds of ℛe for some
states (e.g., Florida) since May. For all the states, we can observe local
fluctuations of ℛe over time, which may potentially be attributed to
some unobserved factors such as social distancing fatigue. Our analysis
is preliminary and does not lead to definitive conclusions about whe-
ther a specific intervention is effective in controlling disease spread.
Due to the issue of (potentially unmeasured) confounding, it is very
challenging to draw causal inference about the effectiveness of an in-
tervention. Nevertheless, our analysis can shed light on the transmis-
sion dynamics of COVID-19 and may be used as a reference for decision-
makers.

6.2. Test of fit

We carry out the Bayesian χ2 test [25] to assess the goodness-of-fit
of our model using Illinois data as an example. First, we choose quan-
tiles 0 ≡ a0 < a1 < ⋯ < aG−1 < aG ≡ 1, with pg = ag − ag−1,
g = 1, …, G. As suggested by Johnson [25], we use (a0,
…,a5) = (0,0.2,0.4,0.6,0.8,1), so pg≡ 0.2 and G= 5. Next, let θ(ℓ) be a
posterior sample of the model parameters θ, and let mg(θ(ℓ)) denote the
number of observations (i.e., Bt’s) such that logit{Bt/[(1 − α(ℓ))ItU(ℓ)]}
falls between the ag−1 and ag quantiles of the distribution N(yt⊤η(ℓ),σγ(ℓ)
2). Let
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m T p
T p
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( ) ( 1)
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g g
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Then, under the null hypothesis of a good model fit, the statistic ω
should follow a χ2-distribution with G − 1 = 4 degrees of freedom. A
quantile-quantile plot of the posterior samples of ω against the expected
order statistics from a χ42 distribution (Appendix Fig. D.1) shows that ω
plausibly comes from a χ42 distribution. In addition, we find the pro-
portion of posterior samples of ω exceeding the 95% quantile of a χ42

distribution to be 0.043. There is no evidence of a lack of fit.

Fig. 4. Estimated time-varying effective reproduction numbers (solid black line) for six U.S. states: Washington, New York, California, Florida, Texas, and Illinois.
The start date in each graph is the date when the 100th case is confirmed in the state. The grey band represents the 95% posterior credible interval. The dashed
vertical lines correspond to the start dates of statewide stay-at-home orders and state reopening plans. The dashed horizontal line represents an ℛe of 1.
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6.3. Forecasts

6.3.1. Retrospective forecasts
As described in Section 4.2, the proposed method can be used to

predict a future observation based on its posterior predictive distribu-
tion. To evaluate the forecasting performance of the proposed model,
we conduct within-sample forecasts using Illinois as an example. Spe-
cifically, we split the observations B into a training set Btr and a testing
set Bte, where Btr = (B0,B1,…,Bt∗) and Bte = (Bt∗+1,Bt∗+2,…,BT). We
consider three different scenarios, t∗ ∈ {19,39,59}, so that the training
set consists of observations for 20, 40 and 60 days, respectively. We first
sample from the posterior distribution of the parameters evaluated on
the training set, π(θ|Btr, I0D), and then sample from the posterior pre-
dictive distribution of the testing observations, π(Bte|Btr, I0D).

Fig. 5 shows the forecasting results for the three scenarios. The
projection produces a wide range of uncertainty; the upper bound of the
95% credible intervals (i.e., The 97.5% percentile of π(Bte|Btr, I0D)) can
reach 350,000 which is much higher than the actual number of daily
confirmed cases. Therefore, the upper bound is truncated in the figure
for better display. To better understand the forecasting behavior of the
proposed model, the predictions of future ℛe(t)’s are also displayed.
Using 20-day training data, the median of π(Bte|Btr, I0D) underestimates
the actual observations, although the 95% credible interval covers the
observed values for a long period of time. In general, prediction of an

epidemic process is challenging, especially when the epidemiological
parameters vary over time [23]. To see this, notice that there is a re-
bound of ℛe(t) around April 21, which cannot be captured by the GP
prediction rule with 20-day training data. Since the stay-at-home order
is still in effect on April 21, this rebound cannot be captured by policy-
related covariates either. To summarize, future predictions are made
based on extrapolation of the current trend, and if the trend changes
unexpectedly, the predictions will be inaccurate.

With more training data, the prediction accuracy improves, as seen
in Fig. 5(b, c). Using 60-day training data, the median of π(Bte|Btr, I0D)
matches well with the actual observations in the subsequent month,
although the prediction still fails to capture the rebound starting from
June 15. Lastly, the short-term predictions (within, say, the next
10 days) are reasonably accurate in all the scenarios.

6.3.2. Prospective forecasts
To make future predictions, we first sample from π(θ|B, I0D) and

then sample from π(B∗|B, I0D); recall that B∗ = (BT+1,…,BT+T∗). Fig. 6
shows the projected daily confirmed cases and ℛe(t)’s for Illinois in the
next 30 days (i.e., T∗ = 30). The projections are based on the as-
sumption that the decreasing trend of ℛe(t) continues. With the lift of
the stay-at-home order and the reopening of businesses, it is possible
that ℛe(t) will rebound, thus caution is needed in interpreting the
forecasting results.

Fig. 5. Within-sample forecasts for Illinois using 20-day, 40-day or 60-day training data. The upper panel shows the observed daily confirmed cases (solid red line),
and posterior medians (dashed line) and 95% credible intervals (grey band) for (Bte|Btr, I0D). The upper bounds of the credible intervals are truncated for better
display. The lower panel shows the posterior medians (solid red line) and 95% credible intervals (red band) for [ℛe(0),…,ℛe(t∗)|Btr, I0D], and posterior medians
(dashed line), posterior draws (thin grey lines) and 95% credible intervals (blue band) for [ℛe(t∗ + 1),…,ℛe(T)|Btr, I0D]. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)

Fig. 6. Out-of-sample forecasts for Illinois in the next
30 days. (a) Observed daily confirmed cases (solid
red line), and posterior medians (dashed line) and
95% credible intervals (grey band) for (B∗|B, I0D).
(b) Posterior medians (solid red line) and 95%
credible intervals (red band) for [ℛe(0),…,ℛe

(T)|B, I0D], and posterior medians (dashed line),
posterior draws (thin grey lines) and 95% credible
intervals (blue band) for [ℛe(T + 1),…,ℛe

(T + T∗)|Btr, I0D]. (For interpretation of the refer-
ences to colour in this figure legend, the reader is
referred to the web version of this article.)
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7. Discussion

We developed a Bayesian approach to statistical inference about the
transmission dynamics of COVID-19. We proposed to estimate the dis-
ease transmission rate using GPR, which captures nonlinear and non-
monotonic trends without the need of specific parametric assumptions.
A PTMCMC algorithm was used to efficiently sample from the posterior
distribution of the epidemiological parameters. Case studies based on
the proposed method revealed the overall decreasing trend of ℛe in six
U.S. states (Washington, New York, California, Florida, Texas, and
Illinois), which may be associated with the implementation of mitiga-
tion policies and the increasing public awareness of the disease.
Projections for future case counts can be made based on extrapolation,
although caution is needed in interpreting the forecasting results.

Extensions of the proposed compartmental model can be made in a
number of ways. First, while recovery from COVID-19 is assumed to
confer immunity to reinfection, some recent evidence may suggest that
such reinfection is possible [26]. Therefore, it may be desirable to allow
recovered individuals to become susceptible again with a small prob-
ability. Second, as described in Section 3.1, it is possible to further split
the UI and DI compartments and to incorporate an exposed compart-
ment. Third, we may also split the removed compartment into re-
covered and deceased compartments. See, for example, Giordano et al.
[16], Zhang et al. [53] and Aguilar et al. [1]. Considering more com-
partments and transitions will make the model more realistic. However,
by adding complexity to the current parsimonious model, sampling,
estimation and model unidentifiability problems are likely exacerbated
[7,37]. A possible way out could be to utilize more observable in-
formation, such as numbers of recoveries and hospitalizations. Never-
theless, not every country/region has these data (or accurate mea-
surements of these data) available, and we chose to model only daily
confirmed cases to keep our method general enough and applicable to
most countries/regions.

The proposed model as in Eq. (4) is a state-space model motivated
by a deterministic SIR model. A future direction is to consider a sto-
chastic epidemic model. For example, a model similar to Lekone and
Finkenstädt [30] may be used,
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Compared to Eq. (4), this model may better reflect the stochastic
nature of the epidemic process. The cost is increased computational
complexity.

In our models for the diagnosis rate (Eq. (5)) and transmission rate
(Eq. (7)), we allow incorporation of covariates. Currently, we only
considered an intercept term and a time trend, because empirically we
found it hard to identify the effects of other covariates. While the
number of tests is likely to be related to the diagnosis rate, the US
COVID-19 testing data are quite noisy. Within the same US state, it is
common to see large swings of reported test numbers and test positive
rates within adjacent or few days. Take New Jersey as an example: for
adjacent dates, the test number swings from<3,000 to> 50,000, with
test positive rate varying from>0.95 to<0.05, respectively. Fur-
thermore, the number of UI individuals and testing policies (e.g., who is

eligible for testing) play an important role in the relationship between
the number of tests and diagnosis rate, but these factors are either
unobservable or very hard to quantify. In addition, the implementation
and lift of government interventions are relevant time-varying covari-
ates for the transmission rate. However, the wide variety of interven-
tions (e.g., travel restriction, school closure, mask wearing, etc.) and the
spatio-temporal heterogeneity of their implementations (e.g., within
the same state, some cities are reopened earlier than the others, and
different businesses are reopened at different stages) make it hard to
quantify their effects. Moreover, the degree of public compliance with
government interventions is arguably a more important covariate, but it
is unmeasurable. As a result, due to Ockham's razor [24], we resort to
the simpler model and did not include many potential covariates in our
model. More efficient ways to incorporate covariates, potentially based
on model selection or variable selection techniques, are worth further
investigation.

The incorporation of other covariates will also have an impact on
the predictive inference. On one hand, additional covariates will make
case predictions more challenging. For example, prediction of future
case numbers may be modeled by first predicting future covariates (e.g.,
future number of tests and future government interventions), and then
by using a semiparametric regression incorporating the predicted cov-
ariate values. This will lead to complex inference and challenging
computation, which must be addressed in the methodology develop-
ment. On the other hand, additional covariates may improve the ac-
curacy of future predictions. For example, with only an intercept term
and a time trend, the GP prediction rule is not able to capture possible
case rebounds. However, if government interventions are included as
covariates, and if it can be shown that the lift of interventions is asso-
ciated with the increase in ℛe, then by assuming future relaxation of
government interventions, the model is possible to predict case re-
bounds.

Our data analysis was carried out separately for each country/re-
gion. A nature extension is to model multiple countries/regions jointly
using a hierarchical model to achieve borrowing of information, which
usually leads to improvements in parameter estimations. We assumed
that the population in each country/region is closed, ignoring im-
migration and emigration. Arguably, a more realistic model should take
into account spatial spread of the disease, as seen in Li et al. [32].
Again, the main drawbacks to these extensions would be increased
computation time.

As discussed in Appendix A, the parameters in model (4) are uni-
dentifiable with only daily confirmed cases (Bt) observed, thus para-
meter estimates are sensitive to prior choices and modeling assump-
tions. Many existing models for COVID-19 share the same situation,
which could partially explain why different studies may lead to sub-
stantially different estimates. For example, some consider the infectious
period as the time from infection to recovery or death, which is around
20–30 days [44]. Under this definition, the estimated effective re-
production numbers would be higher (e.g., [1]). Therefore, when in-
terpreting the results, it is important to recognize their reliance on
underlying assumptions.

Lastly, since the proposed model (4) is a state-space model, it is of
interest to further explore online and sequential algorithms for pos-
terior sampling, such as sequential Monte Carlo [10,11]. In that way,
when data at more time points become available, one can update the
posterior in an efficient way rather than re-fitting the model to the
complete data.

Appendix A. Parameter identifiability

With only daily confirmed cases observed, the parameters in model (4) are unidentifiable. To see this, consider the following two epidemic
processes (indexed by j = 1 and 2),
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for t = 1, …, T. The observation is the daily increment in confirmed cases, Bj, t = γj, t(1 − αj)Ij, tU. These two processes give rise to identical
observations B1, t and B2, t for all t, if
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for t= 1, …, T. In other words, different sets of parameters can lead to exactly the same observed data. Even if we restrict that (S1, 0, I1, 0U, I1, 0D,R1,
0) = (S2, 0, I2, 0U, I2, 0D,R2, 0) (same initial conditions), γ1, t ≡ γ1, and γ2, t ≡ γ2 (constant diagnosis rate), for any α1 ≠ α2 we can still solve Eqs. (9)
and (10) and get distinct {γ1,β1, t} and {γ2,β2, t} that lead to the same observed data.

A specific example is given below. Consider a population size of N= 20,000,000. Suppose there are two epidemic processes with the same initial
conditions, I1, 0U = I2, 0U = 800, I1, 0D = I2, 0D = 100, R1, 0 = R2, 0 = 0, and S1, 0 = S2, 0 = N − 900. Suppose further α1 = 0.3, α2 = 0.05, γ1,
t ≡ γ1 = 0.2, and γ2, t ≡ γ2 = γ1 ⋅ (1 − α1)/(1 − α2) = 0.147. Then, the parameters β1, t and β2, t can be chosen (Fig. A.1(a)) such that {B1, t} and
{B2, t} are identical (Fig. A.1(b)). The resulting effective reproduction numbers for the two epidemic processes, ℛe

j(t) = (βj, tSj, t)/(αjN), are shown in
Fig. A.1(c) and are quite different. This example highlights that the parameters in (4) are unidentifiable in the absence of strong prior information.

Fig. A.1. An example of two epidemic processes giving rise to identical observations. Panel (a) shows the distinct transmission rates for the two processes. Panel (b)
shows the identical observations given by the two processes. Panel (c) shows the distinct effective reproduction numbers for the two processes.

Appendix B. Posterior sampling: parallel tempering

To demonstrate the advantage of the PT scheme, we show in Fig. B.1 the Markov chains for I0U and η generated using or not using PT based on a
simulated dataset. We evaluate the convergence of the chains using Geweke's diagnostic [13]. Under the null hypothesis of chain convergence,
Geweke's z-score should follow a standard normal distribution. The z-score indicates lack of convergence for the chains generated without PT.

Fig. B.1. Markov chains for I0U and η using (a, c) or not using (b, d) parallel tempering. The posterior correlation of I0U and η is −0.82. The value zG refers to
Geweke's z-score for convergence diagnostic. All chains are based on 50,000 iterations (discarding first 20,000 iterations as burn-in and keeping 1 draw every 30
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iterations).

Appendix C. Simulation studies: sensitivity analysis and computation time

We carry out sensitivity analyses to explore how the choice of the link function (Eq. (6)) and priors can affect the performance of the proposed
method. We consider the following four settings:

(Set. 1) Replacing the default logit link for γt by the probit link;
(Set. 2) Replacing the default logit link for γt by the complementary log-log link;
(Set. 3) Replacing the default prior on α−1 by α−1 ~ Ga(46.5,5)1(α−1 ≥ 1). This leads to a larger prior variance for α−1 compared to the default.

Recall that the default prior is α−1 ~ Ga(325.5,35)1(α−1 ≥ 1);
(Set. 4) Replacing the default prior on α−1 by α−1 ~ Ga(700,35)1(α−1 ≥ 1). This leads to a different prior mean for α−1 compared to the default.
We fit our model to the Simulation Scenario 1 dataset. Fig. C.1 shows the estimated time-varying effective reproduction numbers under the four

settings. The estimates are robust to the choice of the link function (Fig. C.1(a, b)). Also, increasing the prior variance for α−1 does not lead to much
change in the estimates (Fig. C.1(c)). Lastly, altering the prior mean for α−1 can lead to substantially different estimates (Fig. C.1(d)). This is due to
parameter unidentifiability issues (Appendix A). Multiple solutions may explain the observed data equally well, thus the solutions that are more
consistent with the prior would be preferred. Under Setting 4, the prior for α−1 is centered around 20, while the true α−1 = 9.3. As a result, the
parameter estimates deviate from the simulation truth.

Fig. C.1. Simulation Scenario 1. Estimated time-varying effective reproduction numbers (solid black line) with different link functions and priors for α−1. The grey
band represents the 95% posterior credible interval, and the dashed red line shows the simulation truth. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

We also explore the computation time of our MCMC implementation for epidemic processes of different lengths. Fig. C.2 shows the computation
time for epidemic processes of lengths from 10 days to 100 days. The computation is based on 50,000 MCMC iterations using an Intel Xeon E5-2650
v4 2.20 GHz processor.
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Fig. C.2. Computation time (in seconds) of the MCMC implementation for epidemic processes of different lengths.

Appendix D. Case studies: test of fit

We carry out the Bayesian χ2 test [25] to assess the goodness-of-fit of our model using Illinois data as an example. Under the null hypothesis of a
good model fit, the statistic ω should follow a χ42 distribution. Fig. D.1 shows a quantile-quantile plot of posterior samples of ω against expected
order statistics from a χ42 distribution. There is no evidence that ω deviates from a χ42 distribution.

Fig. D.1. Quantile-quantile plot of posterior samples of the test statistic ω against expected order statistics from a χ42 distribution for the Bayesian χ2 test.
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