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Abstract

Brain extraction is a critical preprocessing step in the analysis of neuroimaging studies

conducted with magnetic resonance imaging (MRI) and influences the accuracy of

downstream analyses. The majority of brain extraction algorithms are, however, opti-

mized for processing healthy brains and thus frequently fail in the presence of patho-

logically altered brain or when applied to heterogeneous MRI datasets. Here we

introduce a new, rigorously validated algorithm (termed HD-BET) relying on artificial

neural networks that aim to overcome these limitations. We demonstrate that HD-BET

outperforms six popular, publicly available brain extraction algorithms in several large-

scale neuroimaging datasets, including one from a prospective multicentric trial in

neuro-oncology, yielding state-of-the-art performance with median improvements of

+1.16 to +2.50 points for the Dice coefficient and −0.66 to −2.51 mm for the

Hausdorff distance. Importantly, the HD-BET algorithm, which shows robust perfor-

mance in the presence of pathology or treatment-induced tissue alterations, is applica-

ble to a broad range of MRI sequence types and is not influenced by variations in MRI

hardware and acquisition parameters encountered in both research and clinical prac-

tice. For broader accessibility, the HD-BET prediction algorithm is made freely available

(www.neuroAI-HD.org) and may become an essential component for robust, auto-

mated, high-throughput processing of MRI neuroimaging data.
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1 | INTRODUCTION

Brain extraction, which refers to the process of separating the brain

from nonbrain tissues in medical images is a preliminary but critical

step in many neuroimaging studies conducted with magnetic reso-

nance imaging (MRI). Consequently, the accuracy of brain extraction

may have an essential impact on the quality of the subsequent ana-

lyses such as image registration (Kleesiek et al., 2016; Klein et al.,

2010; Woods, Mazziotta, & Cherry, 1993), segmentation of brainFabian Isensee, Marianne Schell, and Irada Pflueger shared the first authorship.
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tumors or lesions (de Boer et al., 2010; Menze et al., 2015; Shattuck,

Sandor-Leahy, Schaper, Rottenberg, & Leahy, 2001; Wang, Chen, Pan,

Hong, & Xia, 2010; Zhang, Brady, & Smith, 2001; Zhao, Ruotsalainen,

Hirvonen, Hietala, & Tohka, 2010), measurement of global and

regional brain volumes (e.g., in neurodegenerative diseases and multi-

ple sclerosis; Frisoni, Fox, Jack Jr., Scheltens, & Thompson, 2010;

Radue et al., 2015), estimation of cortical thickness (Haidar & Soul,

2006; MacDonald, Kabani, Avis, & Evans, 2000), cortical surface

reconstruction (Dale, Fischl, & Sereno, 1999; Tosun et al., 2006), and

for planning of neurosurgical interventions (Leote, Nunes, Cerqueira,

Loução, & Ferreira, 2018).

Manual segmentation is currently considered the “gold-standard”

for brain extraction (Smith, 2002; Souza et al., 2018). However, this

approach is not only very labor-intensive and time-consuming, but also

shows a strong interindividual and intraindividual variability (Kleesiek

et al., 2016; Smith, 2002; Souza et al., 2018) that could ultimately bias

the analysis and consequently hamper the reproducibility of clinical

studies. To overcome these shortcomings, several (semi-) automated

brain extraction algorithms have been developed and optimized over

the last years (Kalavathi & Prasath, 2016). Their generalizability is,

however, limited in the presence of varying acquisition parameters or

in the presence of abnormal pathological brain tissue, such as brain

tumors. Without additional manual correction, poor brain extraction

can introduce errors in downstream analysis (Beers et al., 2018).

Artificial neural networks (ANNs) have recently been successfully

applied to a multitude of medical image segmentation tasks. In this

context, several approaches based on ANN have been proposed to

improve the accuracy of brain extraction. However, these ANN algo-

rithms have focused on learning brain extraction from training datasets

either containing a collection of normal (or apparently normal) brain

MRI from public datasets (Dey & Hong, 2018; Sadegh Mohseni Salehi,

Erdogmus, & Gholipour, 2017), or from a limited number of (single

institutional) brain MRI with pathologies (Beers et al., 2018; Kleesiek

et al., 2016). Therefore, generalizability of these ANN algorithms to

complex multicenter datasets may be limited on unseen data with

varying MR hardware and acquisition parameters, pathologies or treat-

ment-induced tissue alterations. Moreover, most approaches up until

now focused on processing precontrast T1-weighted (T1-w) MRI

sequences, since it provides a good contrast between different brain

tissues and is frequently used as standard space for registration of fur-

ther image sequences (Han et al., 2018; Iglesias, Liu, Thompson, & Tu,

2011; Lutkenhoff et al., 2014). However, they fall short when it comes

to processing other types of MRI sequences, which would, however,

be desirable for a broad application to research and clinical studies.

To overcome these limitations, we utilize MRI data from a large

multicenter clinical trial in neuro-oncology (EORTC-26101;Wick et al.,

2016 ; Wick et al., 2017) to train and independently validate an ANN

for brain extraction (subsequently referred to as HD-BET). Specifically,

we aimed to develop an automated method that (a) performs robustly

in the presence of pathological and treatment-induced tissue alter-

ations, (b) is not influenced by variations in MRI hardware and acquisi-

tion parameters, and (c) is applicable to independently process various

types of common anatomical MRI sequence.

2 | METHODS

2.1 | Datasets

Four different datasets including the MRI data from a prospective ran-

domized Phase II and III trials in neuro-oncology (EORTC-26101) (Wick

et al., 2017; Wick et al., 2016) and three independent public datasets

(LONI Probabilistic Brain Atlas [LPBA40], Nathan Kline Institute

Enhanced Rockland Sample Neurofeedback Study [NFBS], Calgary-

Campinas-359 [CC-359]) (Puccio, Pooley, Pellman, Taverna, & Craddock,

2016; Shattuck et al., 2008; Souza et al., 2018) were used for the present

study. The characteristics of the individual datasets were as follows.

2.1.1 | EORTC-26101

The EORTC-26101 study was a prospective randomized Phase II and III

trials in patients with first progression of a glioblastoma after standard

chemoradiotherapy. Briefly, Phase II trial evaluated the optimal treatment

sequence of bevacizumab and lomustine (four treatment arms with single

agent vs. sequential vs. combination) (Wick et al., 2016) whereas the sub-

sequent Phase III trial (two treatment arms) compared patients treated

with lomustine alone with those receiving a combination of lomustine

and bevacizumab (Wick et al., 2017). Overall, the EORTC-26101 study

included n = 596 patients (n = 159 from Phase II and n = 437 from Phase

III) with n = 2,593 individual MRI exams acquired at 37 institutions within

Europe. The study was conducted in accordance with the Declaration of

Helsinki and the protocol was approved by local ethics committees and

patients provided written informed consent (EudraCT# 2010-023218-30

and NCT01290939). Full study design and outcomes have been publi-

shed previously (Wick et al., 2016; Wick et al., 2017). MRI exams were

acquired at baseline and every 6 weeks until Week 24, afterward every

3 months. For the present analysis, we included T1-w, contrast-

enhanced T1-w (cT1-w), fluid attenuated inversion recovery (FLAIR), and

T2-weighted (T2-w) sequences (either acquired 3D and/or with axial ori-

entation) and excluded those with heavy motion artifacts or corrupt data.

These criteria were fulfilled by n = 10,005 individual sequences (including

n = 2,401 T1-w, n = 2,248 T2-w, n = 2,835 FLAIR and n = 2,521 cT1-w

sequences from n = 2,401 exams, and n = 583 patients) which were

included for the present analysis. The EORTC-26101 dataset was divided

into a training and test set using a random split of the dataset (�2:1 ratio)

with the constraint that all patients from each of the 37 institution were

either assigned to the training or test set (to limit the potential of over-

fitting the HD-BET algorithm). By applying this split, the EORTC-26101

training set included data from n = 25 institutions (n = 6,586 individual

MRI sequences from n = 1,568 exams, n = 372 patients) whereas the

EORTC-26101 test set included data from the remaining n = 12 institu-

tions (n = 3,419 individual MRI sequences from n = 833 exams, n = 211

patients). In this context, it is important to emphasize that the EORTC-

26101 test set was entirely independent from the training set, as it is

comprised of acquisitions from different institutions (and thus different

MRI scanners/field strengths, see Table 1 for the T1 detailed informa-

tion on the individual MRI sequences, scanner types, field strengths)

that are disjunct from the institutions in the training set.
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2.1.2 | Public datasets

We used three public datasets for independent testing. Specifically,

we collected and analyzed data from (a) the single-institutional Labo-

ratory of Neuro Imaging (LONI) (LPBA40) dataset of the LONI con-

sisting of n = 40 MRI scans from individual healthy human subjects

(Shattuck et al., 2008), (b) the single-institutional NFBS dataset con-

sisting of n = 125 MRI scans from individual patients with a variety of

clinical and subclinical psychiatric symptoms (Puccio et al., 2016), and

(c) the CC-359 dataset consisting of n = 359 MRI scans from healthy

adults (Souza et al., 2018). For each subject, the repositories contains

an anonymized (defaced) T1-w MRI sequence and a manually

corrected ground-truth (GT) brain mask.

2.2 | Brain extraction using competing algorithms

All MRI sequences from each of the datasets were preprocessed iden-

tically. First, all images were reoriented to the standard orientation

(fslreorient2std, FMRIB software library, http://fsl.fmrib.ox.ac.uk/fsl/

fslwiki/FSL), followed by the application of reference brain extraction

algorithms. We compare HD-BET to six publicly available and fre-

quently used brain extraction algorithms, namely, BET (Smith, 2002),

3dSkullStrip (Cox, 1996), BSE (Shattuck & Leahy, 2002), ROBEX

(Iglesias et al., 2011), BEaST (Eskildsen et al., 2012), and MONSTR

(Roy, et al., 2017) (see Methods S1, Supporting Information for

detailed description). As we intend HD-BET to be used out of the box,

we also apply the reference methods as they are provided with no

dataset-specific adaptations. For all competing brain extraction algo-

rithms (except MONSTR) the maximum allowed processing time was

set to 60 min (to keep processing within an acceptable time frame

and execution of the brain extraction process was aborted if an algo-

rithm exceeded this time limit for processing a single MRI sequence).

Since BET, 3dSkullStrip, BSE, ROBEX, and BEaST have primarily been

developed for processing of T1-w sequences, we did not perform

brain extraction with these algorithms on any other sequence type

(i.e., cT1-w, FLAIR, or T2-w) that were available in the EORTC-26101

test set. MONSTR is capable of also processing cT1-w, FLAIR, and T2-

w sequences and we therefore used it to perform brain extraction on

all available sequences of the EORTC-26101 test set. In summary, this

setup resulted in a comparison against six competing algorithms for

brain extraction on T1-w sequences in all four test sets (EORTC-

26101 test set, LPBA40, NFBS, CC-359) and additional comparison

against MONSTR on the remaining MRI sequences (T2-w, cT1-w,

FLAIR) in the EORTC-26101 test set.

2.3 | Defining a GT (reference) brain mask

A GT reference brain mask is required to evaluate the accuracy of

brain extraction algorithms. Moreover, for the purpose of the present

study with development of the HD-BET algorithm for automated

brain extraction, these masks are required to train the algorithm

(i.e., to learn this specific task), as well as for subsequent evaluation of

its accuracy. A GT reference brain mask for the T1-w sequences was

already provided within the three public datasets (LPBA40, NFBS,

CC-359), whereas for the EORTC-26101 dataset, we generated a

radiologist-annotated GT reference brain mask for T1-w sequences as

follows: The brain mask generated by BET algorithm was selected as a

starting point. For each brain mask, visual inspection and corrections

were performed using ITK-SNAP (by applying the different capabilities

of this tool, including region-growing segmentation and manual cor-

rections (www.itksnap.org; Yushkevich et al., 2006)). The manual cor-

rection took on average about 15 min per brain mask. Given the

amount of data, only one rater per GT reference mask was used. Simi-

lar to the provided brain masks, we defined the following criteria:

(a) including all cerebral and cerebellar gray and white matter as well

as the brainstem, (b) including the cerebrospinal fluid in the ventricles

and the cerebellar cistern, and (c) excluding the chiasma. In a second

step, to enable the use of the HD-BET algorithm independently of the

input MRI sequence type (i.e., not limited to T1-w sequences) we

transferred the GT reference brain masks within the EORTC-26101

dataset from T1-w to the remaining anatomical sequences, that is,

cT1-w, FLAIR, and T2-w sequences. First, all sequences were spatially

aligned to the respective T1-w sequence by rigid registration with

6 degrees of freedom (Greve & Fischl, 2009; Jenkinson & Smith,

2001), resulting in a transformation matrix for each of them. Next, the

transformation matrix was inversely back transformed to the individ-

ual sequence space of the c T1-w, FLAIR, and T2-w sequences and

applied to the GT reference brain mask (within the space of the T1-w

sequence) using nearest neighbor interpolation. Thereby a GT brain

mask was generated for the remaining sequences (i.e., c T1-w, FLAIR,

and T2-w) within the individual sequence space. Finally, visual inspec-

tion was performed for all brain masks to exclude registration errors.

2.4 | Artificial neural network

The topology of the ANN underlying the HD-BET algorithm was

inspired by the U-Net image segmentation architecture (Ronneberger,

Fischer, & Brox, 2015) and its 3D derivatives (Çiçek, Abdulkadir,

Lienkamp, Brox, & Ronneberger, 2016; Kayalibay, Jensen, & van der

Smagt, 2017; Milletari, Navab, & Ahmadi, 2016) and has recently been

shown to have excellent performance in brain tumor segmentation

both in an international competition (Isensee, Kickingereder, Wick,

Bendszus, & Maier-Hein, 2018) as well as in the context of a large-

scale multi-institutional study (Kickingereder et al., 2019). Methods

S2, Supporting Information, contain an extended description of the

architecture, as well as the training and evaluation procedure. All MRI

sequences from the EORTC-26101 training set (i.e., T1-w, cT1-w,

FLAIR, and T2-w) were used to train and validate the HD-BET algo-

rithm (with fivefold cross-validation). For independent large-scale test-

ing and application of the HD-BET algorithm (done by using the five

models from cross-validation as an ensemble), all MRI sequences from

the EORTC-26101 test set (i.e., T1-w, cT1-w, FLAIR, and T2-w) as

well as the T1-w sequences of the LPBA40, NFBS, and CC-359

datasets were used. For both training and testing, the HD-BET algo-

rithm was blinded to the type of MRI sequence used as input (i.e., T1-

w, cT1-w, FLAIR, or T2-w) which allowed to develop an algorithm that

4954 ISENSEE ET AL.

http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSL
http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FSL
http://www.itksnap.org


is capable to perform brain extraction irrespective of the type of ana-

tomical MRI sequence.

2.5 | Evaluation metrics

To evaluate the performance of the different brain extraction algorithms,

we compared the segmentation results of the different brain extraction

methods with the GT reference brain mask from each individual

sequence. Among the numerous different metrics for measuring the simi-

larity of two segmentation masks, we calculated a volumetric measure,

the Dice similarity coefficient (Dice, 1945) and a distance measure, the

Hausdorff distance. The Dice coefficient is a standard metric for

reporting the performance of segmentation and measures the extent of

spatial overlap between two binary images, GT and predicted brain mask.

It is defined as twice the size of the intersection between two masks nor-

malized by the sum of their volumes.

Dice =
2 jGT\PM j
jGT j + jPM j*100

Its values range between 0 (no overlap) and 100 (perfect agree-

ment). However, volumetric measures can be insensitive to

differences in edges, especially if this difference leads to an overall

small volume effect relative to the total volume. Therefore, we used

the Hausdorff distance (Taha & Hanbury, 2015) to measure the maxi-

mal contour distance (mm) between the two masks.

d x! yð Þ= max dx!y
i

� �
, i=1::Nx

Hausdorff distance GT,Mð Þ= max d GT!RMð Þ,d RM!GTð Þð Þ

The smaller the Hausdorff distance, the more similar the images.

Here, we took the 95th percentile of the Hausdorff distance, which is

widely used; for example, in the evaluation of brain tumor segmenta-

tion (Menze et al., 2015), as it allows to overcome the high sensitivity

of the Hausdorff distance to outliers.

2.6 | Statistical analysis

The Shapiro–Wilk test was performed to compare all evaluation met-

rics (Dice coefficient, Hausdorff distance) obtained from the T1-w

sequences among the different brain extraction algorithms for normal-

ity. We report descriptive statistics (median, interquartile range [IQR])

TABLE 1 Characteristics of the datasets analyzed within the present study

EORTC-26101

LPBA40 NFBS CC-359Training set Test set

Patients (n) 372 211 40 125 359

MRI exams (n) 1,568 833 40 125 359

MRI exams per patient (median, IQR) 4 (3–6) 4 (3–6) 1 1 1

Institutes (n) 25 12 1 1 2

Patients per institute (median, IQR) 7 (4–15) 11 (3–20) 1 1 60/299

MRI sequence (n)*

T1-w 1,568 833 40 125 359

cT1-w 1,623 898 – – –

FLAIR 1,940 895 – – –

T2-w 1,455 793 – – –

MR vendors (n)

Siemens 535 395 – 125 120

Philips 350 157 – – 119

General electric 640 267 40 – 120

Toshiba 12 – – – –

Unknown 31 14 – – –

MR field strength (n)

1.0 T – 9 –– – –

1.5 T 631 78 40 – 179

3.0 T 216 317 – 125 180

1.5 or 3 T 619 415 – – –

Unknown 104 14 – – –

Abbreviations: IQR, interquartile range; LPBA40, LONI Probabilistic Brain Atlas; MRI, magnetic resonance imaging; NFBS, Nathan Kline Institute Enhanced

Rockland Sample Neurofeedback Study; CC-359, Calgary-Campinas-359.

*higher number of MRI sequences (as compared to total number of MRI exams) due to inclusion of both 2D and 3D acquisition (if available).
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for Dice coefficient and Hausdorff distance for all brain extraction

algorithms in each of the datasets. To test the general differences of

the different brain extraction algorithms in terms of their Dice coeffi-

cient and Hausdorff distance, we used a nonparametric Friedman or

Skillings–Mack test. The latter was used in the presence of missing

data that would prevent a listwise comparison (missing data resulted

from those instances where the brain mask from one of the six com-

peting brain extraction algorithms was not generated after exceeding

the predefined time limit of 60 min for processing a single T1-w

sequence, no time limit was used for MONSTR. For post hoc compari-

sons, one-tailed Wilcoxon matched-pairs signed-rank tests were used

to assess the performance of the HD-BET algorithm in comparison to

the six competing brain extraction methods. The p-values from all post

hoc tests within each of the dataset were corrected for multiple com-

parisons using the Bonferroni adjustment. The effect sizes of the post

hoc comparisons were interpreted using the Cohen classification

(≥0.1 for small effects, ≥0.3 for medium effects, and ≥ 0.5 for large

effects; Cohen, 1988).

For all other imaging sequences (i.e., cT1-w, FLAIR, and T2-w) ana-

lyzed within the EORTC-26101 dataset using HD-BET and MONSTR,

we report descriptive statistics (median, IQR) for Dice coefficient and

Hausdorff distance. Moreover, one-tailed Wilcoxon matched pairs

signed-rank tests were used to assess the performance of the HD-BET

algorithm in comparison to MONSTR on these imaging sequences.

All statistical analyses were performed with R version 3.4.0

(R Foundation for Statistical Computing, Vienna, Austria). p-Values

<.05 were considered significant.

3 | RESULTS

Within the EORTC-26101 training set (consisting of n = 6,586 individ-

ual MRI sequences with precontrast and postcontrast T1-weighted

[T1-w, cT1-w], FLAIR, and T2-weighted [T2-w] sequences from 1,568

MRI exams in 372 patients acquired across 25 institutions; Table 1),

the HD-BET algorithm acquired the relevant knowledge to generate a

brain mask irrespective of the type of MRI sequence and in the pres-

ence of pathologies. Independent application and testing of the HD-

BET algorithm in the EORTC-26101 test set (consisting of n = 3,419

individual MRI sequences from 833 exams in 211 patients acquired

across 12 institutions; Table 1) yielded a median Dice coefficient of

97.6 (IQR, 97.0–98.0) on T1-w, 96.9 (IQR, 96.1–97.4) on cT1-w, 96.4

(IQR, 95.2–97.0) on FLAIR, and 96.1 (IQR, 95.2–96.7) on T2-w

sequences. Corresponding median Hausdorff distances (95th percen-

tile) were 2.7 mm (IQR, 2.2–3.3 mm) on T1-w, 3.2 mm (IQR, 2.8–

4.1 mm) on cT1-w, 4.2 mm (IQR, 3.4–5.0 mm) on FLAIR, and 4.4 mm

(IQR, 3.9–5.0 mm) on T2-w (Figure 1 and Table 2). The performance

was confirmed upon testing the HD-BET algorithm in three indepen-

dent public datasets (LPBA40, NFBS, and CC-359) which are specifi-

cally designed to evaluate the performance of brain extraction

algorithms. In contrast to the EORTC-26101 dataset, application of

the HD-BET algorithm in these public datasets was restricted to T1-w

sequences since no other type of MRI sequence was provided.

Specifically, we yielded median Dice coefficients of 97.5 (IQR, 97.4–

97.7) for LPBA40, 98.2 (IQR, 98.0–98.4) for NFBS, and 96.9 (IQR,

96.7–97.1) for the CC-359 datasets with corresponding median

Hausdorff distances (95th percentile) of 2.9 mm (IQR, 2.5–3.0 mm),

2.8 mm (IQR, 2.4–2.8 mm), and 1.7 mm (IQR, 1.4–2.0 mm) confirming

both reproducibility and generalizability of the performance of the

HD-BET algorithm (Table S1, Supporting Information).

Next, we compared the performance of the HD-BET algorithm with

six publicly available and frequently used brain extraction algorithms on

each dataset (EORTC-26101 test set as well as the public LPBA40, NFBS,

and CC-359 datasets). For all competing brain extraction algorithms

(except MONSTR), comparison was restricted to T1-w sequences since

they have primarily been developed for processing of T1-w sequences

and not optimized for independent processing of other sequence types

(i.e., cT1-w, FLAIR, or T2-w). MONSTR was applied to all available MRI

sequences. We applied uniform nonparametric testing due to the evi-

dence of non-normal data distribution for the majority of measurements

(p < .05 on Shapiro–Wilk test for 49/56 measurements—Table S2,

Supporting Information). The obtained first-level statistics showed a sig-

nificant difference between the investigated brain extraction methods for

both evaluation metrics (Dice coefficient, Hausdorff distance) in each

dataset (p < .001 for all comparisons—Table S3, Supporting Information).

Specifically, within the EORTC-26101 test set post hoc Wilcoxon

matched-pairs signed-rank test revealed significantly higher perfor-

mance of the HD-BET algorithm (for both Dice coefficient and

Hausdorff distance) as compared to each of the six competing brain

extraction algorithms (Bonferroni-adjusted p < .001 for all compari-

sons) maintaining a large effect size in 83% of the tests (10/12 com-

parisons) and medium effect size in the remaining 17% (2/12

comparisons) (Figures 2 and 3 and Table 3). Similarly, within the three

public datasets, post hoc Wilcoxon matched-pairs signed-rank tests

again demonstrated significantly higher performance of the HD-BET

algorithm (for both Dice coefficient and Hausdorff distance) or all but

two comparisons Bonferroni-adjusted p < .001; only the Hausdorff

distance of the FSL-BET algorithm in the LPBA40 dataset and the

MONSTR algorithm in the NFBS dataset were not significantly differ-

ent from the HD-BET algorithm with an Bonferroni-adjusted p = .221

and p = 1). Moreover, 91% of the tests (31/34 comparisons) revealed

a high effect size and 9% (3/31 comparisons) a medium effect (Fig-

ures 2 and 3 and Table 3). The improvement yielded with the HD-BET

algorithm as compared to all competing algorithms within the different

datasets ranged from +1.16 to +2.50 for Dice and −0.66 to −2.51 mm

for the Hausdorff distance (95th percentile) and was most pronounced in

the EORTC-26101 dataset (Table 4). Figures 4 and 5 depict representa-

tive cases for the brain algorithms and sequences at different Dice values

(5th percentile and median) from the EORTC-26101 test set and high-

lights the challenges associated with brain extraction in the presence of

pathology and treatment-induced tissue alterations.

Average processing time for brain extraction of a single MRI

sequence required 32 s of processing with the HD-BET algorithm

(NVIDIA TITAN Xp GPU). In contrast, average processing time of a

single T1-w sequence with one of the six competing public brain

extraction algorithms ranged from 3 s to 34.6 min (specifically,
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averages were 3 s for BSE, 17 s for BET, 1.4 min for ROBEX, 4.0 min

for 3dSkullstrip, 10.7 min for BEaST, and 34.5 min for MONSTR) on a

8-core Intel Xeon E5-2640 v3 CPU.

For broader accessibility, we provide a fully functional version of

the presented HD-BET prediction algorithm for download via www.

neuroAI-HD.org.

TABLE 2 Descriptive statistics on brain extraction performance (median and interquartile range (IQR) for Dice coefficient and Hausdorff
distance) in the EORTC test set for the different MRI sequences (T1-w, cT1-w, FLAIR, T2-w)

MRI

sequence

type

DICE coefficient Hausdorff distance (95th percentile)

HD-BET MONSTR Statistics HD-BET MONSTR Statistics

median IQR median IQR abs(Z) p median IRQ median IRQ abs(Z) p

T1-w 97.6 (97.0–98.0) 95.4 (94.0–96.1) 30.62 <.001 3.3 (2.2–3.3) 4.43 (3.71–5.79) 26.72 <.001

cT1-w 96.9 (96.1–97.4) 94.6 (93.2–95.6) 26.48 <.001 3.9 (2.8–4.1) 5.48 (4.36–6.96) 26.92 <.001

FLAIR 96.4 (95.2–97.0) 92.4 (91.0–93.7) 32.16 <.001 5.0 (3.4–5.0) 8.15 (6.00–11.0) 31.30 <.001

T2-w 96.1 (95.2–96.7) 93.1 (92.0–94.0) 30.64 <.001 5.0 (3.9–5.0) 8.0 (5.78–10.0) 29.47 <.001

F IGURE 1 Dice coefficient and Hausdorff distance (95th percentile) obtained from the individual sequences T1-w, cT1-w, FLAIR, and T2-w
with the HD-BET algorithm and for MONSTR in the EORTC-26101 test set using violin charts (and superimposed box plots). Obtained median
Dice coefficients were > 0.95 for all sequences. The performance of brain extraction on cT1-w, FLAIR, or T2-w in terms of Dice coefficient
(higher values indicate better performance) and Hausdorff distance (lower values indicate better performance) closely replicated the performance
seen on T1-w (left column zoomed to the relevant range of Dice values ≥0.9 and Hausdorff distance [HD95] ≤15 mm; right column depicting the
full range of the data) [Color figure can be viewed at wileyonlinelibrary.com]
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4 | DISCUSSION

Here, we present a method (HD-BET) that enables rapid, automated,

and robust brain extraction in the presence of pathology or treat-

ment-induced tissue alterations, is applicable to a broad range of MRI

sequence types, and is not influenced by variations in MRI hardware

and acquisition parameters encountered in both research and clinical

practice. We demonstrate generalizability of the HD-BET algorithm

on the EORTC-26101 test set with MRI sequences originating from

12 different institutions covering all major MRI vendors with a broad

variety of scanner types and field strengths as well as within three

independent public datasets. Importantly the EORTC test set is inde-

pendent from the EORTC training set, since the institutions from

which the imaging data originate differ. The HD-BET algorithm yields

F IGURE 2 Comparison of Dice coefficients between the HD-BET brain extraction algorithm and the six public brain extraction methods for
each of the test datasets using violin charts (and superimposed box plots) [higher values indicate better performance]. Obtained median Dice
coefficients were highest for the HD-BET algorithm across all datasets (see left column visualizing the relevant range of Dice values ≥0.9). Note
the spread of the Dice coefficients, which is consistently lower for the HD-BET algorithm (right column visualizing the whole range of Dice
values) [Color figure can be viewed at wileyonlinelibrary.com]
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state-of-the-art performance in both the EORTC-26101 test set as

well as three publicly available reference datasets (LPBA40, NFBS,

CC-359). This finding reflects the limitations of many existing brain

extraction algorithms which are usually not optimized for processing

heterogeneous imaging data with pathological tissue alterations or

varying hardware and acquisition parameters (Fennema-Notestine

et al., 2006) and consequently may introduce errors in downstream

analysis of MRI neuroimaging data (Beers et al., 2018). We addressed

this within our study by training (and independent testing) the HD-

BET algorithm with data from a large multicentric clinical trial in

neuro-oncology which allowed to design a robust and broadly applica-

ble brain extraction algorithm that enables high-throughput

processing of neuroimaging data. Moreover, the improvement in the

brain extraction performance yielded by the HD-BET algorithm was

F IGURE 3 Comparison of Hausdorff distance (95th percentile) between the HD-BET algorithm and the six public brain extraction methods
for each of the test datasets using violin charts (and superimposed box plots; lower values indicate better performance). The median Hausdorff
distance was lowest for the HD-BET algorithm across all datasets (see left column visualizing the relevant range of Hausdorff distance ≤15 mm).
Note the spread of the Hausdorff distance, which is consistently lower for the HD-BET algorithm (right column visualizing the whole range of

values) [Color figure can be viewed at wileyonlinelibrary.com]
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most pronounced in the EORTC-26101 dataset, again reflecting the

limitations of the competing brain extraction algorithms when

processing heterogeneous imaging data with abnormal pathologies or

varying acquisition parameters.

The HD-BET algorithm is able to perform brain extraction on vari-

ous types of common anatomical MRI sequence without prior knowl-

edge of the sequence type. From a practical point of view, this is of

particular importance since imaging protocols (and the types of

sequences acquired) may vary substantially. The majority of brain

extraction algorithms are optimized to process T1-w MRI sequences

(Han et al., 2018; Iglesias et al., 2011; Lutkenhoff et al., 2014) and fall

short during processing of other types of MRI sequences (e.g., T2-w,

FLAIR, or cT1-w images). We addressed this shortcoming and demon-

strate that the HD-BET algorithm also performs well on cT1-w, FLAIR,

or T2-w MRI and closely replicates the performance observed for

brain extraction on T1-w sequences. Our algorithm also outperformed

MONSTR, which is explicitly designed to do brain extraction in the

presence of pathologies and on other than T1-w MRI sequences in

the EORTC-26101 test set as well as the public LPBA40 and CC-359

test sets.

The runtime of the HD-BET algorithm for processing a single MRI

sequence is in the order of half a minute with modern hardware,

including all preprocessing and postprocessing steps. More advanced

hardware would allow to further improve processing time, although

the existing setup already performed well in comparison to the

runtime of the other competing brain extraction algorithms. For exam-

ple, the second best performing algorithm in the EORTC-26101 test

set (MONSTR) required on average more than 30 min for processing

of a single MRI sequence.

We acknowledge that although many different brain extraction

algorithms have been proposed and published, we essentially focused

on the most commonly used algorithms. Moreover, a case-specificT
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TABLE 4 Improvement of the performance for brain extraction
with the HD-BET algorithm on T1-w sequences. The difference for
each of the competing algorithms (as compared to HD-BET) was
calculated on a case-by-case basis and summarized for all algorithms for
each dataset by calculating the median and IQR. Positive values for the
change in Dice coefficient (i.e., higher values with HD-BET), and
negative values for the change in the Hausdorff distance (i.e., lower
values with HD-BET) indicate better performance

Dice coefficient Hausdorff distancea

Median IQR Median IQR

EORTC-26101

test set

+2.50 +1.47, + 4.26 −2.46 −4.82, −1.41

LPBA40 +1.16 +0.62, +4.30 −0.66 −4.28, −0.14

NFBS +1,67 +0.67, +3.85 −1.91 −3.39, −0.92

CC-359 +2.11 +1.02, +3.88 −2.51 −3.86, −1.43

aUsing the 95th percentile of the Hausdorff distance (mm).

Abbreviations: IQR, interquartile range; LPBA40, LONI Probabilistic Brain

Atlas; MRI, magnetic resonance imaging; NFBS, Nathan Kline Institute

Enhanced Rockland Sample Neurofeedback Study; CC-359,

Calgary-Campinas-359.
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tuning of parameters from these brain extraction algorithms may have

allowed to improve their performance to some extent (Iglesias et al.,

2011; Popescu, et al., 2012). This is particularly the case for BEaST,

where a mismatch between source and target domain can result in a

significant drop in performance (Eskildsen et al., 2012; Novosad &

Collins, 2018). Dataset-specific adaptations are, however, not a practi-

cal approach, especially in the context of high-throughput processing.

Moreover, we acknowledge that manually correcting brain masks in a

single case can take hours (Puccio et al., 2016). Although our approach

with generating a GT brain mask in a large-scale dataset was more

focused on correcting major errors (e.g., around pathologies,

resection cavities or due to varying hardware or acquisition parame-

ters), even imperfect GT labels can lead to high quality deep-learning

segmentation algorithms when using the UNET architecture that was

employed in our study (Heller, Dean, & Papanikolopoulos, 2018).

Moreover, the competitiveness of our approach was rendered by test-

ing on the public datasets (NFBS, CC-359, and LPBA40) where we

confirmed the performance of the HD-BET algorithm against an

independent high-quality GT. In addition, future studies will need to

evaluate the performance of the HD-BET algorithm in a broader range

of diseases in neuroradiology since our evaluation was essentially lim-

ited to cases with brain tumors (EORTC-26101 dataset) or cases with

only mild or no structural abnormalities (LPBA40, NFBS, CC-359

dataset). However, given the broad phenotypic appearance (and asso-

ciated posttreatment alterations) of brain tumors which were used for

training the algorithm we are confident that HD-BET is equally appli-

cable to the broad disease spectrum encountered in neuroradiology.

In conclusion, the developed and rigorously validated HD-BET

algorithm enables rapid, automated, and robust brain extraction in the

presence of pathology or treatment-induced tissue alterations, is

applicable to a broad range of MRI sequence types, and is not

influenced by variations in MRI hardware and/or acquisition parame-

ters encountered in both research and clinical practice. Taken

together, HD-BET is made publicly available via www.neuroAI-HD.org

and may become an essential component for robust, automated, high-

throughput processing of MRI neuroimaging data.

F IGURE 4 Representative cases showing the performance for T1-w images of the different brain extraction algorithms at the 5th percentile
and the median Dice coefficients in the EORTC-26101 test set. Depicted in red the calculated brain masks from different brain extraction
methods, in blue the ground-truth brain masks (for illustrative purposes only) and in pink their intersection. While BET, BEaST, and MONSTR tend

to underestimate the brain mask in these cases by removing brain tissue from the mask, 3DSkullStrip, BSE, and ROBEX tend to overestimate by
including nonbrain tissue (e.g., skull, fat, nasal, and orbital cavity) in the mask [Color figure can be viewed at wileyonlinelibrary.com]
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