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Despite considerable genetic heterogeneity underlying neurodevelopmental diseases, there is compelling evidence that
many disease genes will map to a much smaller number of biological subnetworks. We developed a computational
method, termed MAGI (merging affected genes into integrated networks), that simultaneously integrates protein–protein
interactions and RNA-seq expression profiles during brain development to discover ‘‘modules’’ enriched for de novo
mutations in probands. We applied this method to recent exome sequencing of 1116 patients with autism and intellectual
disability, discovering two distinct modules that differ in their properties and associated phenotypes. The first module
consists of 80 genes associated with Wnt, Notch, SWI/SNF, and NCOR complexes and shows the highest expression early
during embryonic development (8–16 post-conception weeks [pcw]). The second module consists of 24 genes associated
with synaptic function, including long-term potentiation and calcium signaling with higher levels of postnatal expression.
Patients with de novo mutations in these modules are more significantly intellectually impaired and carry more severe
missense mutations when compared to probands with de novo mutations outside of these modules. We used our approach
to define subsets of the network associated with higher functioning autism as well as greater severity with respect to IQ.
Finally, we applied MAGI independently to epilepsy and schizophrenia exome sequencing cohorts and found significant
overlap as well as expansion of these modules, suggesting a core set of integrated neurodevelopmental networks common
to seemingly diverse human diseases.

[Supplemental material is available for this article.]

There has been considerable progress in the discovery of de novo

mutations and candidate genes in patients with neurodevelopmental

and neuropsychiatric diseases, such as autism spectrum disorders

(ASD) (Iossifov et al. 2012; Neale et al. 2012; O’Roak et al. 2012a;

Sanders et al. 2012), intellectual disability (ID) (de Ligt et al. 2012;

Rauch et al. 2012), epilepsy (Allen et al. 2013), and schizophrenia

(Gulsuner et al. 2013; Fromer et al. 2014). The excess of severe,

truncating mutations but the low frequency of recurrence in the

same genes has led to the prediction of hundreds to thousands of

genes (Iossifov et al. 2012; O’Roak et al. 2012a; Sanders et al. 2012;

Purcell et al. 2014) underlying sporadic cases of disease. Despite

this genetic heterogeneity, there is emerging evidence that subsets

of these genes are highly connected in protein–protein interaction

(PPI) or coexpression networks or in modules working in concert

toward similar biological functions (for summaries, see O’Roak

et al. 2012b; Allen et al. 2013; Gulsuner et al. 2013; Mitra et al.

2013; Parikshak et al. 2013; Willsey et al. 2013). Such networks are

anticipated to be the future targets of disease therapy (Stessman

et al. 2014).

Although few methods allow the use of both PPI and coex-

pression networks (e.g., Lin et al. 2010), most studies on neuro-

logical diseases focus primarily on one type of network while

ignoring information from other networks or using such data in

a post hoc fashion to further refine and filter genes. O’Roak et al.

(2012b), for example, focused exclusively on the PPI network

when deriving their CHD8–beta-catenin network and restricted

their analysis to only 39% of the most severe de novo mutations

discovered in ASD patients. Similarly, the AXAS approach focused

on a specific set of predefined candidate genes and their first-order

neighbors, based on PPI networks, transcription factor, andmiRNA

binding sites (Cristino et al. 2014). NETBAG also uses the PPI

network, together with KEGG pathways and many other various

descriptors, in an integrative approach in order to detect modules

of genes affected by CNVs in autism (Gilman et al. 2011) and

a combination of CNVs and SNVs in schizophrenia (Gilman et al.

2012). However, there are several known limitations for ap-

proaches that depend exclusively on PPI data sets. First, PPI data

sets are far from complete (Hart et al. 2006), especially when only

highly confident edges are considered (Supplemental Table 1).

Second, PPI data sets are biased due to emphases on published

literature (Hakes et al. 2008). Also, PPI networks are often limited to

a single splicing isoform (Corominas et al. 2014). Coexpression

data are less biased and therefore the incorporation of coex-

pression with PPI helps to mitigate such limitations.

In contrast, Parikshak et al. (2013) applied the WGCNA

(weighted gene coexpression network analysis) method (Horvath

et al. 2006) to find a set of large, mutually exclusive modules (av-

erage size > 600 genes) that are highly coexpressed during normal

brain development and then selected a subset of these modules

enriched for de novo mutations in autism. The approach was ini-

tially unguided by themutations in cases and controls and did not

leverage protein interaction data. Enrichment for de novo muta-

tions as well as PPI was tested post hoc to the detection ofmodules.
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Although the final significant modules were quite large (overall >

4400 genes across five modules), they did not include some of the

most significant genes associated with ASD, such as CHD8,

DYRK1A, and GRIN2B (O’Roak et al. 2012b). The DAWN method

(Liu et al. 2014) also employs WGCNA as part of a hidden Markov

random field algorithm in order to predict risk ASD genes based on

TADA scores (He et al. 2013). These risk ASD genes are later used to

identify coexpression or PPI subnetworks for ASD.

Other studies (e.g., Gulsuner et al. 2013; Willsey et al. 2013)

focus only on specific subsets of genes, group them all into

a common set, and search for other genes that share similar ex-

pression characteristics. Using this strategy, Willsey et al. (2013)

were able to suggest specific neurodevelopmental subtissues and

time points critical for autism. They restricted their seeds to nine

high-confidence autism genes seen across multiple ASD studies

and then expanded this set into modules by adding—for each one

of them—20 more genes showing the highest coexpression across

different brain regions and different time points. This approach

identified four significant networks covering 437 genes, and it is

not clear how it scales with more samples sequenced. Moreover,

there is the tacit assumption that the selected genes work together

and can therefore be expanded into a single module. Other studies

aim at finding modules not specific to any certain disease (Ulitsky

and Shamir 2007) or at finding pathways dysregulated in cases

versus controls based on differential expression analysis (Ulitsky

et al. 2010; Chowdhury et al. 2011).

Recent studies on ASD and schizophrenia have found that

genes with putative loss-of-function (LoF) mutations in cases not

only are more densely connected in PPI networks but also dem-

onstrate higher coexpressionwith each other (O’Roak et al. 2012b;

Gulsuner et al. 2013). Motivated by this observation, we have

developed a novel method that simultaneously integrates in-

formation from both PPI and coexpression networks to identify

highly connected modules in both types of networks that are also

enriched in mutations in cases and not in controls. We call this

method MAGI, short for merging affected genes into integrated

networks. MAGI is based on a combinatorial optimization algo-

rithm that aims to maximize the number of mutations in the

modules while accounting for gene length and distribution of

putative LoF and missense mutations in cases and controls. MAGI

is generic and can be applied to any disease, given a list of de novo

mutations in cases and relevant coexpression information. Using

neurodevelopmental RNA-seq data from the BrainSpan Atlas

(http://www.brainspan.org/), we have applied it to exome se-

quence data generated from ASD, ID, epilepsy, and schizophrenia,

providing a comprehensive comparison of common and specific

gene modules for these diseases.

Results

Algorithm

Wedefine a ‘‘diseasemodule’’ as a set of genes that is enriched in de

novo mutations in cases compared to controls and show evidence

of both a high number of protein interactions and high coex-

pression during brain development (for formal problemdefinition,

see Methods). We initially considered the union of de novo mu-

tations obtained from four published ASD (Iossifov et al. 2012;

Neale et al. 2012; O’Roak et al. 2012a; Sanders et al. 2012) and two

ID (de Ligt et al. 2012; Rauch et al. 2012) studies as input cases with

truncated variants obtained from the NHLBI Exome Sequencing

Project (ESP) (http://evs.gs.washington.edu/EVS/) as controls.

Similar to previous studies (O’Roak et al. 2012b; Gulsuner et al.

2013; Parikshak et al. 2013;Willsey et al. 2013; Krummet al. 2014),

we also found that genes with de novo mutations in probands are

more likely to be connected by PPI and have higher coexpression

when compared to de novo mutations in siblings, indicating that

comparisons between affected and unaffected siblings from the

same family provide a powerful approach to test the validity of our

method. In addition, using a permutation test (n = 10,000), we

found that genes with de novo LoF or missense mutations in pro-

bands have a significantly higher number of protein interactions

connecting them (P < 0.00029, Supplemental Fig. 40). For the pur-

pose of this study, we use the HPRD (Keshava Prasad et al. 2009) and

STRING (Szklarczyk et al. 2011) databases for PPI and RNA-seq data

from the BrainSpan Atlas for coexpression analyses.

A na€ıve approach would be to simultaneously consider all

possible subnetworks that show a significant number of protein

interactions and high coexpression. Since the optimization version

of this problem is computationally NP-hard (for formal problem

definition, seeMethods), we employed a two-stage heuristic (Fig. 1).

Using the color-coding algorithm (Alon et al. 1995), we first define

a large set of small ‘‘seed pathways,’’ each including five to eight

genes, enriched in de novo mutations. For this, we utilize a scoring

function that integrates both de novo LoF and missense mutations,

taking into account the length of the genes.Other scoring functions,

such as TADA (Heet al. 2013),maybe implemented. Every twogenes

along these paths are required to be highly coexpressed (the top 5%

of all coexpression values) and have a PPI edge connecting them.

Second, the method merges these seed pathways into larger

modules (Fig. 1 and Methods). For this purpose, we developed

a random-walk approach that starts with a random seed pathway

and continually merges it with other seed pathways, as long as the

score of the resultingmodule does not decrease and the constraints

regarding the PPI density and coexpression are satisfied. Repeating

this step produces a set of potentially overlapping modules. Last,

a local search routine is performed in which single genes are added

or removed from the module to improve the total score and find

a local maximal module (Fig. 1). Among all the local optimal so-

lutions, we denote the module with the highest score as the Best

Module (M_Best). To account for other suboptimal modules with

high scores (e.g., modules with scores within the top one percen-

tile) that overlapM_Best, MAGI constructs an ‘‘ensemble’’ of genes,

i.e., a union of the genes in these suboptimal modules. For this

ensemble of genes we can calculate how many times each gene

appears in different suboptimal solutions and finally assign

a ‘‘confidence score’’ to every gene. For simplicity, we denote genes

that appear in > 5% of the suboptimal modules as M_Extended.

To examine whether other distinct modules can be identified,

we remove the genes found inM_Best from the PPI and coexpression

networks and rerunMAGI. This process canbe iteratedmultiple times

so that at each iteration imodule Mi is generated. Modules found to

be nonsignificant or that show high overlap with modules detected

in the previous iterations are filtered (see Supplemental Material).

Simulations are used in order to assess the significance of the

modules. For this, we shuffle themutations seen in cases using three

different null models: The first model (Null-1) is based on the length

of the gene, while the other two adjust for transition/transversion

ratios from the ESP (Null-2) (Tennessen et al. 2012) and fromwhole-

genome de novo mutation rates (Null-3) (Kong et al. 2012). The

latter was previously used for an enrichment analysis of genes car-

rying de novo mutations (O’Roak et al. 2012a). To eliminate po-

tential bias, we enforced an approximately similar degree of PPI in

our simulations as seen in the observed data (Null-2 and Null-3).
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Similar simulations were performed by shuffling the mutations

observed in unaffected siblings and controls using the same null

models. The full details of MAGI and the simulation approach are

provided (Methods; Supplemental Material).

MAGI was applied to exome de novo

mutation data sets (Table 1) obtained from

nine recently published studies on ASD

(Iossifov et al. 2012; Neale et al. 2012;

O’Roak et al. 2012a; Sanders et al. 2012),

ID (de Ligt et al. 2012; Rauch et al. 2012),

epilepsy (Allen et al. 2013), and schizo-

phrenia (Gulsuner et al. 2013; Fromer

et al. 2014).

Autism and intellectual disability

Due to the considerable comorbidity be-

tween diagnoses, we applied MAGI to the

union of de novomutations among autism

and IDprobands (n = 877, Table 1).Wenote

that the highest scoring seed pathway

(comprised of eight genes: STXBP1,

SYNGAP1, GRIN2B, DLG4, STX1B, PRKCB,

GRIN1, andDLG3) is significantly enriched

in the KEGG long-term potentiation sig-

naling pathway (P < 3.23 10�2, Bonferroni

correction) and the GO annotation synap-

tic function (regulation of synaptic trans-

mission, regulation of transmission of nerve

impulse, and regulation of neuronal syn-

aptic plasticity) (P < 0.035, Bonferroni

correction). All eight genes are associated

with neurodevelopmental disease—OMIM

(www.omim.org) and AISS (Krumm et al.

2013)—although only four have de novo

mutations in probands (3/4 are LoF). This

top-scoring seed highlights the potential

power of using both PPI and coexpression

data simultaneously to discover sets of

genes that have a similar function with

disease relevance. By combining the seed

pathways (Fig. 1) and reiterating module

discovery, we identified two distinct dis-

jointmodules (M1andM2) associatedwith

autism and ID (Figs. 2 and 3, respectively).

For module 1 (Fig. 2), M1_Best con-

sists of 48 genes, while M1_Extended is

comprised of 80 genes corresponding to

28 LoF and 39 missense mutations (Fig.

2). M1_Best is significantly (P < 0.005)

enriched in de novo mutations (in both

overall score of genes and total number of

truncating mutations) in comparison to

all three null models (Fig. 2B,C; Supple-

mental Fig. 23), suggesting that indeed de

novo mutations observed in cases can be

clustered into a highly connected and

coexpressed module, as opposed to the

same number of randomly shuffled muta-

tions. In addition, M1_Best is significantly

enriched in previously described autism/

neurodevelopmental genes (Table 2). This

is in stark contrast to the bestmodule found using unaffected sibling

data, which does not differ significantly to any of the three null

models and is not enriched in autism/neurodevelopmental genes

(Fig. 2D,E; Table 2). M1_Extended is strongly associated with chro-

Figure 1. Flowchart of MAGI. Given PPI and coexpression networks and case and control mutations,
MAGI detects highly connected modules that are enriched for mutations in cases. The first phase cal-
culates a score for each gene in the networks and selects seed pathways with high scores based on an
extension of the color-coding algorithm (Alon et al. 1995). In the second phase, MAGImerges the seeds
intomodules using a random-walk approach and improves each one of them by applying a local search.
The output consists of the best module detected, as well as a set of suboptimal modules. Each gene is
assigned a ‘‘confidence score’’ according to its frequency within suboptimal modules.

Table 1. Phenotype distribution of de novo mutations/modules

De novo mutations Significant modules

Samples Missense LoF or indels M1_Extendeda M2_Extended

ASD + ID 1116 696 181 80 (66) 24 (20)
ASD (IQ $ 70) 603 383 93 78 (45) —
ID (IQ < 70) 417 278 80 68 (43) 19 (14)
Schizophrenia 722 466 86 52 (33) 26 (11)
Epilepsy 264 194 35 35 (13) —
Siblings_Control 697 368 61 — —

aNumber of genes (and in parentheses number of distinct samples with de novo mutations) in the
modules.
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Figure 2. (Legend on next page)
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matin remodeling (Supplemental Fig. 27), while bothM1_Best and

M1_Extended are significantly enriched for theWnt (P < 3.23 10�3

and P < 7.1 3 10�5) and the Notch (M1_Extended; P < 1.4 3 10�3)

signaling pathways (after Bonferroni correction). We also note

overlap with other SWI/SNF (PBRM1, ARID1B, SMARCC1, and

SMARCC2), NCOR, and TCF complexes (Fig. 2A): multiprotein

complexes critical for normal neuronal development (Ille and

Sommer 2005; De Ferrari and Moon 2006; Ronan et al. 2013).

Probands with de novo LoF mutations inM1_Extendedwere found

to have significantly lower IQ than all other probands with LoF

mutations (P < 0.018). Similarly, probands with de novo LoF or

missense mutations in M1_Extended were found to have signifi-

cantly lower IQ compared with other probands with the same

types of mutations (P < 0.016). TheM1_Extendedmodule genes are

highly expressed for all distinct subtissues of the brain early during

development, with peak expression between 8–16 pcw (Fig. 4B;

Supplemental Figs. 29, 31a). We confirmed this pattern using ex-

pression data from the Gene Atlas (Gene Expression Omnibus ac-

cession number GSE1133), which showed the highest expression

in fetal brain compared to the adult brain or all other brain tissues

(Supplemental Fig. 32).

After excludingmutations and genes associatedwithM1_Best,

we repeated MAGI and discovered a second module (Fig. 3).

M2_Extended includes 24 genes comprising a total of 10 LoF and 11

missensemutations in ASD + ID probands. Six genes carry de novo

LoF mutations, six genes harbor exclusively missense mutations,

and 12 have neither missense nor LoF mutations within currently

published data sets but are predicted to be highly related by

coexpression and PPI data. The module is enriched for synaptic

plasticity genes (CALM1, GRIN2A, GRIN2B, MAPK1, PRKCB, and

RPS6KA3; P < 1.6 3 10�5 after Bonferroni correction) (Supple-

mental Fig. 28) and for known neurodevelopmental disease genes

(Table 2; a sevenfold enrichment, P < 1.013 10�13). We found that

among probands with LoF or missense mutations in M2_Best or

M2_Extended, the number of individuals with IQ < 70 was highly

enriched (P < 0.006) compared to probands with LoF or missense

mutations outside these modules (Table 2). Similar to the M1

module, the M2_ Extended genes show a significantly higher level

of expression in the fetal brain (P < 0.001) compared to other tis-

sues. In contrast toM1, the average level of expression of the genes

is low prenatally, with a dramatic rise in expression post-natally

(Fig. 4B; Supplemental Figs. 30–32).

More than 50% of the mutations represented within these

two modules occur only as de novo missense mutations. Since the

pathological significance for missense mutations is less clear than

truncating mutations, we assessed their severity using the C-score

measure (Kircher et al. 2014). We find that proband missense

mutations inM1_Best have significantly (P < 0.01) higher C-scores

(n = 26, median = 20.15) when compared to de novo mutations of

probands outside the module (n = 667, median = 16.99) (Table 2).

Similarly, we find thatmissensemutations forM2have significantly

higher C-scores (P < 0.0002) (n = 11, median = 24.6) compared to

probands’ de novo missense mutations outside of the module (n =

682, median = 17.025). The most severe mutations (C-scores$ 32)

occur in six genes in M1 (TCF4, SUPT16H, CASK, GPS1, HDAC9,

and DHX9) and two genes in M2 (KCNH1 and three missense

mutations in STXBP1) (Fig. 4A).

Although the goal of this project was to consider all the brain

regions simultaneously, we have also applied MAGI to expression

data of specific brain regions separately. The regions considered

were the same as the ones analyzed by (Willsey et al. 2013),

namely, (1) primary visual cortex–superior temporal cortex, or

V1C-STC cluster; (2) prefrontal and primarymotor-somatosensory

cortex, or PFC-MSC cluster; (3) striatum (STR), hippocampus (HIP),

and amygdaloid (AMY); and (4) mediodorsal nucleus of thalamus–

cerebellar cortex, or MD-CBC cluster. For each of these regions, we

calculated the coexpression (Pearson correlation coefficient) be-

tween every pair of genes considering the time points from 8 pcw

to 1 yr after birth, and ranMAGI to generateM1_Best andM2_Best.

The overlap between the genes found in these four modules and

the original modules produced using the full data is provided

(Supplemental Figs. 34, 37). Modules produced for the V1C-STC

cluster and STR,HIP, andAMYweremost similar (> 70%overlap) to

the original modules, while the one produced for the MD-CBC

cluster was the most different (;0.55 overlap). Interestingly, some

of these region-specific modules include genes previously associ-

ated with autism (e.g., TRIP12, POGZ, and NOTCH3).

Phenotypic associations and overlap with schizophrenia
and epilepsy

We investigated the phenotypes associated with these modules

and their potential relationship to other neuropsychiatric and

neurological diseases. First, we divided the ASD + ID samples into

two distinct sets based on IQ, namely, probands with ID (IQ < 70,

with or without reported ASD) and samples with ASD but no ID

(IQ $ 70 or high-functioning autism). We reran MAGI indepen-

dently on each set and constructed gene modules as described

previously (Table 1). Although this treatment reduces the input

sample size and power, it focuses network construction on a more

homogenous set of disease phenotypes (Table 1). For IQ < 70 we

found two significant modules (based on the three null models,

P < 0.005 for both modules) that highly overlap the previous two

ASD + IDmodules (Fig. 5A). However, for ‘‘high-functioning’’ autism

(IQ $ 70), we found that significant modules only overlap with the

ASD+ IDM1module. This suggests thatmutations in theM2module

Figure 2. Module M1. (A) Genes detected as part of moduleM1_Extended are displayed as graph nodes using Cytoscape (Shannon et al. 2003). Node
colors reflect the score of each gene based on the number and type of de novo mutations: The more intense red color indicates a higher score, while gray
indicates a score of zero (no de novomutations observed). Edges (black lines) between two nodes represent genes that interact with each other according
to the PPI network and are also highly coexpressed (Pearson correlation coefficient r2 > 0:37, i.e., the genes are included in the top 5% of gene pair
coexpression during brain development). The innermost circle contains genes detected in > 99% of the suboptimal solutions. Subsequent concentric
circles display genes found in > 80%, 20%, and 5% (M1_Extended) of the suboptimal solutions, respectively (see Methods). Nodes with black outlines are
the ones detected in the optimal module detected (M1_Best). For a force-directed layout of this module, see Supplemental Figure 38. (B) The M1_Best
score (dashed black line) shown in comparison to the top-scored module of 200 simulations using null model Null-1. (C ) The number of LoF mutations
covered by the top-scoring module (M1_Best) found using proband mutations versus the number of simulated LoF mutations covered by the top-scoring
modules found under the same simulation. (D) The score of the top module found using siblings and control mutations (dashed black line) in comparison
to the top-scoredmodule of 200 simulations with the same number ofmutations using Null-1. The siblings’ simulations were performedwithout using the
ESP constraint (although similar results were obtained when an ESP constraint was applied). (E) The number of LoF mutations covered by the top-scoring
module found using siblings’ mutations versus the number of simulated LoF mutations covered by the top-scoring modules found using Null-1. Sibling
simulations were performed without filtering based on ESP controls.
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(i.e., long-term potentiation pathway/synaptic plasticity) are associ-

ated with lower IQ but less likely to be found in ASD probands with

IQ $ 70. While it is clear that M1 genes may be associated with

either phenotypic category (Fig. 5), it is interesting that the pro-

portion of truncating mutation differs. Only 27% (12/45) of the

high-functioning autism patients carry a de novo truncating mu-

tation in this module as compared to 40% (17/43) of patients with

ID. This finding is consistent with the observation that probands

with de novo LoF mutations in M1_Extended have significantly

lower IQ than other probands with LoF mutations (P < 0.018).

For comparison, we ran MAGI on two other sets of recently

published de novo mutations reported for adult schizophrenia and

encephalopathy epilepsy trios (Table 1), generating two significant

modules for schizophrenia and one for epilepsy (see Supplemental

Figure 3. Module M2. MAGI reiteration after M1 components removed. For details, see legend of Figure 2. For a force-directed layout of this module,
see Supplemental Figure 39.
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Figure 4. Severity of missense mutations and differences in temporal patterns of expression. (A) The distribution of C-scores of probands’ missense
mutations found insideM1_Extended orM2_Extended, outsideM1_Extended andM2_Extended, and siblings’ and controls’ missensemutations. (B) Average
normalized expression of all brain subtissues for M1_Extended and M2_Extended during brain development. Error bars represent mean 6 SEM.
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Figure 5. Overlap of the modules identified for different neurodevelopmental diseases. (A) Venn diagram representing the overlap between genes that
carry de novomutations and are detected as part of the first modules when analyzing ASDwithout ID (IQ$ 70), IDwith or without reported ASD (IQ < 70),
and schizophrenia. Genes with LoF mutations are colored in red. Genes with only missense mutations are colored in black. Asterisks indicate genes for
whichmutations have been observed in two different groups. (B) Venn diagram representing the overlap between genes that carry de novomutations and
are detected as part of the second module of ID, the second module of schizophrenia, and the first module of epilepsy. The P-value reported for each
disease is the maximum P-value of the three null models.

Hormozdiari et al .

150 Genome Research
www.genome.org



Data 1). The epilepsy M1_Extended is enriched for genes associated

with SNARE interaction and vesicular transport pathways with P <

0.03 after Bonferroni correction (KEGGpathways).We also observed

a very strong enrichment of autism and ID (ASD + ID) and epilepsy

modules for FMRP targets (Darnell et al. 2011). More than 70% (17/

24) of M2_Extended genes (ASD + ID) are known FMRP targets (P <

0.00001), while the epilepsy M1_Extended shows > 61% (22/36)

overlap, representing a 9.5-fold enrichment in FMRP targets. In

agreement with a recent publication (Fromer et al. 2014), we also

find overlap among ASD, ID, and schizophrenia networks. The

overlap is particularly pronounced among the M1 modules where

27% (12/45) of schizophreniaM1_Extended genes overlap the high-

functioning autism and ID modules. Genes such as CUL3,

ZMYND11, SMARCC2, and GRIN2A are noteworthy as they are

covered by more than one disease module (Fig. 5A,B) and have in-

deed mutated sporadically in different disease studies. In addition,

one gene, POGZ, shows very high coexpression with M1_Extended

from ASD and ID studies and has been seen to have multiple de

novomutations in ASD and ID as well as schizophrenia. Combined,

the data suggest either comorbidity or underlying common neuro-

logical pathways with diverse disease outcomes. The networks we

have defined provide a framework to explore these possibilities.

Discussion
Detecting PPI, coexpression, and gene-ontology networks related

to neurodevelopmental and neuropsychiatric diseases is an active

area of research (Gilman et al. 2011; Sakai et al. 2011; Voineagu

et al. 2011; Ben-David and Shifman 2012). MAGI differs from

previous approaches in that it simultaneously considers both PPI

and coexpression data while trying to cover genes that are

enriched in mutations in probands when compared to controls.

Comparing our results to other network approaches (e.g., AXAS

[Cristino et al. 2014], NETBAG [Gilman et al. 2011], and DAWN

[Liu et al. 2014]) highlights the importance of using both data

sources (Supplemental Figs. 12–21; Supplemental Tables 2–4).

Modules that were generated using PPI-based approaches seem to

have a substantial number of gene pairs with low coexpression

during brain development. Comparison to other recently reported

coexpression-based networks (Parikshak et al. 2013; Willsey et al.

2013) shows overlap as well as substantial differences in network

membership: Our predicted ASD modules are smaller (Supple-

mental Table 2) and show a greater enrichment with known neu-

rodevelopmental disease genes (Supplemental Figs. 14, 15). As

more samples are sequenced and additional de novo variants are

discovered,MAGImodules will become further refined in addition

to revealing previously undiscovered modules.

An advantage of MAGI stems from its reliance on the de novo

mutations to directly guide the generation of the modules, as op-

posed to first defining modules and then testing for a significant

enrichment ofmutations. There are also, however, limitations.Not

all biological interactions will involve protein interactions (i.e.,

RNA–protein or protein–DNA), and current protein interaction

network databases are largely incomplete, leading to missing

edges. As a result, some of the genes with multiple de novo mu-

tations (POGZ, SETBP1, ADNP, and SCN2A) demonstrate high

coexpression with the detected modules but fail to incorporate

into specificmodules due to lack of sufficient PPI edges. Indeed, we

find a significant enrichment of truncating de novo mutations in

genes outside of these two modules, which are coexpressed with

modules M1 and M2 (Supplemental Fig. 41). An area of future

development, then, will be to extend membership (with modified

penalty parameters) to genes that are highly coexpressed but not

directly connected to the module by a protein interaction.

Our analysis of ASD and ID suggests two fundamentally dis-

tinct modules with different properties and phenotypic manifes-

tations. TheM1_Extendedmodule is significantly enriched in genes

with chromatin remodeling function and includes many genes

encoding the SWI/SNF complex as well as genes associated with

NCOR/HDAC3, Notch, and Wnt signaling pathways. Genes

within this module show the highest level of expression early in

development (8–16 pcw). In contrast, the M2_Extended module is

enriched in synaptic genes associated with long-term potentia-

tion/calcium signaling and shows the highest level of expression

postnatally (birth to 1 yr) as has been observed for other networks

(Willsey et al. 2013). Patients with LoF mutations within M2 are

much more likely to be intellectually disabled (IQ < 70) when

compared to M1. Although the M1_Extended module is more

strongly associated with autism, the proportion of de novo trun-

cating mutations in that module (27%) among high-functioning

autism individuals (IQ > 70) decreases compared to those that are

intellectually disabled (40%).

In our analysis, we find that de novo missense mutations

within M1 or M2 genes show significantly greater severity when

compared to de novo missense mutations outside of the gene

networks (Fig. 4A). Thus, one important application of MAGI is to

discriminate possible disease-associated missense mutations—

a current bottleneck of most exome sequencing studies of parent–

child trios. A clear-cut example is the gene STXBP1 (syntaxin-

binding protein 1) identified as part of ASD + ID M2 and epilepsy

M1 modules. STXBP1 is known to play a role in the release of

neurotransmitters and is a regulatory protein for the SNARE

complex; truncating mutations in it contribute to early infantile

epilepsy (Hamdan et al. 2009). In our analysis, three severe de novo

missense mutations were identified among ASD and ID probands;

and four missensemutations were identified in epilepsy probands,

three of which carry a high C-score (> 30). We propose module

membership and the severity of missense mutations as criteria to

select de novo missense mutations in candidate genes for further

prioritization. We note that several genes within the modules

have, as of yet, no known truncating or missense mutations in

these studies. Mutations in such highly interconnected genes may

be incompatible with life or associated with more severe syn-

dromic forms of developmental delay. EP300 and CREBBP (ASD +

ID M1 module), for example, are critical for embryonic de-

velopment and mutations in them result in Rubinstein-Taybi

syndrome. Similarly, SMAD4 (Wnt pathway) and SMARCB1 (SWI/

SNF complex) are neurodevelopmental genes associated with the

Myhre and Coffin-Siris syndromes, respectively (Kleefstra et al.

2012; Tsurusaki et al. 2012). Moreover, recent targeted resequenc-

ing of a subset of novel genes within the modules (Coe et al. 2014)

(BCL11A, DLL1, NCKAP1, RAB2A, TBR1, and ZMYND11), as well as

a cross-validation analysis (Supplemental Fig. 45), provide evidence

of an excess of disruptivemutations in ASD and ID highlighting the

functional utility in the discovery of new disease genes.

A comparison of the modules for ASD/ID, epilepsy, and

schizophrenia suggests considerable overlap among gene candi-

dates and networks underlying seemingly diverse neurological

diseases. In several cases, de novo truncating mutations have been

observed in the same gene but arise in different disease cohorts.

Comparing studies of ASD, ID, and schizophrenia, for example,

reveals recurrent LoF mutations for CHD8, ZMYND11, and

SMARCC2. This finding is in agreement with a recent schizo-

phrenia exome sequencing study that found additional de novo

The discovery of integrated gene networks for ASD
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mutations in genes such as CHD8,MECP2, and AUTS2—all highly

associated with ASD and ID (McCarthy et al. 2014). There are two

possible explanations. One hypothesis is that different neurolog-

ical diseases share common neurodevelopmental pathways such

that disruption may lead to different pathologies depending on

the genetic background of the patient. An alternative, but not

mutually exclusive, explanation may be disease comorbidity.

The high comorbidity of ID and ASD is well established, with 60%

of children with a diagnosis of autism being intellectually disabled.

Similar comorbidities have been reported for ID and schizophrenia

and epilepsy (Amiet et al. 2008; Rapoport et al. 2009). The epi-

lepsy mutations were discovered among children with epileptic

encephalopathies—a severe form of early onset epilepsy frequently

associated with disturbances in cognition and behavior. Similarly,

many schizophrenics with de novo LoF mutations also showed

poor school performance consistent with mild ID (Fromer et al.

2014). Ideally, patient recontact and comparison of the phenotypes

with disruptions of the same mutation across diverse neurological

diseases will be required to determine the true extent of distinct

diagnoses and the importance of these nosological divisions

(Stessman et al. 2014).

Methods

Databases and data sets
The de novo mutations were collected from nine different studies:
four ASD (Iossifov et al. 2012; Neale et al. 2012; O’Roak et al.
2012b; Sanders et al. 2012), two ID (de Ligt et al. 2012; Rauch et al.
2012), one epilepsy (Allen et al. 2013), and two schizophrenia
cohorts (Gulsuner et al. 2013; Fromer et al. 2014). LoF mutations
are defined as likely gene-disruptive or loss-of-function mutations
observed in the cases. For controls, we used unaffected siblings and
normal trios from Iossifov et al. (2012), Neale et al. (2012), O’Roak
et al. (2012b), Sanders et al. (2012), and Gulsuner et al. (2013). The
PPI network is composed of the union of StringDB v9.05
(Szklarczyk et al. 2011) human (organism ID 9606) interactions
that are experimentally verified (experimental scores > 400) and
have high confidence scores (> 700), together with the complete
HPRD database (http://www.hprd.org/). The coexpression net-
work was constructed as a complete graph using the normalized
RNA-seq RPKM values from the BrainSpan Atlas (http://www.
brainspan.org). A Pearson correlation coefficient r was calculated
between every pair of genes across all the subtissues and time
points, and r2 was set as the edges’ weights.

MAGI algorithm

As shown in Figure 1, MAGI includes two main steps: The first
involves finding relatively short seed pathways with high scores
and the second is merging them into much larger clusters. In the
first step, high-scoring seed pathways are detected, defined as sets
of five to eight genes that form a connected simple path in the
PPI network, are highly coexpressed, and are enriched in patient
mutations. Then in the second step, pathways that are highly
connected in the PPI and also coexpressed with each other are
combined together to create modules, by applying a random walk
on a graph where nodes represent seed pathways and edges rep-
resent nodes that can be merged together. The random walk iter-
atively merges nodes into a module until no more seed pathways
can be added to it without reducing its score. Next, a local search is
applied on the module to further improve the score, allowing for
single genes to be included or removed. The clustering process can

be repeated many times to create a set of modules that satisfy the
constraints, from which the local optimal with highest score
module is picked (M_Best). In practice we found that there are
many suboptimal local modules that partially overlap the highest
score local module. To address the high-scoring local maximal
modules, the method reports, in addition to the highest scoring
local optimal module, the union of the top one percentile of so-
lutions that have been found.

Seed pathways detection

To minimize the effect of edges that are found in the PPI but may
not hold in human brain tissues, each of the seed pathways’ edges
is also required to show a significantly high coexpression (top 5%
in the coexpression network, in practice, r2 >0:37). To detect these
pathways, we use an approach based on the color-coding algo-
rithm (Alon et al. 1995) that outputs a set of high-scoring paths in
addition to the maximum-score path. The color-coding approach
is an efficient method for finding simple paths of size h# logðjV jÞ
in polynomial time. A simple extension of this method allows for
finding a path thatmaximizes the summation of scores assigned to
each node. In short, this approach involves two steps: (1) random
coloring of the graph’s nodes with h different colors and (2) a dy-
namic programming algorithm for finding the colorful path (i.e.,
a simple path that covers all h colors exactly once) that maximizes
the score. Iterations of these two steps are needed since the optimal
path is not necessarily colorful at each iteration. It was shown that
an expectedOðehÞ iteration is enough to find the optimal pathwith
high probability. We have modified the dynamic programming
step (by adding an extra dimension) in order to limit the total
number of LoF mutations ðDÞ found in controls (for more details,
see Supplemental Material). In practice, we run 1000 iterations for
each threshold (D = 0, 1, 2, and 3) and possible path length (h = 5, 6,
7, or 8) to produce a total of 16,000 potential pathways seeds. We
then define ‘‘high-scoring seeds’’ as having a score higher thanhalf
the score of the optimal seed of the same category. These paths are
used in the next step to create the modules (for exact definition of
the constraints, see Supplemental Material).

Clustering seed pathways

Seeds are merged into high-scoring clusters that satisfy a stringent
set of constraints (Supplemental Material). The clustering is mod-
eled as a randomwalk on the graph of seeds. Each high-scoring seed
found in the previous step is considered a node in this new graph,
and there are edges between nodes if the union of the two seeds
satisfies the constraints. Each random walk on this graph creates
a single module U while traversing the graph. We start with a ran-
dom seed and continually merge it with other neighboring seeds to
increase the total score of themodule (module score defined similar
to Ideker et al. 2002) while keeping the constraints satisfied. Finally,
after reaching a node in the graph that cannot be further traversed
to any other node, we apply a local search on module U. The local
search steps are (1) random gene removal, (2) random gene addi-
tion, and (3) randomgene swap.We continue to apply these steps as
long as the new set satisfies the constraints and the total score in-
creases. Although this local search in theorymight takemany steps,
in practice it reaches a local maximum very quickly.

Software availability

MAGI is free for public use. The program, source code (written inC),
and input files are publicly available for download in the Supple-
mentalMaterial and at http://eichlerlab.gs.washington.edu/MAGI/.
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