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Abstract

Precision medicine aims to provide personalized treatments based on individual patient
profiles. One critical step towards precision medicine is leveraging knowledge derived
from biomedical publications—a tremendous literature resource presenting the latest
scientific discoveries on genes, mutations and diseases. Biomedical natural language
processing (BioNLP) plays a vital role in supporting automation of this process. BioCre-
ative VI Track 4 brings community effort to the task of automatically identifying and
extracting protein—protein interactions (PPi) affected by mutations (PPIm), important in
the precision medicine context for capturing individual genotype variation related to
disease.

We present the READ-BioMed team’s approach to identifying PPIm-related publications
and to extracting specific PPIm information from those publications in the context of
the BioCreative VI PPIm track. We observe that current BioNLP tools are insufficient
to recognise entities for these two tasks; the best existing mutation recognition tool
achieves only 55% recall in the document triage training set, while relation extraction
performance is limited by the low recall performance of gene entity recognition. We
develop the models accordingly: for document triage, we develop term lists capturing
interactions and mutations to complement BioNLP tools, and select effective features
via a feature contribution study, whereas an ensemble of BioNLP tools is employed for
relation extraction.

Our best document triage model achieves an F-score of 66.77% while our best model for
relation extraction achieved an F-score of 35.09% over the final (updated post-task) test
set. Impacting the document triage task, the characteristics of mutations are statistically
different in the training and testing sets. While a vital new direction for biomedical text
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mining research, this early attempt to tackle the problem of identifying genetic variation
of substantial biological significance highlights the importance of representative training
data and the cascading impact of tool limitations in a modular system.

Availability: The code is available from https://bitbucket.org/readbiomed/biocreative-vi.

Introduction

Precision medicine is an emerging field (1), aiming to
provide specialized medical treatments on the basis of
individual patient characteristics, including their genotype,
phenotype and other diagnostics (2). Primary biomedical
databases represent an extraordinary collective volume
of work, comprised of millions of contributions from
the biomedical research community over decades (3).
For instance, PubMed, the primary biomedical literature
database, contains over 28 million biomedical publications
(https://www.ncbi.nlm.nih.gov/pubmed/). This literature
represents a critical information source for precision
medicine, but the vast quantities of unstructured text make
it challenging to identify and navigate relevant evidence.
Biomedical Natural Language Processing (BioNLP) can
be applied to address this problem, with the aim of
automatically transforming publications into structured,
searchable data. Two primary BioNLP tasks relevant to
precision medicine are named entity recognition, e.g. as
applied to recognize mentions of mutations in articles (4)
and relation extraction, e.g. to identify interactions, such
as protein—protein interactions (PPI), between biological
entities described in papers (5). Few attempts have been
made to closely integrate these tasks to understand higher-
level interactions between them; recent efforts such as
LitVar (6) emphasize sentence-level co-occurrence of enti-
ties but do not consider higher-order interactions between
entities and relations. In the context of precision medicine,
identification and extraction of PPI affected by mutations
(PPIm) described in the literature (8) supports synthesis and,
in turn, deeper understanding of the biological impacts of
genetic variation.

The BioCreative VI Track 4 aimed to bring community
effort to tackle this particular challenge (7). It established
a gold standard dataset, consisting of 5509 biomedical
articles that were manually annotated for PPIm statements
(7). The track offered two related tasks for participation:
(i) document triage, classifying whether or not a document
is relevant to PPIm and returning the top-ranked relevant
documents; and (ii) relation extraction, examining the doc-
ument to identify specific protein pairs whose interaction is
affected by a mutation. These tasks aim to support curation

of the information relevant to precision medicine such that
effort by human biocurators to catalogue PPIm facts is more
effective; biocurators can focus on the top-ranked relevant
documents without tedious manual examination of large
quantities of irrelevant documents. This in turn facilitates
precision medicine.

An example of a relevant PPIm relation that is expected
to be identified in the relation extraction task appears
in the sentence ‘LAF1, an R2R3-MYB factor, interacts
with HFR1, a basic helix-loop-helix (bHLH) factor, and
this interaction is abolished by the R97A mutation in
the LAF1 R2R3 domain.” [PMID:17699755], where the
‘LAF1-HFR1’ interaction is impacted by the R97A muta-

tion in LAF1.
In the official results of this shared task presented at the

BioCreative VI workshop, our best document triage model
achieved over 88% recall, achieving the third highest recall
amongst 22 submissions, while our best model for relation
extraction achieved a Micro Fl-score of 37.17%, ranking
second amongst six submissions just behind the top team
at 37.29%. Updated results provided post-workshop after
correction of the test set lift our system to top rank across
three out of four measures (described in detail below).

In this work, we present the READ-Biomed team system
developed for BioCreative VI Track 4, for detection of
documents relevant to PPIm and extraction of PPIm rela-
tions, substantially extending the original system descrip-
tion paper (9). Specifically, there are three main additional
contributions beyond our original submission.

* We provide an in-depth investigation of the original
training set, by quantifying the effectiveness of a range of
standard BioNLP tools for biological entity recognition.
Application of these tools is a typical first important step
in biocuration workflows and text mining pipelines. The
analysis shows that existing BioNLP tools alone are not
sufficient for recognising mutations or interactions. For
example, the best mutation recognizer can achieve only
~55% recall in the document triage data set; similarly,
the maximum recall performance achievable by any
relation extraction system is 56% on the provided data
set when only using the standardly available tools. This
suggests that the proposed models should leverage other
techniques beyond standard BioNLP tools. It also shows
that achieving high recall, especially for document triage
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task, is essential: low recall of relevant documents has
propagated impacts on the later relation extraction step.

* We study our models more comprehensively than in the
original submission. This includes a detailed descrip-
tion of the feature engineering; providing a feature
contribution study to quantify the effects of different
sets of features in both tasks. For document triage, we
leverage BioNLP tools and term lists to better capture
mutations and interactions and experiment with several
classification algorithms to detect relevant documents.
The best model achieves ~89% recall, significantly
overcoming the limitations of the current BioNLP tools.
For relation extraction, we study machine learning
methods using term lists and dependency graph kernels
and a heuristically designed co-occurrence based
approach. Coupled with standard BioNLP tools for
entity recognition, we achieve an F-score of 35.09 and
34.92% on the test using the machine learning and co-
occurrence based approaches, respectively.

* We provide an in-depth error analysis of our perfor-
mance on both focus tasks, and a case study for a
document triage model. The results collectively show
that mutation characteristics have different impacts on
the two tasks. For document triage, the model perfor-
mance is dramatically decreased due to statistically sig-
nificant differences in mutation characteristics between
the training and testing set.

Analysis of the training set

Much work in BioNLP applies supervised machine learning
to learn task models. Building supervised learning mod-
els, in general, consists of examining the characteristics of
the training sets, developing features accordingly, choosing
appropriate models, training and validating these models
via standard evaluation metrics, e.g. precision and recall for
classification tasks, and ultimately applying the developed
models to the testing sets. Underlying this approach, there
are two critical and implicit assumptions: (i) the character-
istics of the testing set are similar to the provided training
set (i.e. derived from similar distributions), such that the
models capturing the important features and characteristics
from the training set can be applied to the testing set
and (ii) while the characteristics are similar, the testing set
instances are novel; they are ‘hidden’ during the training
process, and the evaluation over the testing set is a test of
the generalisation of the trained model to unseen instances.
Under these assumptions, analysis of the characteristics of
the training set is the first step in developing supervised
models. In this section, we investigate the BioCreative VI
Track 4 training set and illustrate how it relates to the two
focus tasks.

PPIm document triage

The document triage task is framed as a binary text
classification task, i.e. classifying whether a document is
relevant for PPIm or not. However, the task is related to a
targeted information retrieval task, where the objective is to
output documents ranked in order of relevance. The notion
of relevance is context-dependent (10); a document in the
context of this task is relevant if it describes PPI impacted
by mutations. In other words, a relevant document must (i)
mention at least one mutation, (ii) describe at least one
protein interaction and (iii) indicate that there is some
change in the interaction that can be considered to be
caused by the mutation. To classify a document, standard
text classification methods make use of tokens in the text;
in the context of the PPIm task, terms corresponding to
mutations, proteins and interactions may be pre-identified
using entity recognition tools and given special status. A
number of popular BioNLP entity recognition tools have
been widely used for such entities; for instance, tmVar
(4, 11), GNormPlus (12) and PIE the search (13) can be
used to identify mutations, genes/proteins and possible
interactions, respectively. PIE the search outputs the prob-
ability that a document contains an interaction, whereas
tmVar and GNormPlus outputs individual recognized
entities.

Thus, as the first step to examining the characteristics
of the training set, we apply existing BioNLP entity recog-
nition tools to recognize mutations and interactions. We
quantify (i) how different the relevant and non-relevant
documents are in terms of entities, e.g. if there are many
more mutations identified in the relevant instances, it may
be an important feature to distinguish the two classes and
(ii) how well the tools identify mutations and interactions
in the PPIm-relevant instances in the training set. Given
the task definition, relevant documents would be expected
to mention at least one mutation and some interaction;
such annotations may be important features for supervised
models learned for the task.

We employed tmVar (4), SETH (13), EMU (14) and
MutationFinder (15) to recognize mutations in the training
set. These tools have been used in a range of applications,
such as evidence attribution for biological database cura-
tion (16) and genotype—phenotype extraction for precision
medicine (17). The tools have been shown to have comple-
mentary coverage (18). Figure 1 presents the corresponding
results: 1(a) shows the number of documents having muta-
tions identified by at least one tool, whereas 1(b) specifically
shows the number of relevant documents having mutations
identified by individual tools. Overall it shows that relevant
documents include identified mutation mentions more often

than non-relevant documents, 56.8% vs 30.8% (and in fact,
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Figure 1. (a) Distribution of documents having a mutation identified by at least one of four mutation detection tools. Relevant: documents labelled
as relevant for PPIm in the training set, otherwise non-relevant. Mutations found: documents have a mutation mention identified by at least one
of the tools, otherwise no mutations found. The y-axis corresponds to the proportion relative to the relevant or non-relevant document collections,
respectively. For instance, almost 70% of non-relevant documents (1628 out of 2353) have no detected mutation mentions. (b) Distribution of relevant
documents having mutations identified by individual tools; y = 1729 is the total number of relevant documents, in which we would expect to have

at least one mutation mentioned per task definition.

relevant documents could be expected to have 100% in
reality), which shows that mutation related information
from BioNLP tools can be potentially important to distin-
guish relevant from non-relevant documents. Nevertheless,
the performance of the tools is relatively low; in this task
the best tool identifies mutations in only 56% of relevant
documents. The main reason for this gap is that many
mutations or interactions are mentioned through general
references rather than precise descriptions of individual
mutations: as an example, ‘mutagenesis’ is the only term
describing mutations in the paper (PMID:20485264 from
the training set); this general mention is not detected by the
tools. This suggests the necessity of alternative approaches
to complement tools identifying specific mutations.

The exploration of protein interaction characteristics
in the training set yields more consistent results. We show
in Figure 2 the result of applying PIE ‘the search’ as the
representative  BioNLP tool for interaction extraction.
Figure 2(a) and (b) represent the probability score distribu-
tion for non-relevant and relevant documents, respectively.
Similarly to the mutation characteristics, relevant docu-
ments on average have higher probability score; however,
still over 37% of relevant documents have a relatively low
probability score, less than 0.7. Given that PIE ‘the search’
has demonstrated very high precision at high confidence,
and overall good Fl-score of ~0.62 for PPI extraction in
prior studies, it is surprising not to see a larger proportion
of the PPIm-relevant documents with high-confidence
extractions of PPIs.

Relation extraction

In this task, the goal is to extract interacting gene pairs
from a document, where that interaction is affected by a
mutation. Towards this goal, the task offers a collection
of PubMed documents with relation annotations and a
limited set of entity annotations. We illustrate these details
with a sample sentence taken from the document with
PMID:10037723, with a given PPIm relation annotated
for the protein pair (4292, 5395), where these numbers
correspond to the normalized gene identifiers for the genes
‘hMLH1’ and ‘hPMS2’.

‘Interestingly, two HNPCC missense alterations
(O542L and L582V) contained within the con-

sensus interaction region displayed no effect on
interaction with hPMS2, suggesting that they may
affect other functions of PIMLH1.

The entities mentioned in the above text, such as the
disease HNPCC, the mutation Q542L and the gene hPMS2,
are shown highlighted. Note that the annotations of PPIm
relations provided in the data are document-level rather
than annotated to specific mentions of genes in the text. This
means that there is no guarantee that the two protein/gene
mentions for a PPIm relation co-occur in the same sentence,
and we do not know precisely where in the text the PPIm
relation is expressed.

Our approach to relation extraction is to cast it as a
supervised classification task over pairs of entity mentions
(full details of our approach will be provided below). From
the positively classified set of entity mention pairs, we map
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Figure 2. Distribution of the probability of documents having interactions identified by PIE the search. The x-axis displays the probability score
output by PIE the search (normalized to [0, 1]); a higher score indicates higher probability of having interaction. The y-axis reflects the number of
documents. (a) and (b) represent the distribution for non-relevant (blue) and relevant documents (orange), respectively.

each entity mention to its equivalent normalized entity
identifier and output pairs of entity identifiers that are in
a relation. Therefore, for the PPIm relation extraction task,
we must first perform entity recognition of gene mentions in
the text, along with normalisation to NCBI Gene identifiers.
We use the relation annotations provided in the document
for training our classifier, but we found that the entity anno-
tations provided in the task dataset are not comprehensive.
For example, the protein mention ‘hMLH1’ in the above
sentence is not annotated in the dataset. Further, the gene-
annotations provided in the PPIm dataset are limited, as
only those genes that participate in a PPIm relation are
annotated. Therefore, we used GNormPlus in our earlier
work (1), to get a broader set of gene annotations. In
this work, we extend our investigation to include another
entity annotator, namely the Pubtator web API (21,22) and
explain in detail how the different entity annotators differ
from each other.

Differences in entity annotators:

In our original work for the shared task in BioCreative-
VI Track 4, we started with a clean slate approach by
stripping all existing entity annotations from the training
set. We then used GNormPlus (15) as sole entity annotator
over the training and test datasets. In the current work,
we investigate the impact of different annotation tools,
starting with the default set of entity annotations provided
in the task datasets (referred to as ‘Task annotations’ here-
after), GNormPlus and then Pubtator. The Task annotations
are created manually and are of gold standard but do
not represent a realistic entity annotation scheme. This is
because they only contain annotations of those entities that
participate directly in a PPIm relationship. In other words,

the Task annotation scheme assumes knowledge of PPIm
relations in the document and further encodes this knowl-
edge by leaving out the annotations of entities that do not
participate in any PPIm relation. In contrast, the external
entity annotation tools, namely GNormPlus and Pubtator,
represent more realistic annotation schemes, although they
too are affected by errors. Our main motivation to include
Pubtator in the current work is because it offers annotations
for other event types such as mutations (incorporating the
tmVar tool studied above), species names and chemicals,
whose modeling can likely improve the relation extraction
performance. We note that Pubtator too uses GNormPlus
internally for gene annotations. However, there is a dif-
ference in the versions: Pubtator uses an older version of
GNormPlus than is currently available for download. In
this article, when we refer to GNormPlus, we mean the
latest version of GNormPlus (15). An entity annotation
can be considered as a triple (document id, character span,
entity id). The output of applying the entity annotators is
a set of entity annotations, which can be directly merged
(union) when the underlying text span does not overlap.
Therefore, integrating the non-gene annotations from Pub-
tator is straightforward, but it is not clear as to how to
combine different entity annotations that overlap with each
other. This is illustrated in this sample text from document
PMID:17724026:

‘Immunoprecipitations were performed in myocytes
expressing PKCzeta using PKC phospho-motif
antibodies to determine the phosphorylation of
cTnl, cTnT, tropomyosin, myosin-binding protein
C, and desmin.’

For the above sentence GNorm Plus annotates the
substring ‘myosin-binding protein C, and desmin’ as a
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Figure 3. Venn diagram showing the differences in the gene entity
annotations over the PPIm dataset. An entity annotation is regarded
as a triple (document id, character span, entity id). The three sets are
the set of annotations given in the task dataset (Task) and from the two
entity annotators namely Pubtator and GNormPlus (GNorm).

gene, but the corresponding Task annotation is just for
the substring ‘desmin’. These differences can impact the
relation extraction pipeline, such as entity masking steps,
tokenisation, parsing and the overall feature representation
of the sentence. Entity annotations can also differ on the
entity ID, which is harder to resolve, as illustrated in this
sample from the document PMID:10067897:

“Together, these protein-DNA and protein-protein
interactions define the general principles by which
homeotic proteins interact with Extradenticle (or
Pbx1) to affect development along the anterior-
posterior axis of animals.”

Here, the character span ‘Pbx1’ is annotated with
id 32567 by Pubtator and with id 5087 by GNorm.
Gene 32567 relates to an extra denticle in Drosophilia
(see https://www.ncbi.nlm.nih.gov/gene/32567) and 5087
(see https://www.ncbi.nlm.nih.gov/gene/5087) is a gene that
influences skeletal programming in mammals, but these two
different genes share a common name ‘Pbx1’; this leads to
the confusion. The extent of differences in the different
annotation tools are illustrated in Figure 3.

Ensemble of entity annotators

We followed a simple heuristic approach to consolidate the
entity annotations from the different sources. We include
all non-gene entity annotations from Pubtator. When two
entity annotations el, e2 overlap, i.e. if they refer to com-
mon text segments in a document, they are combined into
a single annotation, using the following guidelines:

1. Take the minimal superstring that encompasses the
character spans of both el and e2 as the character span
of the resultant entity annotation.

Table 1. Distribution of entities as recognised by different
entity annotators in the PPIm dataset

Count Annotator Training set  Test set

Number of - 597 632

documents

Number of PPI Task 760 868

relations

Gene annotations Task 8832 1461
GNorm 8677 11229
Pubtator 8801 11059
Annotator ensemble 10897 11665

Mutations Pubtator 557 1722

Species Pubtator 1102 948

Table 2. Maximum recall achievable by our relation extraction
system with different entity annotation schemes

Entity annotation Maximum recall achievable by relation

extraction
GNormPlus 55.95
GNormPlus + Pubtator 56.30
Task annotations 1.0
Annotator ensemble 1.0

2. We prioritize the annotations in the following order:
Task, GNorm Plus and Pubtator. For overlapping
annotations, we take the gene id from the annotation
source with higher priority.

A summary of the distribution of entity annotations in
the Relation Extraction Dataset is presented in Table 1.
The limitation imposed by entity annotators on the

maximum relation extraction recall achievable can be seen
in Table 2.

Summary of the training set study

The examination of the training set characteristics gives
three implications: (i) entity recognition is important for
both tasks; for example, entities recognized by BioNLP
tools can be important features to differentiate relevant
and non-relevant documents; (ii) while entity recognition
by BioNLP tools is important, complementary approaches
are necessary given that many mutations and interactions
of the relevant documents cannot be identified; and (iii)
the proposed model should have a high recall for both
tasks. Arguably, recall is not an effective evaluation metric
in general information retrieval domains (23) and is not in
bioinformatics domains either, such as biological sequence
database retrieval (24). In this task, however, it is critical
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since the standard BioNLP tools have a relatively low recall
in entity recognition as shown above. Arguably, recall is
even more important for the document triage task; the
relation extraction system is reliant on having previously
identified relevant documents.

Methods

In this section, we describe the models we developed for the
two tasks that form part of BioCreative VI Track 4.

Document triage models

For document triage, we develop a range of features and
quantify the importance of the features via a feature con-
tribution study using a simple logistic regression classifier.
The above analysis on the training set shows that while
mutations and interactions are important features to distin-
guish relevant and non-relevant documents, using BioNLP
tools alone cannot find many relevant mutation and inter-
action mentions. We therefore use other complementary
approaches to develop features, as described below.

Feature engineering

We develop a set of features based on a variety of char-
acteristics of the text, according to four primary aspects.
We calculate distinct features for both sentences and para-
graphs (structure-based), considering both terms identified
as key biological concepts and any word (perspective-based)
and then considering either individual occurrence, a co-
occurrence of two or three terms (occurrence-based). Each
of these is represented in terms of various quantities (count-
based).

The structure-based aspect defines features based on the
structure of the document; in this task, there are two rele-
vant structures: features developed from paragraphs (that is,
the title and the abstract) and sentences respectively (that is,
each sentence in the paragraph). For instance, the number of
genes in total identified in a paragraph by BioNLP tools is a
feature derived from paragraph-level analysis, whereas the
number of sentences having mutations identified by BioNLP
tools is a feature derived from sentences.

The perspective-based aspect defines features according
to the perspective through which key terms in the texts are
identified: based on BioNLP tools, matched to a pre-defined
term list, or both.

In BioNLP systems, term lists that capture important
entities are often used to complement automatic BioNLP
tools (25-27). We chose three BioNLP tools: tmVar (4) to

detect mutations (although Figure 1 shows the ensemble of
four tools has the highest number of mutations detected,
tmVar alone detects nearly all of them and others are almost
strict subsets of mutations identified by tmVar), GNormPlus
(12) to detect genes and interactions (if the number of genes
detected is greater than or equal to two (2)) and PIE the
search (13) to output the probability score. Given that PIE
the search outputs the probability score rather than specific
entities, we use the score as a separate feature.

Given that BioNLP tools cannot find most of the entities,
as we showed above, term lists are particularly useful
in this task. We develop three term lists for ‘mutations’,
‘interactions’ and ‘degrees’ (changes to interactions due to
mutations), respectively.

The ‘mutation’ term list contains terms which were
based on the observations from existing mutation resources
such as the Variome corpus (28). The list is split into
‘strong’ and ‘weak’ terms. ‘Strong’ terms are mostly
unambiguously used to describe mutations in the literature:
mutant-based terms (‘mutation, mutant, and mutants/-
—/=, +/-,
the terms ‘polymorphism’, ‘SNP’; ‘lesion’, mutagenesis-

variant’), ‘delete’, ‘insertion’, ‘substitution’,

based terms (‘mutagenesis, mutagenic, mutagenetic and
mutagenesis/delete’), ‘deleterious’ and ‘variant’. The ‘weak’
terms considered include ‘change’, ‘exchange’, ‘damage’,
‘remove’, ‘replace’, ‘disorder’, ‘deficiency’, ‘virulence’ and
‘truncation’. While they are used to describe mutations, they
may also be used in other contexts; for instance, the term
change can be used in ‘DNA base change’ but can also be
used in ‘changes in the distribution’. We process strong and
weak terms separately when developing features: ‘strong’
terms themselves can indicate the mentions of mutations
directly; in contrast, ‘weak’ terms can indicate the mentions
of mutations only if the amino acids (such as Alanine and
Arginine) are co-mentioned in the text. We use the amino
acid patterns provided in a previous study (29) to detect the
amino acids.

The ‘interaction’ term list contains 30 terms describ-
ing interactions frequently in literature, such as ‘interact’,
‘complex’, ‘bound’, ‘bind’, ‘regulate’, ‘kinase’, ‘acetylation’,
‘phosphorylation’ and many others.

We further create a list of 23 ‘degree’ terms that are
indicative of the impact a mutation may have on a protein
interaction. For example, ‘increase’ is a term often used
to describe that the presence of a mutation increases
the level of interaction, including ‘degrade’, ‘decrease’,
‘strengthen’, ‘enhance’, ‘reduce’ and ‘impair’. These degree
terms are derived from molecular interactions ontologies
(from www.ebi.ac.uk/ols/ontologies/mi). All the term lists
are available in the repository. For the terms mentioned
above, we applied stemming to the original text and then
did exact matching to identify them in the texts.
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The occurrence-based aspect is based on whether
interactions, mutations and degrees appear in three ways:
‘individual’, where interactions or mutations exist alone;
‘co-occurrence’, where interactions and mutations appear
together within the relevant structural scope and ‘triplet’,
whether a mutation—degree—interaction triplet appears.
Since documents relevant for the PPIm task must have both
interactions and mutations mentioned, features derived
from this category can potentially distinguish positive
documents from negatives.

Quantitative features are determined for each com-
bination of the above aspect using a choice from the
counting-based aspect. If an entity or a co-occurrence
of two entities is detected from a single perspective, i.e.
either based on BioNLP tools or term lists, we count the
‘total’ number of mentions or the number of ‘unique’
entities. In contrast, if an entity is detected through both
perspectives, there are three possibilities: (i) ‘intersection’:
for example, the number of entity or co-occurrence
mentions identified by both BioNLP tools and the term
lists; (ii) ‘union”: the count of entities or co-occurrences
where either approach has identified them; and (iii)
‘complement’: for example, GNormPlus finds two genes
and the mutation term lists finds a mutation in a sentence;
in this case, BioNLP tools and term lists complement each
other.

We incorporate two additional quantitative features: (i)
the probability score from PIE the search is a separate fea-
ture as mentioned above and (ii) the ‘impact’ of a sentence
based on the co-occurrence of interactions and mutations
using the simple algorithm shown in Algorithm 1. In this
case, the impact score is a real-valued number between 0
and 1.

Overall, we develop features by combining choices
within these different aspects. For example, the number of
sentences containing both interactions and mutations iden-
tified by BioNLP tools follows the ‘Sentence-BioConcept-
Co-occurrence-Total” aspect settings.

Feature importance

Since there are many features created in this approach,
we perform a feature contribution study to find the best
combination. To create a baseline model, we first per-
formed simple text processing on the original document,
including case-folding, tokenising, removing stop words
and punctuation and stemming, using the NLTK package
(30). We then create tf-idf matrices for processed tokens
in each document. Finally, a logistic regression model is
built using the tf-idf matrices as features with Scikit-learn
(31). Tf-idf weighting, quantifying the importance of a term
based on its frequency as well as penalising very frequently
occurring terms across the documents, is widely used in text
classification and information retrieval (32, 33); similarly,
logistic regression is often used as a baseline model for
text classification since it is robust to sparse matrices (tf-
idf matrices are often sparse such that a small proportion
of terms have very high frequency whereas other terms
have negligible occurrences) and outputs the probability
score of the classification (34, 35). This baseline achieves a
63.5% F1 score, which is consistent with the baseline results
reported by the task organizers (8).

After creating the baseline model, we introduce addi-
tional features based on the feature aspects and measure
the updated performance. The results in Table 3 show the
importance of different feature sets and the best feature set
using boosting logistic regression gives an ~10% increase
on the F1 score as well as only increases the standard
deviation by ~0.5%; the detailed description of these best
features are shown in Table 4. We find the following;:

1. Term lists are effective, giving an increase of ~4%
F1 score even when considering only paragraph
level,

2. Co-occurrence features are more effective at sentence
level; for example, both co-occurrence features from
BioNLP tools and term lists at paragraph level only
give ~0.8% additional improvement, whereas the

IF CO-OCCURRENCE (mutations, interactions) == True:

THEN:

mutation_score = normalise (sum (mutations identified via BioNLP tools, mutations via the term list))

interaction_score = normalise (sum (interactions identified via BioNLP tools, interactions via the term list))

sentence_impact = o * mutation_score + B * interaction_score

ELSE :
sentence_impact =0
RETURN : sentence impact

Algorithm 1. The algorithm measures the ‘impact’ of a sentence. If there is a co-occurrence relationship, identified either using intersection, union
or complement as mentioned in Counting-based category, it firstly calculates the mutation and interaction scores by summing the total mentions
and normalising to [0, 1]. Then it calculates the impact score based on the weight of mutation and interaction scores (¢ and ). The default weights

are 0.5, meaning that mutations and interactions are equally important.
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Table 3. Feature contribution study results. Each set of features in a row is added to the existing feature set; for example,
term paragraph individual features represent the new features added to the baseline features. The description of a set is
consistent with the description of feature aspects. 2-gram: every two sentences. Fold 1 represents the first fold using 10-fold
cross-validation, same for other folds. Table 4 provides the detailed descriptions of the best feature set found in the feature
contribution study

Fold 1 2 3 4 5 6 7 8 9 10 F1 mean

(std)

Baseline 0.6390 0.6418 0.6457 0.6118 0.6435 0.6577 0.6611 0.6461 0.6286 0.5714 0.6347
(£0.0262)

Term paragraph 0.6796 0.6523  0.7120 0.6538 0.6832 0.7143 0.6610 0.7119 0.6991 0.6386 0.6806

individual features (£0.0281)

(S1)

Term paragraph 0.6839 0.6541 0.7065 0.6474 0.6814 0.7128 0.6629 0.7139 0.7012 0.6488 0.6813

co-occurrence (£0.0266)

features (S2)
BioNLP paragraph  0.6753  0.6542  0.7215 0.6538 0.6868 0.7363 0.6685 0.7155 0.7012 0.6667 0.6880

individual features (£0.0292)
(S3)

BioNLP paragraph  0.6753  0.6584  0.7215 0.6538 0.6923 0.7363  0.6722 0.7135 0.6972 0.6667 0.6887
co-occurrence (£0.0281)

features (S4)

Term sentence 0.6753 0.6522  0.7139 0.6431 0.6904 0.7415 0.6685 0.7155 0.7012 0.6588  0.6860
individual feature (£0.0318)
(83)

Term sentence 0.7386  0.6847 0.7538 0.6688 0.6885 0.7558 0.7193 0.7348 0.7169 0.6586  0.7120
co-occurrence (£0.0349)
feature (S6)

BioNLP sentence 0.7386  0.6828 0.7570 0.6731 0.6885 0.7609 0.7158 0.7348 0.7169 0.6606 0.7129
individual feature (£0.0353)
(87)

BioNLP sentence 0.7320 0.6826 0.7468 0.6688 0.6921 0.7520 0.7123 0.7313 0.7169 0.6727 0.7108
co-occurrence (£0.0303)
feature (S8)

Term & BioNLP 0.7284 0.6903 0.7558 0.6730 0.6957 0.7572 0.7033 0.7308 0.7234 0.6607 0.7118
sentence feature (S9) (£0.0328)
Term & BioNLP 0.7273  0.6825 0.7538 0.6730 0.6940 0.7461 0.7139 0.7534 0.7077 0.6786 0.7130
sentence triplet (£0.0311)

feature (510)
Term & BioNLP 0.7273  0.6807 0.7661 0.6752 0.6959 0.7532 0.7174 0.7520 0.7099 0.6806 0.7158

sentence triplet (£0.0332)

2-gram feature

(S11)

Full feature set plus 0.7571  0.7086 0.7646 0.7108 0.7059 0.7809 0.7500 0.7627 0.7251 0.6899  0.7355

boosting (£0.0311)
counterparts at sentence level increase the score by logistic regression, Support Vector Machine (SVM) and
~3%; Random Forest models for classification.

3. Using term lists and BioNLP tools together can

further improve the F1 score by 0.5%. Co-occurrence

(mutations and interactions) often occur within one Relation extraction models

sentence, while triplets (mutation—degree—interaction) For PPIm relation extraction in the shared task, we explored
often occur in two sentences. two methods: (i) graph kernels based on dependency pars-
We use the best feature set determined through this  ing of sentences; and (ii) a co-occurrence based relation

study, together with tf-idf term weightings, to train boosting extraction system. In this work, we have extended our
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Table 4. Detailed descriptions of the best feature sets found via the feature contribution study in Table 3

Feature set Feature ID Description Aspects
F1 Number of interactions identified in total across the Paragraph-Term-Individual-Total
paragraph by term lists
F2 Number of unique interactions identified across the Paragraph-Term-Individual-Unique
S1 paragraph by term lists
F3 Number of mutations identified in total across the paragraph  Paragraph-Term-Individual-Total
by term lists
F4 Number of unique mutations identified across the paragraph ~ Paragraph-Term-Individual-Unique
by term lists
F5 Number of interactions and mutations in total across the Paragraph-Term-Occurrence-Total
S2 paragraph by term lists if co-occurrence exists
F6 Number of unique interactions and mutations across the Paragraph-Term-Occurrence-Unique
paragraph by term lists if co-occurrence exists
F7 Number of genes identified in total across the paragraph by Paragraph-BioConcept-Individual-Total
BioNLP tools
F8 Number of unique genes identified across the paragraph by Paragraph-BioConcept-Individual-Unique
BioNLP tools
S3 F9 Number of mutations identified in total across the paragraph  Paragraph-BioConcept-Individual-Total
by BioNLP tools
F10 Number of unique mutations identified across the paragraph  Paragraph-BioConcept-Individual-Unique
by BioNLP tools
F11 The probability of the paragraph containing interactions by Paragraph-BioConcept-Individual-Total
BioNLP tools (using PIE the search) (probability)
S4 F12 Number of interactions and mutations in total across the Paragraph-BioConcept-Occurrence-Total
paragraph by BioNLP tools
S5 F13 Number of sentences containing mutations by term lists Sentence-Term-Individual-Total
F14 Number of sentences containing interactions by term lists Sentence-Term-Individual-Total
S6 F15 Number of sentences containing both interactions and Sentence-Term-Occurrence-Total
mutations by term lists
57 Fl6 Number of sentences containing mutations by BioNLP tools  Sentence-BioConcept-Individual-Total
F17 Number of sentences containing genes by BioNLP tools Sentence-BioConcept-Individual-Total
S8 F18 Number of sentences containing both interactions and Sentence-BioConcept-Occurrence-Total
mutations by BioNLP tools
F19 Number of sentences containing both interactions and Sentence-Both-Occurrence-Union
S9 mutations either by term lists or BioNLP tools
F20 Number of sentences containing both interactions and Sentence-Both-Occurrence-Complement
mutations either by term lists or BioNLP tools using
complementary approach
F21 Number of sentences containing mutation-impact-interaction  Sentence-Term-Triplet-Total
triplets by term lists
S10 F22 Number of sentences containing mutation-impact-interaction  Sentence-Both-Triplet-Union
triplets by term lists or BioNLP tools
F23 Number of sentences containing mutation-impact-interaction  Sentence-Both-Triplet-Complement
triplets by term lists or BioNLP tools or one another
F24 Same as F17, but on number of sentence 2-grams Sentence-Term-Triplet-Total
11 F25 Same as F18, but on number of sentence 2-grams Sentence-Both-Triplet-Union
F26 Same as F19, but on number of sentence 2-grams Sentence-Both-Triplet-Complement
F27 Same as F22, but using average probability of sentences Sentence-Both-Triplet-Complement

instead of number of sentences

(probability)
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evaluation to include a feature-based classifier using word
bigrams. These methods are described in detail in this
section.

Graph kernel-based approach:

We used a two-stage approach of dataset preprocessing to
generate candidate gene pairs, followed by a supervised
classifier that detects PPIm relations amongst the candidate
entity pairs. These steps are described below.

‘Preprocessing’: In the pre-processing stage, we use the
Turku Event Extraction System (TEES) (36) to parse each
document into a set of sentences and the dependency graph
representation of these sentences. For example, considering
the previous example again:

... LAF1, an R2R3-MYB factor, interacts with
HFR1, a basic helix-loop-helix (bHLH) factor,
and this interaction is abolished by the R97A
mutation in the LAF1 R2R3 domain. ... This
result indicates that LAF1 and HFR1 function in
largely independent pathways. LAF1, an R2R3-
MYB factor, interacts with HFR1 . ..

The dependency graph representation of a snippet from
this above text is illustrated in Figure 4.

Next, we use the entity annotations corresponding to
this document, to obtain a list of gene mentions in this
document, such as LAF1 and HFR1. All possible pairs of
genes are generated as candidate relations. Note that the
two mentions in a pair may be separated by zero or more
sentence boundaries. We refer to these as sentence-level
relations and non-sentence relations, respectively. Sentence-
level relations are processed using the dependency graph
of the underlying sentence. For example, the entity pair
(LAF1, HFR1) is represented by the dependency graph
shown in Figure 4. For non-sentence relations, we pick
the two dependency graphs of the sentences containing
the relevant entity mentions. These two graphs are con-
nected by inserting a special edge between their root nodes
and the resultant graph is used to represent the cross-
sentence entity pair, following the approach of our prior
work (50).

y

‘Entity masking’: Given an entity mention pair and its
dependency graph representation, we replace the labels of
the nodes corresponding to the two Proteins with generic
strings such as ‘Protein1’ and ‘Protein2’ in the dependency
graph. These are the nodes whose corresponding tokens in
the sentence overlaps with the character span of given entity
mentions. Entity mentions in the sentence that are not the
primary arguments are replaced with generic strings such
as ‘Protein_Other’, ‘Mutation_Other’, ‘Species_Other’ and
‘Chemical_Other’; based on the entity type to which it
belongs to. This step is shown to be effective in improving
generalisation in prior event extraction studies (37). Also,
these special strings serve the purpose of imparting the
entity information to the dependency graph, by discrim-
inating the main event arguments (gene pairs) from the
rest of the tokens. These modified dependency graphs are
used as examples for a graph kernel-based classifier that
is described below. Including additional entity types such
as mutations, was found to help improve the performance
of the relation extractor. In the next step, we prune the
candidate list of entity pairs as described below.

‘Filtering self-relations’: We used a heuristic rule of fil-
tering out all self-relations, i.e. we disallow a PPIm relation
between identical gene IDs. We were motivated by the
intuition that a gene or protein typically does not interact
with itself. We found that self-relation filtering improves
the F-score substantially on both the training set (0.2554
to 0.2834) and test set (0.2960 to 0.3355). However, it also
limits the recall performance of our relation extractor, as
6% of relations in the test set are self-relations. For example,
in the document id 17074813, titled ‘Differential regulation
of B-raf isoforms by phosphorylation and auto-inhibitory
mechanisms’, the gene B-raf with NCBI ID 673, contains a
valid PPIm self-relation annotation (673, 673).

In the final step, the resulting set of candidate entity pairs
are input to a binary classifier for training the model and
at test phase for identifying relations. The statistics of the
examples generated for classification are listed in Table S.

‘Relation classification’: Given entity mention pairs and
the corresponding dependency graphs from the preprocess-
ing step described above, we train a supervised classifier as

ccomp

CO:

mplm

indicates  that LAF1

and

nsubj

function in

HEFR1

Figure 4. lllustration of the (partial) dependency graph for the sentence ‘This result indicates that LAF1 and HFR1 function in largely independent

pathways’. The entities (genes) are shown in blue.
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Table 5. The candidate examples generated for relation classification with different entity annotation schemes

Type Entity annotator

Training set Testing set

Positive examples Negative examples Positive examples Negative examples

Sentence-level relations Task 4115
GNormPlus 1709
GNormPlus + Pubtator 1783

GNormPlus + Pubtator + Task 4058

Non-sentence level relations Task 412
GNormPlus 89
GNormPlus + Pubtator 89

GNormPlus + Pubtator + Task 430

532 264 152
4697 2829 5780
4822 2865 5835
4533 3097 6030
162 556 178
4616 321 10105
4734 338 10190
5317 872 11719

follows. For every entity mention pair in the training set,
we look up on their corresponding entity ids (NCBI gene
id) in the relation annotations to determine if there is a
PPIm relation. Such examples are labelled positive and the
rest are labelled negative. We separated the sentence level
relations and non-sentence level relations into two separate
classification pipelines and trained two separate binary
SVM classifiers for these pipelines. We used the Approx-
imate Subgraph Matching (ASM) kernel with the SVM
classifiers, as ASM kernel is designed primarily to work with
edge labelled dependency graphs for relation classification.
The ASM kernel translates an input graph into a high-
dimensional feature representation. More details about the
ASM kernel are available in (53). We implemented our
classifier with the scikit-learn (31) library in Python, using
the SGD classifier with hinge loss. The class weights were
set to 2:1 for the sentence classifier and 6:1 for the non-
sentence classifier. In the final stage, the entity mention pairs
generated from the PPIm test set are classified and from
the positively labelled entity mention pairs, we extract their
corresponding entity ids (NCBI gene ids) and output the
union of these as the document level relations.

‘Document relevance score and mutation context’: The
document triage task associates each document with a
score that represents the probability of it holding PPIm
relations. We experimented with using this relevance score
as an additional feature for the relation extraction task.
We also experimented with using a set of specialized terms
to help recognize mutation mentions in a sentence with
the hypothesis that it improves relation extraction perfor-
mance. This is the same list of terms that was found to
improve document triage classification performance and
is described in detail in the feature engineering section of
document triage classification above.

Co-occurrence-based PPIm extraction

In the co-occurrence based approach, we use GNorm-
Plus (12) for protein entity recognition and LingPipe

(http://alias-i.com/lingpipe/index.html) for delimiting sen-
tences. We begin by identifying all pairs of protein mentions
that occur within a single sentence.

Our approach then applies three heuristics to filter pro-
tein pairs:

1. Filter out any self-relationships (i.e. a protein cannot
interact with itself), as for the graph-based approach.

2. Given that an abstract describes at least one PPIm
relationship, the more mentions a protein pair has in
such an abstract, the more likely it is that the pair
participates in a PPIm relationship. We considered the
number of sentences N containing a given protein pair
to define a threshold to extract protein pairs.

3. A default rule that applies if a protein pair falls below
the threshold but is the only pair mentioned in a
sentence that also contains the word ‘interact’. The
choice of ‘interact’ as the trigger word was based on
it being the most frequent term used to express protein
interaction relationships in the training set.

We set the co-mention sentence threshold N for heuristic
H2 empirically, based on the best F-score on the training set
for N ranging from 1-4, selecting N > = 3, requiring a co-
occurring protein pair to appear in three or more sentences
in the abstract.

Results

We present the results from cross-validation testing over the
training set, as well as the results on the latest official test
set for both tasks.

Document triage

The experimental results for document triage are collec-
tively shown in Tables 6 and 7. We perform 10-fold cross-
validation to evaluate the performance of the models. We
report four evaluation metrics: mean average precision

(the precision based on the rankings of returned relevant
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Table 6. Document triage task performance over the training set using 10-fold cross-validation

Model Training time (sec) Prediction time (sec) Ranked precision Precision Recall F1

Baseline 0.5885 (£0.0949) 0.0006 (£0.0001)  0.6839 (£0.0303) 0.6485 (£0.0353) 0.6229 (+£0.0353) 0.6347 (£0.0262)
LR (boosting) 26.7562 (+4.0662)  0.0500 (£0.0133)  0.7580 (+£0.0262) 0.7058 (£0.0313) 0.7684 (£0.0368) 0.7355 (£0.0311)
SVM 65.8464 (£0.8162)  1.1460 (+£0.0398)  0.7479 (+£0.0287) 0.7097 (+£0.0305) 0.7102 (+0.0443) 0.7095 (+0.0322)
RF 829.0522 (+54.4509) 8.4559 (£0.1722)  0.7457 (£0.0370) 0.6651 (£0.0322) 0.7946 (£0.0243) 0.7236 (£0.0227)

Table 7. Document triage task performance on the test set

Model Ranked precision Precision Recall F1

Baseline 0.6329 0.5852 0.6733 0.6262
LR (BOOSTING) 0.6822 0.5783 0.7713 0.6610
SVM 0.6721 0.5936 0.7116 0.6473
RF 0.6744 0.5361 0.8849 0.6677

documents), precision (the proportion of classified relevant
documents that are indeed relevant), recall (the proportion
of correctly classified relevant documents over the total
number of relevant documents) and F1 (the harmonic mean
of precision and recall). The choices of these evaluation
metrics are based on the use cases of the document triage
task. The task needs to support retrieval of relevant doc-
uments for biocurators or biologists: the model ideally
should return the highly relevant documents that it classifies
at the top so that biocurators can examine the top docu-
ments more carefully without exhaustively looking for all
the returned documents. Ranked precision is an important
information retrieval metric that quantifies this criterion
(38). Likewise, the model should also find most of the
relevant documents over the entire search space in a precise
manner, where precision and recall are used as the primary
measures in classification tasks.

Table 6 the
together with the training and prediction time. We can

shows document triage performance
see all the three models achieve higher performance
than the baseline model, especially the boosting logistic
regression and the random forest model having 9-10%
higher F1 score. Also, the variance over the 10 interactions
is only ~0.5% more than the baseline, showing that the
models do not tend to overfitting. The three classification
algorithms, interestingly, each achieve the highest result in
some individual measure. The boosting logistic regression
gives the best ranked precision, whereas SVM has the
highest precision and the random forest model achieves
the highest recall. These results show that the models
can complement each other and can be used in specific
tasks where one metric is more important than others.
The boosting logistic regression achieves the overall best
performance: in addition to the highest ranked precision, it
also has the highest F1 score and the training and prediction

time is the shortest. The random forest model is also a good
choice because it achieves ~80% recall. Recall is arguably
more important than precision in this specific task given
that standard BioNLP tools can only achieve ~50% recall
in the entity recognition step, so that biocurators will not
miss any important documents to annotate.

Table 7 presents the document triage results from the test
set. The Random Forest achieves over 88 % recall. However,
we notice that the performance overall decreases for all the
models. While it is often expected that the performance
of the models decreases in the testing set, we notice the
changes in the results are not regular. Taking the random
forest model as an example, its precision dramatically drops
by 12% but the recall surprisingly increases by ~9%.
Similarly, the boosting logistic regression sees a decrease
of about 12% precision while the recall remains almost
the same. These results indicate that the model has many
false positives (FPs): classifying non-relevant documents as
relevant. We performed a detailed error analysis to gain
insight into this, presented below.

Relation extraction

For relation extraction, we used the official evaluation script
provided by the Track 4 organizers to measure the micro-
averaged Precision, Recall and Fl-score of our relation
extraction system on the task test set. We also report the
results using 10-fold cross validation on the training set.
These are shown in Table 8. We measure the performance
considering the different possible choices for entity anno-
tation, namely only the annotations provided in the task
data (Oracle), GNormPlus alone, GNormPlus and Pubtator
together, and finally a combination of all the entity annota-
tions available.

Among the different entity annotation schemes, task
(oracle) annotations do not represent a realistic scenario,
as only those entities that participate in a PPIm relation
are annotated (ignoring, for instance, other proteins that
participate in a PPI but not a PPIm). Therefore, the can-
didate entity pairs formed from these annotations already
reflect a high bias towards a PPIm relation. This results
in a high precision of 0.8472 and 0.7615 for the train-
ing and testing set, respectively, for the machine learning
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Table 8. Relation Extraction Performance with different modes of entity annotation. Performance measurements for the training

set are based on 10-fold cross validation. Best results for training and test sets are highlighted, for entity recognition with

standard BioNLP tools

Entity annotation Relation extraction method Training set Test set
Precision Recall F1 Precision Recall F1
ASM with sentence level relations only 0.8472 0.8112 0.8288 0.7605 0.2923 0.4223
+ Non-sentence relation extraction 0.8373 0.8830 0.8595 0.7632 0.8826 0.8186
Oracle + Relevance info 0.8308 0.8883 0.8586 0.7665 0.8803 0.8195
+ Mutation terms 0.8346 0.8790 0.8562 0.7614 0.8849 0.8185
Co-occurrence method (N > = 3) 0.8755 0.6263 0.7302 1.000 1.000 1.000
ASM with sentence level relations only 0.2997 0.2766 0.2877 0.3208 0.3636 0.3409
+ Non-sentence relation extraction 0.2987 0.2793 0.2887 0.3189 0.3636 0.3398
GNormPlus + Relevance info 0.3013 0.2753 0.2877 0.3277 0.3544 0.3405
+ Mutation terms 0.2965 0.2819 0.2890 0.3277 0.3579 0.3421
Co-occurrence method (N > = 3) 0.1583 0.8883 0.2688 0.4000 0.3098 0.3492
ASM with sentence level relations only 0.2832 0.2832 0.2832 0.3464 0.3556 0.3509
GNormPlus + Non-sentence relation extraction 0.2821 0.2832 0.2827 0.3384 0.3567 0.3473
+Pubtator + Relevance info 0.2808 0.2846 0.2827 0.3467 0.3383 0.3425
+ Mutation terms 0.2849 0.2819 0.2834 0.3312 0.3544 0.3424
Co-occurrence method (N > = 3) - - - - - -
ASM with sentence level relations only 0.4066 0.7699 0.5322 0.3147 0.6030 0.4136
GNormPlus + Non-sentence relation extraction 0.4066 0.7726 0.5328 0.3118 0.6053 0.4116
+Pubtator + Relevance info 0.4068 0.7686 0.5320 0.3107 0.6064 0.4109
+Oracle + Mutation terms 0.4052 0.7699 0.5309 0.3147 0.6018 0.4133
Co-occurrence method (N > = 3) 0.3061 0.2487 0.2744 0.6623 0.9954 0.7954
Co-occurrence method (N > = 9) 0.3961 0.1090 0.1710 0.9183 0.9954 0.9553

methods. The nature of task annotations is also such that,
amongst the candidate entity pairs formed in the test set,
most relations (556 out of 868) are found beyond a sen-
tence boundary, resulting in poor performance for sentence
level relation extraction. With non-sentence level relation
extraction included, our machine learning methods improve
to get an F-score of 0.8186 on the test set. In contrast,
our simple co-occurrence-based method achieves a best
F-score of 1.0 on the test set and 0.7302 on the training
set. These scores reflect the skewed nature of oracle entity
annotations.

The entity annotation schemes, namely Task annota-
tions, GNormPlus and Pubtator, represent a more realistic
entity annotation scenario, as these are standard auto-
mated BioNLP tools. Note that GNormPlus provides Gene
Annotations alone, but Pubtator brings in other infor-
mation such as annotations for Mutations and Species,
which can benefit our machine learning models for relation
extraction. We note that the best performance is achieved
with the ensemble of Pubtator and GNormPlus for the
machine learning methods, leading to an F-score of .3509.
The co-occurrence approach was tested using Gene anno-
tations from GNormPlus alone and attained an F-score

of 0.2698 on the training set and 0.3492 on the test
set.

We recall that GNormPlus and Pubtator still miss out
a substantial number of entities in the PPIm dataset that
are provided in the Task annotations. Based on these entity
annotators alone, a relation extraction system can attain a
maximum recall performance of 0.56 as shown in Table 2.
A perfect entity annotator can be expected to recognize
nearly all entities in the dataset and should allow for the
recall performance to reach 1.0. Such an entity annotation
scheme would help estimate the performance improve-
ment attainable by an improved entity annotation scheme.
Towards this goal, we take the ensemble of all annotators
including the task annotations to produce an oracle entity
annotator that would give the relation extraction system an
upper bound of 1.0 recall. Under the oracle conditions, the
F-score of machine learning methods improves from 0.2834
t0 0.5328 in the training set and 0.3509 to 0.4136 in the test
set. For the co-occurrence approach, the inclusion of task
entity annotations results in the maximum possible recall
of 0.9954 and an F-score of 0.9553. These tests confirm
that the main bottleneck in our relation extraction system
is in the entity recognition phase.
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Figure 5. Impact of choice of threshold N = number of sentences con-
taining a given protein pair on performance of heuristic co-occurrence
approach on the test data set, for (a) automated protein/gene named
entity recognition and (b) oracle protein named entity recognition
scenarios.

We explore the threshold value N for the co-occurrence
method in the test set in Figure 5. With the automatic
GNormPlus-annotated protein entities, the best F-score
occurs at N > 3 and hence reflects the pattern that was
observed in the training set. However, if we include the
oracle gold entity annotations for the data the F-score is
close to 1 at N > 7, as shown. At such a high threshold, few
protein pairs satisfy the co-mention sentence threshold, and
the default rule applies in most cases.

To summarize, our relation extraction system attains
a best F-score of 0.3509 using standard BioNLP tools
for entity recognition, using a machine learning based
approach. For the cross-validation performance over the
training set, the machine learning approach achieves an
F-score of 0.2890. Interestingly, our simple co-occurrence-

based approach that does not use any linguistic features or
machine learned model achieves a comparable F-score of
0.3492 on the test set. The standard BioNLP tools have low
recall performance in the entity recognition phase, limiting
the performance of our relation extraction system.

Discussion

In this section, we present an in-depth error analysis and dis-
cussions for both tasks. Overall, we find mutation charac-
teristics have different impacts on both tasks: for document
triage, the model performance is dramatically decreased
due to the significantly different mutation characteristics
between the training and testing set; in contrast, for relation
extraction, recognising mutations facilitates the extraction
of PPIm relations. While the effectiveness of entity recog-
nition is weakened in the document triage task due to the
difference in mutation characteristics, we argue that it is
necessary in biocuration text mining workflow. The details
are as follows.

Error analysis and discussion of the document
triage task

Through error analysis, we identify three key findings
related to mutation entities. In addition, we present a small
case study on the boosting logistic regression model and
generalize the findings based on the observations for the
submissions across all teams.

The three key findings are (i) the characteristics of muta-
tions are significantly different between the training and
test sets, specifically mutations are rarely identified in the
training set but are identified in almost all the documents in
the testing set; (ii) the potential utility of term lists for doc-
ument triage is consistent over the training and the testing
set—the distribution of mutation terms in the training set
is very similar to the distribution in the testing set; and (iii)
leveraging BioNLP tools and term lists is effective for the
training set but not for the testing set—BioNLP tools can
detect mutations for only about 50% of relevant documents
in the training set but can detect more than 80% in the
testing set.

The characteristics of mutations are statistically significant different
between the training and test sets. As illustrated in Table 7, the
main problem causing a dramatic performance decrease is
that all the models tend to classify non-relevant documents
as relevant. We thus investigate the problem by quantita-
tively analysing the characteristics of mutations and genes
between the training and testing sets. Table 9 summarizes
the number of genes and mutations identified per document
by BioNLP tools.
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Table 9. Quantitative analysis of training and test sets in terms of the number of entities (mutations or interactions identified
by BioNLP tools per document. Min, Q1 (25th percentile), Median, Q3 (75th percentile) and Max give the distributional

characteristics. Mean and std show the characteristics on average. The numbers marked with * show the p-value is less

than 0.00001 when conducting a z-test on two samples

Entity Class Train vs Test Min Q1 Median Q3 Max Mean (Std)
Relevant Train (1729 documents) 0 0 1 2 29 1.6744 (2.6767)*
. Test (704 documents) 0 1 2 4 24 2.6520 (3.1051)*
Mutation .
Non-relevant Train (2353 documents) 0 0 0 17 0.7046 (1.6180)*
Test (723 documents) 0 1 1 3 20 2.2517 (2.3849)*
Relevant Train 0 7 15 22 66 15.6217 (10.9309)
Interaction Test 0 9 16 24 71 16.7528 (10.8994)
Non-relevant Train 0 7 14 21 64 14.3366 (9.9784)
Test 0 8 15 23 55 15.7718 (11.0419)

For the training set, two observations can be made:

1. The relevant documents have an average of 1.7 (£2.7)
mutations per document identified by BioNLP tools;
the non-relevant documents only have 0.7 (£1.6)
mutations on average, which means many non-
relevant documents do not have identified mutation
mentions. This difference suggests that models could
use mutation-related features to differentiate the two
classes.

2. The number of mutations identified in the relevant
documents has a median of only 1 and many relevant
documents have no identified mutations. Since all the
relevant documents would be expected have at least
one mutation mention, this indicates that many muta-
tion terms cannot be identified by BioNLP tools due to
being general references.

The counterpart mutation characteristics in the testing
set, however, are substantially different.

1. The relevant documents have very similar number of
mutations with non-relevant documents: relevant doc-
uments have 2.65 (+3.1) mutations on average while
non-relevant have 2.25 (£2.4), showing that both
classes have mutations identified by BioNLP tools.

2. Mutation mentions are more specific and identified by
BioNLP tools. At least 75 % of non-relevant documents
have at least one identified mutation and most of
the relevant documents in the test set have mutations
identified by BioNLP tools.

We additionally perform a two-tailed z-test on the two
classes (relevant documents in the training set vs relevant
documents in the testing set; same for non-relevant docu-
ments) in terms of their mutation characteristics. We chose
z-test for these two samples because (i) these two samples
can be assumed as independent—in supervised learning, the

training and the testing set should be not correlated and
(i) the sample sizes are large enough. Thus, it satisfies the
prerequisites of a z-test. The null hypothesis is two-tailed:
p = p0, meaning that the means of the two samples do not
have significant differences and the alternative hypothesis
is that p # p0, meaning that the means have significant
differences. We chose the confidence interval as 99.9999%.
The statistical test results show that both classes have
P-values less than 0.0001, thus rejecting the null hypoth-
esis; we can conclude that the relevant and non-relevant
documents in the training set are statistically significant
different from their counterparts in the test set in terms
of the mutation characteristics. Such significant difference
suggests the documents in the training and testing sets
are possibly from different distributions. This is supported
by the descriptions of the updated dataset: the training
set contains documents from both curated databases and
automatic curation tools, whereas the testing set contains
documents only from the automatic curation tools due to
‘limited annotation time’. The difference in the mutation
distributions lowers the model performance and weakens
the motivation to perform mutation entity recognition.

We performed the same analysis on gene-related char-
acteristics and found that the two sets have consistent
statistics; the mutation characteristics are the main point
of difference.

The effectiveness of term lists is consistent between the training and test
sets. Critically, BioNLP tools for mutation detection should
have higher precision than general mutation term lists. Term
lists are not intended to replace these tools, but are a
complement to improve the recall of PPIm-relevant docu-
ments, as supported by the observations from the training
set. Adding term lists may also add noise, for instance
if a mutation term occurs frequently in the training set,
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Figure 6. The proportion of relevant documents containing individual mutation terms, across training and testing data sets. The terms (or the groups
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groups of terms) are mentioned in the model development section.

but not in the testing set. We therefore also quantify the
effectiveness of term lists.

Figure 6 shows the distribution of strong mutation terms
contained in the relevant documents, considering the train-
ing and testing sets separately. The results show that the dis-
tribution of these terms is fairly consistent between the two
sets. For example, ‘mutant’-based terms (mutant and muta-
tion) are the most frequent mutation related terms in the list
in the training set (79.5%), which is also true for the test
set (85.8%). Likewise, the terms that are less frequent also
appear in similar proportions; for instance, lesion occurred
in 0.4 and 0.6% of documents in the training and testing
sets and 1.7 and 2.4 % for insert. Given that the distribution

is fairly consistent, term lists probably do not contribute to
overfitting to the training set; this is also evidenced by the
feature contribution study above. In addition, the term lists
(or word embeddings if using deep learning architectures)
are necessary given that BioNLP tools can only achieve
~50% recall in the training set as described above. In
contrast, Figure 7 shows the distribution of non-relevant
documents in both sets, and demonstrates that non-relevant
documents in the testing set have a much larger proportion
of mutation term lists than those in the training set; for
example, there are about 76% of non-relevant documents
contain mutation terms whereas there are only about half
of that amount in the training set. This is consistent with
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Figure 8. A Venn representation on number of documents have been identified having mutations using a combination of BioNLP tools and term
lists. The left side shows the results on the training set: (a) for relevant documents and (b) for non-relevant documents; the right side (c) and (d)
shows the results for relevant documents and non-relevant documents respectively in the testing set.

the previously introduced statistical analysis on mutations
identified by BioNLP tools. The results collectively show
that term lists are not the main factor contributing to a
dramatic decrease in performance over the test set.

Leveraging entities is useful for the training set but less so for the
testing set. We next consider the effectiveness of combining
of BioNLP tools and term lists to recognize mutations
and interactions. Figure 8 shows the number of documents
having mutations identified by BioNLP tools only, term lists
only or in combination. Figure 8(a) shows that a combi-
nation of BioNLP tools and term lists can find mutation
mentions in 94% relevant documents in the training set,
whereas using BioNLP tools alone can only find 55%.
Figure 8(b) shows that BioNLP tools finds that 30% of
non-relevant documents contain mutation mentions and a
combined approach identifies 54%. We cannot quantify
how many documents in the additional 24% correctly
should be annotated as containing mutations, since there
is no gold standard annotation available specifically for
mutation mentions. However, the results indicate that the
combination of BioNLP tools and term lists is effective: (i)
it dramatically increases the recall as compared to using
BioNLP tools only and (ii) mutations identified by the
combined approach are important features to distinguish
relevant and non-relevant documents (94% vs 54%).

The combined approach, nevertheless, is less impor-
tant for the test set. BioNLP tools alone can already find
mutations in over 80% relevant documents in that set.
Comparatively, the combined approach can find mutations
in 97% of relevant documents, which is consistent with the
results on the training set, but does not represent as big
of an improvement. Also, the combined approach identifies

mutations in over 95% of non-relevant documents in the
test set. This is substantially different from the training set
(where only 54% of non-relevant documents had a muta-
tion mention). This reflects our findings on the inconsistency
of mutation characteristics.

A case study of erroneous cases in the boosting logistic regression model.
We gain further insight into the data through a case study
of the confusion matrix of the boosting logistic regression
model. This model is interesting to study in that it achieves
the best overall performance on the training set, but dra-
matically decreases in the test set (7% for ranked precision,
7% for F1 score and 12% for precision). We consider
the four categories of evaluation: FP, a document classified
as relevant but should be non-relevant; false negative, a
document classified as non-relevant but should be relevant;
true positive (TP), a document classified as relevant and it is
correct and true negative, a document classified correctly as
non-relevant. We comparatively quantitatively examine the
number of mutations identified by BioNLP tools and term
lists per document for each case. Tables 10 and 11 show
the results for the training and testing sets. In the training
set, the proportion of erroneous cases is relatively balanced:
13.5% for FP and 9.8 % for FN. Looking at the FP cases, the
average number of mutations identified is very close to that
for TPs (for example, an average of 1.6 mutations identified
for FPs vs 1.9 for TPs), leading to confusion. Conversely,
FNs have many fewer mutations identified than TPs. This
likely leads the model to classify such documents as non-
relevant.

The pattern over the test set is very different. The pro-
portion of erroneous cases is imbalanced; 28% for FP and
11% for FN. The number of FPs is double the number of
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Table 10. Characteristics of erroneous and correct cases classified by boosting logistic regression over the training set.

Perspective: B for BioNLP tools and T for term lists. The numbers are the number of mutations identified using B or T per

document
Category  # cases (%) Perspective Min Q1 Median Q3 Max Mean Std
P 552 (13.52%) B 0 0 1 2 15 1.6069 2.1651
T 0 1 2 4 16 2.8043 2.2291
o B 0 0 0 1 19 0.8647 1.8803
FN 399 (9.77%) T 0 0 1 2 13 1.3559 1.6356
TP 1330 (32.58%) B 0 0 1 2 29 1.9173 2.8280
T 0 0 0 1 12 0.6863 1.3548
TN 1801 (44.13%) B 0 0 0 0 17 0.4281 1.2874
T 0 0 0 1 12 0.6863 1.3548

Table 11. Characteristics of erroneous and correct cases classified by boosting logistic regression over the test set. The

measures are the same as Table 10

Category  # cases (%) Perspective Min Q1 Median Q3 Max Mean Std
o B 0 1 2 4 17 2.6869 2.5051
kP 396 (27.75%) T 0 2 3 S 14 3.9444 2.9253
o B 0 0 1 2 13 1.5962 2.1041
FN 161 (11.28%) T 0 1 1 2 10 1.8758 2.0574
P 543 (38.05%) B 0 1 2 4 24 2.9650 3.2801
T 0 2 3 6 17 4.0166 2.8669
TN 327 (22.92%) B 0 1 1 2 20 1.7248 2.1139
T 0 0 1 2 19 1.6575 2.0836

FNs and it also is double the number of FPs over the training
set (13.5%). This shows that the model built from the
training set tends to classify many non-relevant documents
in the testing set as relevant, thus increasing the number of
FPs. Combined with the above statistical analysis on genes
and mutations, we speculate that this is due to a higher
proportion of non-relevant documents in the testing set
have mutations, making the model infer that it is relevant.
In contrast, the proportion of FN remains similar: 9.8 and
11.2%, respectively, indicating that the characteristics of
relevant documents are consistent in both sets.

We further compared the performance of the boosting
logistic regression model using just baseline features (recall
tf-idf), only BioNLP-related features (no term lists) and all
the features. As illustrated in Figure 9, BioNLP tool and
term list related features increase F1 score by 5% each.
The 10% increase demonstrates that entity recognition is
indeed effective and term lists can complement BioNLP
tools in the entity recognition step. Nonetheless, the utility
of entity recognition is much lower in the testing set, only
increasing F1 score by 3.5% (vs 10% in the training set).
More specifically, both feature sets also improve less: 2.5%
for BioNLP tools and 1% for term lists.

The case study results generalize to the results submitted
by all the teams. Overall, 10 teams made 22 submissions.

We trace the proposed models and results based on the
workshop proceedings. Six teams apply entity recogni-
tion, either using entity recognition tools (like the tools
mentioned above), entities curated by database staff, such
as interactions captured in IntAct (38) and BioGrid (39),
or knowledge provided by ontologies [such as interaction
keywords listed in the Interaction Network Ontology (40).
The top-ranked results, in terms of F1 score, are the sub-
missions not using entity recognition. The methods used are
convolutional neural network (CNN)- and recurrent neural
network (RNN)-based architectures (41, 42). These meth-
ods have been shown to work well for classification tasks
(43), and do not require entity recognition. Interestingly, the
top-ranked team suggested adding entity recognition to the
model as the future work (44). For the submissions using
entity recognition, including those using CNN and RNN
methods, their performance decreased substantially over the
training set. One submission using a CNN model achieves
over 88% F1 score via cross-validation over the training set,
but has a 21% decrease over the testing set (45); another
submission using CNN with RNN also has a 13% decrease
(from 81 to 68%) (46). These models have applied careful
regularisation, such as dropout, early stop and use cross-
validation or a train/dev/test split to reduce overfitting. The
large difference in the performance appears to be primarily
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due to entity recognition—the features derived from entity
recognition are effective in the training set but not in the
testing set.

Despite these results, we argue that entity recognition
is critical; in the biocuration workflow entity recognition
is a key early step that cannot be missed (47, 48). Even
for document triage, entity recognition is still important
to identify documents relevant to a specific triage task and
at the same time can capture important information from
those documents. Entity recognition is not effective in the
specific context of the Biocreative VI Track 4 data because
of the distributional differences between the training and
test sets.

A further improvement of the document triage model
would be to use more advanced machine learning architec-
tures. As shown above, CNN- and RNN-based networks
have been shown effective in this task. Future experiments
could apply a CNN to capture important entities, as CNN
models excel at object detection, together with an RNN
to capture textual semantics. In the context of biocuration,
entity embeddings (embeddings over genes and mutations,
for example) could be more effective than raw word embed-
dings and may have the potential to improve the perfor-
mance of neural network models. The effectiveness of such
methods has been shown in relation extraction in general
knowledge bases (49). Based on the existing submissions,
there is no deep attempt to use entity embeddings based
on state-of-art BioNLP tools to facilitate neural network
models and could be a direction for future work.

Otherwise, we plan to do a thorough evaluation on
different models with different feature sets to quantify the
most appropriate model in document triage.

Discussion of the relation extraction task

In this section, we present an evaluation and discussion
of the relation extraction performance. In Table 8, we
presented the impact of entity annotations on relation
extraction. Particularly, absence of entity annotations,
missed by the standard BioNLP tools, limits the recall
performance of relation extraction. In this section, we study
other factors in the PPIm relation extraction that impact the
performance.

In this task, our goal is to extract interacting protein
pairs that are affected by a mutation. Intuitively, the pres-
ence of mutation terms or entities in a sentence should help
improve the performance of the task. With GNormPlus
as the entity annotator for genes, we experimented with
including the mutation terms lists (described in the Feature
engineering section of the Document Triage task) as addi-
tional features to the classifier. This is modelled via a linear
combination of kernels, namely the graph kernel and a bag
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Figure 9. Comparative F1 scores for boosting logistic regression over
the training and testing sets. The legend shows the features used in the
training set and the corresponding columns are presented in the testing
set.

of words kernel based on a bag of mutation terms. Mutation
terms led to modest improvements in F-score, from 0.2877
to 0.2890 for the training set. However, including mutation
terms resulted in a drop in the performance over the test set.
Mutation entities are sparsely mentioned within the PPIm
corpus, and as discussed previously, the distribution of these
entities varies between the training and test sets; with only
1044 out of 6104 sentences in the test set annotated with
mutation entities.

Another approach is to model mutation mentions as
entities directly in the graph representation for the ASM
kernel, via special node labels. For this approach, we use
Pubtator to provide mutation mention annotations in the
text. This results in a higher F-score of 0.3509 over the
test set. The co-occurrence approach is not affected by the
differences in the mutation terms between the training and
the tests sets, simply because it does not use the mutation
term features.

Adding in strategies for extracting relations across sen-
tence boundaries (non-sentence relation extraction; dis-
cussed in Methods helps to improve the recall performance,
but also produces many FPs, resulting in an overall decline
in F-score. From Table 4, we observe that most (90%) PPIm
relations are expressed as sentence level relations and only
a small fraction of PPIm relations (10%) appear as non-
sentence level relations, therefore limiting the contribution
of non-sentence relation extraction. Secondly, the skewed
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class imbalance means that there is likely inadequate train-
ing data for the non-sentence relation classifier, hurting its
generalisability.

In the co-occurrence approach, we have only extracted
relationships between gene pairs that co-occur within a
sentence. In order for co-occurrence approaches to take
into account cross-sentential relationships, we would likely
have to apply co-reference resolution (51, 52); considering
document-level co-occurrence blindly would very likely
result in very high number of FPs. Co-reference resolution
would enable identifying indirect references to entities;
these references could be substituted with their referent. For
instance, phrases like ‘the protein’ would be replaced with
the actual name of the protein itself. This means that once
the co-reference expressions are resolved, we can work with
sentence level relationships.

We experimented with including the document relevance
score from the document triage as a feature provided to the
graph-based relation extraction system, with the hypothesis
that documents with a higher relevance score are more
likely to contain PPIm or TP relations. This feature does
improve the precision slightly (0.3384 to 0.3467) but also
results in a reduced recall (0.3567 to 0.3383) and an overall
reduction in F-score for the test set.

In summary, the main performance bottleneck for PPIm
relation extraction task is in entity recognition. Improving
the recall performance of entity recognition for genes and
mutations is likely to be a prerequisite step before further
improvement in relation extraction performance can be
obtained. Our machine learning approach is also narrowly
focused on individual sentence-level analysis, in contrast
to the co-occurrence approach that tries to aggregate the
evidence for a protein pair across all mention pairs in the
document. Extending the machine learning approach for
document level relation extraction is likely to improve its
performance further.

The advantage of the co-occurrence approach that we
tested is its simplicity and intuitiveness. Its relative success in
the context of the relation extraction task can be attributed
substantially to the fact that it leverages characteristics of
the task setup, specifically the fact the documents/abstracts
are known to contain at least one PPIm relationship (i.e. it
begins with articles that are positive outputs of document
triage). So the problem then reduces to filtering the invalid
relationships out of the pool of protein co-occurrences, that
is, in principle the approach begins with perfect recall and
must recognize and remove only FPs.

For this challenge, this simple method worked very well.
With an entity oracle, i.e. given perfect annotation of the
protein entities in the test set, we could have achieved an
F1-score of ~79% with N > 3. Increasing the threshold to
N > 9 increases the theoretical F1-Score to ~95% for the

test set using all the gold annotated entities. This theoretical
high score in the test, without a drop in the recall despite
increasing N as seen in Figure 5, is because of the default
rule H3, that comes into effect for protein pairs that fall
below the threshold. The lower maximum achievable F-
score in the oracle condition in the training set as compared
to the test set is due to the third (default, H3) rule applying
in fewer cases in that data sample. This is another example
of a substantive difference in the characteristics of the
training and test sets.

Conclusions

The PPIm dataset for BioCreative VI Precision Medicine
Track supports the development of automated natural lan-
guage processing tools to support the discovery of protein
interactions influenced by mutations, a task of substantial
importance in precision medicine applications. Our efforts
in the context of the shared task show that differences in
the distribution of mutation mentions between the training
and test sets limit the generalisability of trained models
and the reliability of performance evaluation. For relation
extraction, we also found that machine learning models
were outperformed by a carefully designed co-occurrence
approach. While there is room for improvement, there is
also clear evidence that automated methods have good
potential to tackle the open challenges in both document
triage and relation extraction in this context.

In the future, we plan to explore the application of deep
learning architectures for the document triage task to better
capture document semantics, to improve differentiation of
relevant and non-relevant documents. For relation extrac-
tion, we plan to use joint models for entity recognition and
relation extraction to address the limitations of the entity
recognition phase in this task; this approach has shown
promise in recent work (52). There are opportunities to
develop newer models that combine the two approaches
of machine learning and co-occurrence, to exploit both
linguistic clues and task-specific heuristics to achieve higher

performance.
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