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Unbiased measurements of reconstruction fidelity
of sparsely sampled magnetic resonance spectra
Qinglin Wu1, Brian E. Coggins1 & Pei Zhou1

The application of sparse-sampling techniques to NMR data acquisition would benefit

from reliable quality measurements for reconstructed spectra. We introduce a pair of noise-

normalized measurements, Rnoise
work and Rnoise

free , for differentiating inadequate modelling from

overfitting. While Rnoise
work and Rnoise

free can be used jointly for methods that do not enforce exact

agreement between the back-calculated time domain and the original sparse data, the cross-

validation measure Rnoise
free is applicable to all reconstruction algorithms. We show that the

fidelity of reconstruction is sensitive to changes in Rnoise
free and that model overfitting results in

elevated Rnoise
free and reduced spectral quality.
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R
ecent developments in sparse-sampling and iterative
reconstruction techniques have made it possible to acquire
magnetic resonance spectra using a fraction of the

measurement time required by the conventional Nyquist-
sampling method, without sacrificing spectral resolution or
quality1–5. Despite these remarkable advancements, there are
not, as yet, unbiased, quantitative measurements of the fidelity of
reconstructed spectra. Instead, the quality of spectral
reconstruction is frequently assessed by direct comparison with
artifact-free spectra generated from fully sampled datasets, by
examination of algorithm-specific parameters, or by estimating
the reduction of aliasing artifacts in the reconstructed spectra.
Each of these measurements has its own limitations: comparison
of reconstructed spectra with artifact-free spectra from fully
sampled data is not feasible in real applications; spectra
reconstructed with different methods cannot be compared using
algorithm-specific parameters; and finally, excessive ‘artifact’
reduction during reconstruction may not correlate with the
improvement of spectral fidelity.

Here, we introduce two algorithm-independent measurements
for evaluating the quality of nuclear magnetic resonance (NMR)
spectra reconstructed from sparsely sampled datasets, demon-
strate their utility in differentiating inadequate modelling from
overfitting, and discuss the implication of such quality measure-
ments for the fidelity of NMR spectral reconstruction.

Results
Quality measurements for reconstructed NMR spectra. NMR
time domain data and frequency domain spectra are connected
through the Fourier transform. Conceptually, the quality of a
reconstructed spectrum can be measured by computing the
inverse Fourier transform of the spectrum and comparing the
resulting time domain data with the raw measurements at the
sampled positions. However, this alone is inadequate, as the
following example illustrates. The spectrum generated from the
Fourier transform of the sparsely sampled time domain data
would fulfil such a criterion, yet it is not a high-quality recon-
struction due to the presence of strong aliasing artifacts, which
arise from the lack of modelled signals at the unmeasured posi-
tions in the time domain. A more useful quality measure would
go further, flagging this as a poor reconstruction.

Similar issues were encountered previously in X-ray crystal-
lography, where the diffraction pattern, which is related to the
electron density by a Fourier transform, contains intensity
information but not phase information; the phases must be
reconstructed iteratively in reciprocal space as the model of the
molecular structure is assembled in real space. Initially, it was
proposed that the inverse Fourier transform of the modelled
electron density could be compared with the diffraction data, and
their correlation—in the form of the ‘R-factor,’

R ¼
P

Fobsj j � Fcalcj jj jP
Fobsj j , where Fobs and Fcalc represent observed and

back-calculated structure factors—would reflect the quality of the
modelled electron density map6. If the iterative process of
assembling the model is successful, its inverse Fourier transform
will come increasingly close to agreeing with the observed data,
and R will become progressively smaller.

While R is helpful, it was soon realized that R alone is
inadequate, as the incorporation of experimental noise into the
model will drive down the R-factor while reducing, rather than
improving, the fidelity of the structural model7. To address this, it
was suggested that a small percentage of the measurements
(5–10%) be set aside and excluded from the reconstruction
process, and that the electron density be built from the remaining
measurements, known as the working set. As the reconstruction

proceeds, the consistencies of the calculated structure factors with
the working dataset (Rwork) and the excluded dataset (Rfree) are
used together to evaluate the quality of the electron density map.
While incorporation of noise into the model improves the
agreement with the working set (reducing Rwork), it results in
worse fitting to the excluded set (increasing Rfree), thus allowing
over-refinement to be detected7.

Despite this conceptual similarity between the data processing
of sparsely sampled NMR and crystallography, several issues
must be addressed before these quality measurements can be
applied to NMR. One important consideration is that some
reconstruction algorithms explicitly or implicitly require exact
agreement between the back-calculated time domain and the
experimental measurements, resulting in an R (or Rwork) value of
zero. While this would seem to negate the value of this approach,
we show below that if the raw time domain measurements are
divided into a working dataset used for reconstruction and a free
dataset reserved for cross validation, the Rfree can be used alone as
a meaningful measure of reconstruction quality.

The application of R-factor measurements to NMR is
additionally confounded by a second distinction between NMR
and crystallography. In crystallography, the occupancy of the unit
cell by protein does not vary significantly, regardless of the
protein under study. Therefore, the R-factors always fall into the
same numeric range for crystals of a similar quality. In NMR,
however, each position on the directly observed dimension of a
spectrum constitutes an independent reconstruction problem,
and the set of independent 2-D planes in a 3-D spectrum (or 3-D
cubes in a 4-D spectrum) contain vastly different numbers of
signals, from pure noise to large arrays of signals with different
intensities and lineshapes. For a noise plane, the ideal
reconstruction would contain no signal, the back-calculated time
domain data would be zero, and both Rwork and Rfree would be
100%; whereas for a plane containing signals, the back-calculated
time domain from the ideal reconstruction would be very close to
the raw measurements, and the corresponding R-factors would be
vanishingly small. In order to obtain a consistent readout that is
independent of the number of signals involved in the reconstruc-
tion, we introduce noise-normalized quality measurements Rnoise

work
and Rnoise

free , which are defined as:

Rnoise ¼
P

vobs
�!� vcalc

��!�� ��
P

vnoise
��!�� �� : ð1Þ

In equation (1), vnoise
��!�� �� is the vector length of the hypercomplex

measurements in a reference noise plane or cube, while
vobs
�!� vcalc

��!�� �� is the vector difference of the observed and
back-calculated time-domain signals from the model spectrum.

Application of quality measurements to reconstructed spectra.
In order to illustrate the utility of our proposed measurements, we
first used the CLEAN algorithm8 to reconstruct the 3-D HNCO
spectra of six proteins at a sampling density of 5% (Fig. 1;
Supplementary Figs 1–5). Ten per cent of the measurements were
excluded from spectral reconstruction and marked for Rnoise

free
calculation. CLEAN builds a model of the frequency domain
spectrum through the iterative identification of signal
components, and thus Rnoise

work and Rnoise
free are naturally suited to

monitoring the progress of the reconstruction. All results
presented here show the model only, without the inclusion of
any residuals.

Two N–CO planes were selected from the HNCO spectrum of
GB1 for illustration, one containing strong signals (Fig. 1a,b) and
one containing weak signals (due to leakage from the neighbour-
ing plane, Fig. 1c,d). For both cases, as the threshold for inclusion
of signals in the model decreased, individual signals were picked
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up and incorporated (Fig. 1b,d), leading to an initial decrease of
Rnoise

work and Rnoise
free values. When nearly all of the signals were

modelled, the difference between the raw data and the back-
calculated data was on par with the noise, with the Rnoise

work and

Rnoise
free values approaching unity. When the stopping threshold was

set well below the fluctuation of aliasing artifacts, the CLEAN
algorithm started to identify noise spikes and model them as
signals (Fig. 1b,d). Such excessive modelling continued to
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Figure 1 | Quality measurements of selected N–CO planes from the reconstructed 3-D HNCO spectrum of GB1 by CLEAN. (a) Progression of the quality

factors Rnoise and R during the CLEAN reconstruction of an N–CO plane containing strong signals at HN of 7.90 p.p.m. (b) Modelled signal components by

CLEAN with different stopping thresholds for the N–CO plane at HN of 7.90 p.p.m. (c) Progression of quality factors Rnoise and R during the CLEAN

reconstruction of an N–CO plane containing weak signals at HN of 7.50 p.p.m. (d) Modelled signal components by CLEAN with different stopping

thresholds for the N–CO plane at HN of 7.50 p.p.m.
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diminish Rnoise
work , whereas Rnoise

free went through a minimum and then
increased slightly before reaching a plateau. Such an effect was
particularly noticeable for the reconstructed planes with a weaker
signal-to-noise ratio (Fig. 1c). It can also be appreciated that
despite similar reconstruction qualities, conventional R-factors
normalized against signals would appear smaller for the N–CO
plane containing strong signals, whereas they would seem larger
for a plane containing weak signals (compare the right panels of
Fig. 1a with Fig. 1c). The introduction of Rnoise factors overcomes
this limitation and offers consistent measurement of the
reconstruction quality: an ideal reconstruction would have Rnoise

work
and Rnoise

free approaching unity regardless of the signal content.
Improvement of the reconstruction is reflected by simultaneous
reduction of Rnoise

work and Rnoise
free , whereas overfitting results in

divergent values.
We next examined whether our proposed quality measure-

ments Rnoise
work and Rnoise

free can be applied to other reconstruction
algorithms beyond CLEAN. In order to demonstrate the general
applicability of these quality measurements, we implemented
three popular reconstruction algorithms: convex l1-norm mini-
mization9, maximum entropy reconstruction10,11, and iterative
soft thresholding (IST)12.

Convex l1-norm minimization, commonly used in compressed
sensing, optimizes the frequency domain data to generate the
spectrum with the smallest possible l1-norm while having the
inverse Fourier transform be consistent with the experimental
time domain measurements. Optimizing against both measures is
possible through a constrained minimization in which a
Lagrangian multiplier l is introduced to balance the two
requirements:

C¼L1ðSÞþ l�RMSDðs�mÞ: ð2Þ
In equation (2), C is the composite score, S is the modelled
frequency domain spectrum, s is the modelled time domain
signals, m is the experimental measurements, and RMSD is the
root mean square deviation.

In order to examine the behaviour of our quality measure-
ments for reconstruction by l1 minimization, we generated a
simulated sparsely sampled 1-D time domain dataset, which was
Fourier transformed to yield an initial spectrum containing
aliasing artifacts (Fig. 2a). A reference spectrum was also
generated that contained the fully sampled signals and noise
(Fig. 2b). Before reconstruction, the time domain measurements
were separated into two parts, the working dataset used for
reconstruction and the free dataset reserved for cross validation.

We examined the Rnoise
work and Rnoise

free values of each reconstruction
as a function of the Lagrangian multiplier (l), which alters the
amount of weight placed on regularization versus agreement with
the experimental data. At each value of l, the reconstruction was
obtained at the minimum of the composite score. With l set to
zero, the scoring function consists solely of the l1-norm, and
minimization of this norm drives the frequency domain spectrum
to the baseline, yielding a final score of zero at the end of the
reconstruction process (Fig. 2c). As l is increased, putting more
weight on the consistency between the modelled time domain
signals s and the experimental measurements m, more signals are
retained in the reconstruction and the final composite score
increases (Fig. 2c); at the same time, the values for both Rnoise

work and
Rnoise

free begin to decrease (Fig. 2d). While the Rnoise
work at the end of

reconstruction continues to decrease with ever-increasing values
of l, eventually reaching zero when complete agreement with the
working dataset is achieved, the Rnoise

free at the end of reconstruction
instead decreases to a minimum and then starts to increase
slightly (Fig. 2d). Such a trend was consistently observed
with cross-validation sets selected from 10% to 30% of the
overall measurements (Supplementary Fig. 6), highlighting the

robustness of the Rnoise
work and Rnoise

free measurements. Importantly, the
change in Rnoise

free is closely mirrored by the change in the
l-dependent RMSD between the reconstruction and reference
spectra (Fig. 2e): the minimal difference is achieved when Rnoise

free is
at or very close to its minimum (Fig. 2f,g), but not when a very
large value of l enforces complete agreement with the
experimentally measured working dataset (Fig. 2h,i). These
results strongly support the notion that Rnoise

free is a valid measure
of the reconstruction spectral fidelity in the absence of an external
reference spectrum.

We next tested the maximum entropy reconstruction method
(MaxEnt)10,11 using the same set of 1-D simulated data. The
Fourier transforms of the sparsely sampled measurements and
full measurements are shown in Fig. 3a,b, respectively.
Reconstruction with the maximum entropy method is
conceptually similar to l1-norm minimization, except that the
regularization term maximizes the information entropy E(S) of
the frequency domain spectrum rather than minimizing its
l1-norm. Mathematically, the optimal solution is achieved
through a constrained minimization of the negative entropy
� E(S) and the Lagrangian-multiplier-weighted RMSD of the
modelled time domain data s and raw measurements m:

C ¼ �EðSÞþ l�RMSDðs�mÞ: ð3Þ
In the limit of the experimental noise being much larger than
unity, a common condition encountered experimentally, the
behaviour of the maximum entropy method is similar to the
convex l1-norm minimization algorithm. As the Lagrangian
multiplier l was increased from zero, progressively more signals
were included in the final reconstruction, resulting in an increase
in the final composite score (Fig. 3c) and a decrease in the Rnoise

work
and Rnoise

free (Fig. 3d). However, further increases in l caused more
of the experimental noise to be included, resulting in a divergence
of Rnoise

work and Rnoise
free (Fig. 3d). The change of the Rnoise

free over l was
mirrored by the change of the RMSD of the reconstruction and
reference spectra (Fig. 3e). A very large l ultimately enforced the
agreement between modelled time domain data and the
experimental measurements, a scenario that resembles the
forward maximum entropy reconstruction13 or maximum
entropy interpolation14. It is important to note that the highest
quality of reconstruction is achieved when Rnoise

free reaches a
minimum (Fig. 3f,g), but not at a very large l (Fig. 3h,i).

As a final example, we applied these measures to the IST
method, which enforces exact agreement between the reconstruc-
tion and the experimental data12. IST begins with the Fourier
transform of the sparsely sampled working dataset. In each
iteration, signals above a predefined threshold in the frequency
domain are extracted (Fig. 4a), and their inverse Fourier
transform is used to update the values of the time domain at
all positions except those belonging to the working dataset. These
extracted signals are, in effect, a model of the current
reconstruction, and can be used to monitor Rnoise

work and Rnoise
free .

This process is repeated with a decreasing threshold, and the
inverse Fourier transform of the model increasingly converges
with the measured data of the working set. Snapshots of the IST
reconstruction were taken at every step over 1,500 iterations.
Although the model spectrum is typically not presented in
iterations of spectral reconstruction by IST, it is intrinsic to the
reconstruction process and is produced as an output in our
implementation (Fig. 4a, right panel) and in the implementation
of hmsIST15, a variant of IST. Such a model spectrum allows
meaningful calculation of both Rnoise

work and Rnoise
free (Fig. 4b).

As with other reconstruction methods, the Rnoise
work calculated

from the model spectrum continued to decrease with an
increasing number of IST iterations, eventually reaching zero;
whereas Rnoise

free decreased to a minimum, then slightly increased
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and eventually reached a plateau (Fig. 4b). The initial simulta-
neous decrease in Rnoise

work and Rnoise
free is consistent with the efficient

processing of genuine signals, whereas the ultimate divergence of
Rnoise

work and Rnoise
free reflects overfitting.

While the modification of IST to produce a model allows both
measures of Rnoise

work and Rnoise
free to be used, we show that it is also

possible to use Rnoise
free alone as a quality measure for the

reconstructions generated by the unmodified IST algorithm. In
the unmodified IST algorithm, Rnoise

work would not be a useful
measurement of the spectral quality: when calculated from the
reconstruction rather than the model, the value of Rnoise

work remains
at zero during the entire run, reflecting the fact that the algorithm
enforces exact agreement between the reconstruction and the
measured data (Fig. 4c). However, as the reconstruction has no
bias toward the free dataset, the Rnoise

free calculated from the
evolving reconstruction spectrum behaves identically to that of
the model spectrum (compare Fig. 4b,c), reinforcing the notion

that Rnoise
free is a universally applicable cross-validation measure-

ment of reconstruction quality and model overfitting. Impor-
tantly, we again observe an excellent correlation between the
RMSD curve of the reconstruction and reference spectra and the
Rnoise

free curve (compare Fig. 4c,d): the highest quality of
reconstruction is achieved when Rnoise

free is close to its minimum
(Fig. 4e,f), and quality decreases with additional iterations
(Fig. 4g,h). Further iterations beyond the minimum of Rnoise

free
model more noise and artifacts than genuine signals (compare
Fig. 4e,g)—a situation of model overfitting that leads to an
increase of Rnoise

free (Fig. 4c) and the degradation of reconstruction
fidelity (compare Fig. 4f,h).

Discussion
Sparse sampling and iterative spectral reconstruction techniques
are poised to transform magnetic resonance measurements in the
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post-FT era16, yet the characteristics and relative performance of
the various reconstruction algorithms vary dramatically17–19,
demanding quantitative measurements for estimating
reconstruction fidelity, for detecting inadequate modelling and
for preventing model overfitting. It is clear from our 1-D
simulations that algorithm-specific measures such as the
composite score of convex l1-norm minimization or maximum
entropy are dependent on the reconstruction parameters
(for example, the Lagrangian multiplier l) and cannot be
compared with each other directly for evaluation of
reconstruction quality, whereas other algorithms, such as the
IST, do not have a regularization score at all. The introduction of
the cross-validation parameter Rnoise

free provides a benchmark for
assessment of the reconstruction fidelity independent of
reconstruction algorithm specifics. For algorithms that do not
enforce exact agreement at measured time domain positions,
Rnoise

work and Rnoise
free can be used jointly to identify inadequate

modelling and overfitting, while Rnoise
free is a universally applicable

gauge of reconstruction fidelity in the absence of a reference
spectrum.

The notion of cross validation has been used previously in
compressed sensing for estimating decoding errors20, and the
method of using permutations of subsets of the raw data has also
been used to search for convergent spectral reconstructions in
NMR21–23. However, the cross-validation measures Rnoise

work and
Rnoise

free presented in this work are novel, and are uniquely suited for
application to NMR spectra.

The issue of model overfitting has been raised by Hoch and
colleagues14,18, though no algorithm-independent measurements
for such effects have been reported. The development of Rnoise

free
permits unbiased comparison of reconstruction methods and
sampling patterns and a direct measurement of model overfitting.
For example, a comparison of the three reconstruction algorithms
in our 1-D simulation shows that the lowest Rnoise

free score was
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The reconstruction spectrum with a large Lagrangian multiplier (l¼ 100,000). Its absolute difference spectrum from the reference spectrum is shown in i.
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achieved by the convex l1-norm minimization and maximum
entropy methods, but only with the appropriate Lagrangian
multipliers. Such a low Rnoise

free measurement is accompanied by the
lowest RMSD between the reconstruction spectrum and the
reference spectrum and thus the highest reconstruction fidelity.
Reconstruction with less optimal Lagrangian multipliers leads to
deterioration of the reconstruction fidelity either due to
inadequate modelling or overfitting. The reconstruction fidelity
of the IST method comes very close to the convex l1-norm
minimization and maximum entropy method when using an
optimal number of iterations. However, the IST reconstruction is
significantly worse with an infinite number of iterations, due to
spectral overfitting.

As NMR spectral reconstruction is done independently for
individual planes or cubes along the directly observed dimension,
the most informative assessment of the reconstruction quality
would be to calculate the quality factors separately for each

position on the directly observed dimension. It is, however,
conceivable that an overall quality factor could be calculated for
the entire multi-dimensional spectrum, as the mean and standard
deviation of the quality factors of the individual reconstructions.

The increasing sensitivity brought about by innovation in
NMR instrumentation and pulse sequence design and the
demand for more efficient data collection in biomolecular NMR
studies have led to the burgeoning development of sparse
sampling and reconstruction methods. The introduction and
demonstration of the algorithm-independent reconstruction
quality measurement Rnoise

free should provide much-needed quality
assurance and greatly facilitate the wide adoption of sparse-
sampling techniques in magnetic resonance spectroscopy.

Methods
NMR measurements, simulation and spectral reconstruction. Three-dimen-
sional sparsely sampled HNCO experiments were recorded on Agilent or Bruker
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Figure 4 | Correlation of Rnoise
free with the fidelity of spectral reconstruction by the IST method. (a) Separation of the model spectrum from the

reconstruction spectrum by IST. The left panel shows the IST reconstruction spectrum at the 100th iteration. The threshold for selecting modelled signals is

indicated by a red line. Modelled signals (coloured area in the reconstruction spectrum) are replotted to generate the model spectrum (right panel).

(b) Changes in Rnoise
work and Rnoise

free during iterations of IST for the model spectrum. (c) Changes in Rnoise
work and Rnoise

free during iterations of IST for the reconstruction

spectrum. (d) Changes in the RMSD between the reconstruction spectrum and the reference spectrum during iterations of IST reconstruction. The

reference spectrum is the same as in Figs 2b and 3b, and is not replotted here. (e) The IST reconstruction spectrum at the iteration with minimum Rnoise
free . Its

absolute difference spectrum from the reference spectrum is shown in f. (g) The IST reconstruction spectrum after 1,500 iterations. Its absolute difference

spectrum from the reference spectrum is shown in h.
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NMR spectrometers using 15N/13C-labelled GB1, FAAP20 UBZ4, foldon, ubiqui-
tin, the UBM1-ubiquitin complex and FKBP12. 2-D cosine-weighted randomized
concentric ring sampling patterns24 of 314 points adapted to the 64� 96 sampling
grid or 220 points adapted to the 64� 64 sampling grid for indirect (N-C)
dimensions were used, corresponding to a sampling density of B5%. A randomly
selected dataset containing 90% of the measurements were used for spectral
reconstruction via the CLEAN algorithm8 and for calculation of Rnoise

work and Rwork,
whereas the remaining 10% measurements were excluded from reconstruction and
were used for calculation of Rnoise

free and Rfree. Modelled components of the CLEAN
reconstruction were inverse Fourier transformed for comparison with the time
domain measurements and for calculation of R-factors as described in the main
text.

One-dimensional simulations were performed using MATLAB (MathWorks).
The simulation contained nine exponentially decaying signals with amplitudes
from 64 to 1 and frequencies from � 4,000 to 4,000 Hz in the presence of white
noise. A pure noise dataset was also generated containing white noise of the same
amplitude as the reference noise. A sampling grid of 1,024 points was used. A
sparse dataset was created by randomly selecting 30% of the sampling points. Of
this dataset, 80% of the measurements were used for spectral reconstruction and
for calculation of Rnoise

work , while the remaining measurements (20%) were excluded
from spectral reconstruction and were only used for calculation of Rnoise

free .
Reconstruction was carried out using the convex l1-norm minimization algorithm,
the maximum entropy method, and iterative soft thresholding method. For
assessing the stability of Rnoise

work and Rnoise
free , additional tests were carried out with

convex l1-norm minimization using 90–70% of the measurements for spectral
reconstruction and 10–30% for cross validation.

Data availability. NMR measurements and the software for calculating the Rnoise

and R-factors and for 1-D simulations are available upon request from the authors.
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