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K48-linked KLF4 ubiquitination by E3 ligase Mule
controls T-cell proliferation and cell cycle
progression
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T-cell proliferation is regulated by ubiquitination but the underlying molecular mechanism

remains obscure. Here we report that Lys-48-linked ubiquitination of the transcription factor

KLF4 mediated by the E3 ligase Mule promotes T-cell entry into S phase. Mule is elevated in

T cells upon TCR engagement, and Mule deficiency in T cells blocks proliferation because

KLF4 accumulates and drives upregulation of its transcriptional targets E2F2 and the cyclin-

dependent kinase inhibitors p21 and p27. T-cell-specific Mule knockout (TMKO) mice develop

exacerbated experimental autoimmune encephalomyelitis (EAE), show impaired generation

of antigen-specific CD8þ T cells with reduced cytokine production, and fail to clear LCMV

infections. Thus, Mule-mediated ubiquitination of the novel substrate KLF4 regulates T-cell

proliferation, autoimmunity and antiviral immune responses in vivo.
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E
ngagement of the T-cell receptors (TCR) of a mature
naive T cell triggers signalling leading to activation of
kinases and transcription factors1,2. Because dysregulation

of these pathways impairs homoeostasis and immune responses,
and can lead to lymphoma or autoimmunity, they are tightly
regulated at multiple levels. E3 ligase-mediated ubiquitination is
one of these essential regulatory mechanisms3–6. TCR signalling
and peripheral T-cell tolerance are known to be modulated
via the ubiquitination of upstream elements, including TCRz
by Itch7, ZAP70 by the Cbl family and Nrdp1 (ref. 5),
and phosphatidylinositol-3 kinase by Cbl-b8. However, whether
E3 ligases are also involved in targeting downstream elements
such as transcription factors, drivers of differentiation and
cell cycle regulators remains unclear.

The transcription factors KLF4 and ELF4 negatively regulate
CD8þ T-cell proliferation and differentiation through
their control of cyclin-dependent kinases (CDK) and their
inhibitors (CDKI)9,10. KLF4 protein diminishes in response to
TCR engagement, leading to downregulation of CDKI such as
p21 and p27 and the entrance of CD8þ T cells into the cell cycle.
CD8þ T cells lacking either klf4 or elf4 hyperproliferate upon
TCR engagement9,10. In CD4þ T cells, KLF4 binds to the
IL17a promoter and drives Th17 differentiation independently of
RORgt11,12. Accordingly, T-cell-specific Klf4 knockout (KO)
mice are resistant to induction of experimental autoimmune
encephalomyelitis (EAE) due to impaired Th17 differentiation.
KLF4 also drives transcription of E2F2, which acts as a
transcriptional repressor inhibiting cell cycle entry13. Like
KLF4 deficiency, deletion of e2f2 in mice enhances T-cell
proliferation and leads to autoimmunity14.

Mule (Mcl-1 Ubiquitin Ligase E3, also called Huwe1,
ArfBP1 and Lasu1) is a HETC domain-containing E3 ligase that
mediates ubiquitination of a broad range of substrates, including
cMyc15, Mcl-1 (ref. 16) and p53 (ref. 17). cMyc influences
T-cell activation and proliferation both directly and indirectly
through control of transcriptional targets and metabolic
reprogramming18–20, and by modulating the expression of cell
cycle regulators21. Mcl-1 is critical for T-cell development
and mature T-cell survival due to its anti-apoptotic effects16,22.
We previously showed that Mule-mediated polyubiquitination
and degradation of p53 is required for B-cell development,
homoeostasis and humoral immune responses23. To examine
Mule’s role in T-cell biology in vivo, we generated T-cell-specific
Mule-deficient mice and studied the consequences of
Mule inactivation in these mutants and their T cells. In vivo,
these animals develop severe EAE and show impaired antiviral
immune responses. In vitro, we identify KLF4 as a novel
Mule substrate and demonstrate that Mule-mediated regulation
of KLF4 controls TCR-mediated T-cell proliferation at the level of
cell cycle entry.

Results
Loss of Mule leads to impaired T-cell homoeostasis. To achieve
Mule ablation in a T-cell-specific manner, we bred conditional
Mulefl/fl(y) mutant mice23 to either CD4Cre transgenic (Tg) mice
in which Cre is controlled by a CD4 mini-gene24, or CD2Cre
Tg mice in which Cre is regulated by the human CD2 promoter25.
Southern blotting and immunoblotting analyses of the resulting
Mulefl/fl(y)CD4Cre or Mulefl/fl(y)CD2Cre mice (collectively, TMKO
mice) confirmed efficient Mule deletion in the thymus (Fig. 1a,b).
Flow cytometric (FCM) profiling of immunostained thymocytes
from TMKO mice showed that the CD4þ versus CD8þ

populations, as well as the CD25þ versus CD44þ subsets
among CD4�CD8� (double negative; DN) thymocytes,
were comparable to those in Mulefl/fl(y) controls (Fig. 1c, left).

The total cellularities of the CD4�CD8� DN, CD4þ

single positive, CD8þ single positive and CD4þCD8þ

(double positive) compartments in TMKO mice were
also similar to those in controls (Fig. 1c, right). However,
TMKO lymph nodes (LN) showed significant decreases in
total CD3þ T cells as well as in the CD4þ and CD8þ subsets
(Fig. 1d, middle). In the spleen, TMKO mice exhibited reduced
CD8þ T-cell numbers but normal total and CD4þ T-cell
numbers (Fig. 1d, right). To examine the emigration of T cells
from the thymus, control and TMKO mice were supplied
with BrdU-containing drinking water for 3 days. In TMKO
mice, both the CD4þBrdUlo and CD8þBrdUlo populations,
which represent T cells that have recently immigrated from
the thymus26, were significantly reduced compared with controls
(Supplementary Fig. 1a,b). However, the CD4þBrdUhi

and CD8þBrdUhi populations were equivalent in TMKO
and control mice. The defective thymic output in TMKO
mice may be partially attributed to the lower level of CD44
expression by naive CD4þ and CD8þ T cells in these animals.
These results suggest that Mule is dispensable for thymic T-cell
development but important for thymic emigration and thus
peripheral T-cell maintenance.

TMKO T cells show poor proliferation upon TCR engagement.
We next examined changes to normal Mule
protein levels upon T-cell activation by stimulating purified
WT CD4þ and CD8þ mature T cells with plate-bound
anti-CD3 plus anti-CD28 antibodies (Abs). Mule was rapidly
elevated in response to these stimuli and maintained at high levels
from 2–24 h post-stimulation (Fig. 2a and Supplementary Fig. 4a
and b), suggesting that Mule might be involved in TCR-mediated
T-cell activation and proliferation. Mule was undetectable in
resting TMKO T cells and also in anti-CD3/CD28-treated TMKO
T cells at 24 h post-stimulation. FCM analysis showed that,
while all WT CD4þ T cells had upregulated CD25 by 1 day post-
TCR stimulation, only 70% of TMKO CD4þ T cells did so, and
this level of CD25 upregulation was B2-fold lower than in
controls (Fig. 2b, top). By 48 h post-stimulation, CD25 upregu-
lation by TMKO CD4þ T cells had increased substantially but
was still lower than that in WT T cells. TMKO CD8þ T cells also
showed reduced CD25 upregulation at 24 h post-TCR stimulation
but had partially caught up by 48 h (Fig. 2b, bottom left).
In contrast to CD25, TMKO CD4þ and CD8þ T cells upregu-
lated CD69 just as efficiently as WT controls (Fig. 2b, right).
Thus, TCR-stimulated activation of TMKO T cells is compro-
mised during the early activation phase (within 24 h) but recovers
to some extent by 48 h. Confirming this hypothesis, measurement
of thymidine incorporation by TMKO T cells at 24 h after
treatment with either anti-CD3/CD28 Abs, or with phorbol
myristate acetate (PMA) plus calcium ionophore (Iono), showed
defective proliferation compared with controls (Fig. 2c).

To assess whether the early proliferation defect in TMKO
T cells was associated with altered cell division, we labelled
WT and TMKO T cells with violet cell tracker (VCT), activated
them with anti-CD3/28 Abs, and followed their mitosis by
FCM. About twofold more TMKO CD4þ and CD8þ T cells
failed to divide compared with WT cultures (CD4þ TMKO
versus WT: 74% versus 31%; CD8þ : 64% versus 32%) (Fig. 2d).
TMKO T cells that did cycle underwent one less cell division
than controls. Thus, TMKO T cells have a defect in cell division
triggered by TCR engagement.

To determine whether the proliferation defect in TMKO T cells
was associated with specific antigen, we bred TMKO mice to
P14 transgenic mice expressing a TCR specific for
the lymphocytic choriomeningitis virus (LCMV) glycoprotein
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peptide 33–41 (GP33) presented by MHC I molecule H-2Db

(ref. 27). We labelled WT and TMKO P14 Tg T cells with
VCT, activated them with GP33 peptide and followed their
cell division by FCM. About 34% of CD8þ TMKO P14 T cells
failed to divide compared with B5% of controls (Fig. 2e). Thus,
Mule-deficient CD8þ T cells do not proliferate efficiently in
response to stimulation by either anti-CD3/28 Abs or specific
antigen.

In theory, the impaired proliferation of TMKO T cells could
be due to either an intrinsic activation defect or to an impaired

response to cytokines and growth factors secreted during
TCR-mediated activation. To address this question, we labelled
T cells from WT CD45.1þ SJL B6 mice (control) and CD45.2þ

TMKO T cells with VCT, mixed them at a 1:1 ratio, activated
them with anti-CD3/28 Abs and determined their mitosis
by FCM. The impaired cell division of TMKO CD4þ and
CD8þ T cells cultured alone was maintained in the mixed
cultures (Fig. 3a). Consistent with these data, Mule-deficient
CD4þ and CD8þ T cells at 48 h post-stimulation showed
a significantly higher fraction of CD25lo cells in the non-dividing
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Figure 1 | Impaired T-cell homoeostasis in TMKO mice. (a) Southern blot of genomic DNA from thymocytes of Mulefl/y, Mulefl/þCD4Cre and

Mulefl/yCD4Cre (TMKO) mice indicating the floxed and deleted Mule alleles. (b) Immunoblot (IB) of Mule protein in thymocytes of Mulefl/fl(y) and

Mulefl/fl(y)CD2Cre (TMKO) mice. Vinculin, loading control. (c) Top left: FCM analysis of CD4 versus CD8 expression by thymocytes from control and TMKO

mice. Numbers in quadrants are percentages of gated lymphocytes. Bottom left: FCM analysis of CD25 versus CD44 expression by DN-gated, lineage

(CD4, CD8, TCRgd, B200, NK1.1, Gr1 and TER 119) negative cells. Percentages of DN1 (CD44þCD25� ), DN2 (CD44þCD25þ ), DN3 (CD44�CD25þ )

and DN4 (CD44�CD25� ) thymocytes among the gated DN population are indicated. Right: numbers of thymocytes in the indicated subsets: DN

(CD4�CD8� ), CD4 single positive, CD8 single positive and DP (double positive, CD4þCD8þ ). Results are representative of 3–5 mice/genotype.

(d) Left: FCM analysis of CD4 versus CD8 expression by gated LN T cells from control and TMKO mice. Middle and right: quantitation of CD3þ , CD4þ

and CD8þ T-cell numbers in LN and spleen of control and TMKO mice. Data are the mean±s.d. (n¼6); *Po0.5, **Po0.05. P values were calculated with

one-sided Student’s t-test. Results are representative of two to three independent experiments involving three to four mice per genotype.
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T-cell population than did control cultures (Fig. 3b,c),
an impairment not rescued by the addition of exogenous
IL-2 (Fig. 3d). Thus, the proliferation defect in TCR-stimulated
TMKO T cells is cell-intrinsic rather than caused by a faulty
response to growth factors/cytokines such as IL-2 secreted by
activated T cells.

Normal TCR signalling and apoptosis in Mule-deficient T cells.
The elevation of Mule in response to TCR engagement and
the requirement of Mule for TCR-mediated T-cell proliferation
suggested that Mule might be involved in TCR-induced signal
transduction. However, phosphorylation levels of JNK and
ERK were comparable between PMA/Ionophore (PMA/Iono)-
stimulated WT and TMKO T cells (Fig. 4a), as was IkBa
phosphophorylation and degradation (Fig. 4b). Consistent with

these findings, both NFkB DNA-binding activity as determined
by EMSA (Fig. 4c) and Ca2þ flux (Fig. 4d) were comparable
in PMA/Iono-stimulated WT and TMKO T cells. Thus, Mule
is dispensable for normal activation of the MAP kinase and
NFkB pathways as well as for calcium flux.

Because Mule’s substrates p53 and Mcl-1 are involved in T-cell
apoptosis16,17,22, we determined whether these molecules
were altered in TMKO T cells. Levels of Mcl-1 protein as well
as total p53 and phosphorylated p53 were comparable in WT and
TMKO T cells treated with g-irradiation (IR) (Fig. 4e). We then
examined apoptosis in cultures of TMKO and WT thymocytes
exposed to stauroporine, dexamethasone or IR and found
comparable levels in all cases (Supplementary Fig. 2a). Because
we previously showed that Mule-deficient B cells are resistant
to DNA damage-induced apoptosis, and that the impaired B-cell
development and homoeostasis in B-cell-specific Mule KO mice
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Figure 2 | Impaired proliferation of Mule-deficient T cells. (a) IB to detect Mule protein in purified control and TMKO CD4þ and CD8þ T cells that were

left untreated (0) or stimulated with anti-CD3 plus anti-CD28 Abs for the indicated times. beta-Tub, loading control. (b) FCM analysis of CD25 and CD69
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can be partially rescued by genetic ablation of p53 (ref. 23),
we bred TMKO mice with p53fl/fl mice to generate T-cell-specific
Mule plus p53 double KO mice. Unlike in B cells, genetic ablation
of p53 rescued neither the reduced CD4þ and CD8þ T-cell
numbers in TMKO mice (Supplementary Fig. 2b) nor
their proliferative defects (Supplementary Fig. 2c). Thus, loss
of Mule-mediated ubiquitination and degradation of p53 and
Mcl-1 is not responsible for the homoeostatic and proliferative
defects of TMKO T cells.

KLF4 is a novel Mule substrate. ELF4 and KLF4 play essential
roles in TCR-mediated proliferation because these transcription
factors regulate the cell cycle9,10. To determine whether Mule
has effects on ELF4 and/or KLF4, we subjected purified WT
and TMKO CD4þ and CD8þ T cells at steady-state to
immunoblotting and detected substantial elevations of
ELF4 and KLF4 proteins in TMKO T cells compared with the
WT (Fig. 5a). This increase in ELF4 and KLF4 in Mule-deficient
T cells suggested that these transcription factors might be
Mule substrates. To test this hypothesis, we established an
in vitro ubiquitination assay using Mule protein purified
from Mule-overexpressing 293T cells. This in vitro assay
revealed that KLF4 (but not ELF4) was indeed ubiquitinated by
Mule (Fig. 5b). To confirm that this ubiquitination of KLF4 was

due specifically to Mule’s E3 ligase activity, we used site-directed
mutagenesis to change the catalytic cysteine at Mule amino
acid 4341 into an alanine (MuleC4341A), which totally abolishes
Mule’s E3 ligase activity16. KLF4 was not ubiquitinated
when MuleC4341A was used in our in vitro assay instead of
WT Mule protein (Fig. 5b). Furthermore, WT Mule and KLF4
bound to each other when tested by co-immunoprecipitation
of Flag-tagged Mule or HA-tagged KLF4 (Fig. 5c). In contrast
to the elevation of KLF4 in Mule-deficient T cells, KLF4 protein
was decreased in Mule-overexpressing 293T cells (Fig. 5d).
Notably, addition of the proteasome inhibitor MG132 restored
KLF4 expression in Mule-overexpressing 293T cells to normal
levels. Additional ubiquitination assays in Mule-overexpressing
293T cells confirmed that KLF4 protein immunoprecipitated
using anti-HA Ab was indeed ubiquitinated, as determined
by immunoblotting with either anti-KLF4 Ab or Ab recognizing
Ub that could be attached only through K48 linkages (Ub-K48)
(Fig. 5e). We then transfected our Mule-overexpressing 293T cells
with WT Ub, Ub-48 or Ub that could be attached only through
K63 linkages (Ub-K63). We found that KLF4 was ubiquitinated
by Mule through a K48 linkage but not through a K63 linkage
(Fig. 5f). Significantly, only substrates conjugated to Ub via
K48 linkage are recognized and degraded by 26S proteasomes28.
Our findings therefore identify KLF4 as a novel Mule substrate
and indicate that its levels are controlled by K48-ubiquitination
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followed by degradation. This hypothesis is consistent with
the observed KLF4 elevation in TMKO T cells and the
KLF4 reduction in Mule-overexpressing 293T cells.

Defective cell cycle regulation in Mule-deficient T cells.
cMyc controls metabolic reprogramming during T-cell activation
and proliferation18–20 and is a known Mule substrate15.
Compared with cMyc in control T cells, cMyc protein was less
highly elevated in Mule-deficient T cells stimulated by anti-CD3
Ab and its appearance was delayed (Supplementary Fig. 3a).
However, when we examined cMyc’s transcriptional activity by
RT–PCR analysis, we detected normal mRNA levels of cMyc and
its transcriptional targets in TMKO CD4þ T cells both at steady-
state and at 3 h post-TCR stimulation (Supplementary Fig. 3b).
Similar results were obtained for TMKO CD8þ T cells. Thus, the
impaired activation of TMKO T cells is not due to effects on the
cMyc pathway.

We next turned to KLF4, since we now knew that
this transcription factor, which controls T-cell proliferation
through cell cycle regulators9,10, was a Mule substrate. We
speculated that the defective proliferation of TCR-stimulated
TMKO T cells might be caused by KLF4 that had accumulated
due to the lack of Mule-mediated ubiquitination (followed by
degradation) in these cells. Previous work has shown that KLF4 in
WT T cells decreases to undetectable levels by 20 h post-
stimulation with anti-CD3/CD28 Abs9. However, we found that
KLF4 was significantly increased in unstimulated TMKO T cells
and sustained at an elevated level for up to 20 h following
TCR engagement (Fig. 6a and Supplementary Fig. 4c). Since
KLF4 physically interacts with the promoters of the CDKI genes
p21 and p27 and transactivates their expression29,30, we examined
p21 and p27 levels in WT and TMKO T cells. While p21 and
p27 proteins had declined in control T cells by 20 h post-
stimulation, unstimulated TMKO T cells already contained
abundant p21 and p27 proteins and maintained these
high levels for at least 20 h post-stimulation (Fig. 6a). Because
CDKIs inhibit Rb phosphorylation by binding to
CDK complexes31–33, we investigated Rb activation in TMKO
T cells. In support of our hypothesis, Rb was inefficiently
phosphorylated in TMKO T cells, showing reductions to 35.3
and 26.3% of values in WT T cells at 24 and 48 h post-TCR
engagement, respectively (Fig. 6b).

Another key transcriptional target of KLF4 is E2F2, which
inhibits the entry of T cells into the cell cycle13,14. We found that
the elevated KLF4 protein in TMKO CD4þ and CD8þ T cells
was associated with increased E2F2 in these cells compared with
controls (Fig. 6c). E2F2 mRNA levels were also increased by
B1.7- and 2-fold in TMKO CD4þ and CD8þ T cells,
respectively (Fig. 6d). In contrast, mRNA levels of the
non-KLF4-driven transcriptional activator E2F1 were normal in
TMKO T cells. Because KLF4 was shown to bind to the
E2F2 enhancer in 3T3 L1 cells34, we used anti-KLF4 Ab to
perform ChIP immunoprecipitation of WT and Mule-deficient
mouse embryonic fibroblasts (MEFs), as well as WT and TMKO
T cells. Consistent with the elevated KLF4 protein and E2F2
mRNA in TMKO T cells, RT–PCR analysis of the anti-KLF4
ChIP immunoprecipitation product showed enrichment of the
E2F2 enhancer in Mule-deficient MEFs and TMKO T cells
(Fig. 6e). Unlike other E2F family members, E2F2 is a
transcriptional repressor that blocks mitosis such that
E2f2-deficient T cells show enhanced S phase entry and
hyperproliferate upon TCR stimulation14. Consistent with
abnormal activation of the KLF4 pathway, cultures of
TCR-stimulated TMKO CD4þ and CD8þ T cells showed
significantly fewer S phase positive cells than controls (Fig. 6f).

Collectively, these results suggest that TCR-stimulated TMKO
cells cannot ubiquitinate KLF4 in response to TCR engagement,
and so this transcription factor is not degraded. The accumulating
KLF4 protein drives high expression of p21, p27 and E2F2,
which repress the entrance of T cells into the cell cycle. Thus,
Mule controls T-cell proliferation through effects on KLF4
ubiquitination.

Biased Th17 cell differentiation and severe EAE in TMKO
mice. To determine Mule’s function in CD4þ Th cell differ-
entiation, we induced purified WT and TMKO CD4þ

T cells to undergo differentiation under Th1 or Th2 polarizing
conditions. Despite their defect in TCR-stimulated proliferation,
TMKO CD4þ T cells generated normal numbers of Th1 and
Th2 cells (Fig. 7a,b). However, TMKO CD4þ T cells cultured
under Treg polarizing conditions generated significantly fewer
Foxp3þ Treg cells than did controls (Fig. 7c), whereas TMKO
CD4þ T cells cultured under Th17 polarizing conditions
generated markedly more IL-17-producing Th17 cells (Fig. 7d).
Because Th17 cells are the pathological drivers of several human
autoimmune and inflammatory disorders35,36, as well as murine
EAE37, we injected control and TMKO mice with myelin
oligodendrocyte glycoprotein (MOG) peptide emulsion
plus pertussis toxin to induce EAE38 and found that
EAE initiation in TMKO mice was slightly delayed (Fig. 7e).
More strikingly, although control mice began to recover by day
20 post-MOG emulsion injection, TMKO mice continued to
suffer from severe EAE (Fig. 7e). Consistent with their
exacerbated EAE development, the draining inguinal LN in
TMKO mice contained higher numbers of IL-17A-producing
cells at 12 days post-EAE induction compared with EAE-induced
controls (Fig. 7f). However, Treg cell numbers in draining
LN were comparable in EAE-induced control and TMKO mice
(Fig. 7g). Since Mule-deficient Treg cells showed normal capacity
to suppress the proliferation of WT effector T cells in vitro,
we speculate that the exacerbated EAE development in TMKO
mice is not attributable to alterations in the Treg compartment.
Rather, our data demonstrate that Mule-deficient Th17 cells
are more pathogenic than WT Th17 cells in the EAE model.
It is known that KLF4 binds to the IL17a promoter to positively
regulate Th17 differentiation11,12, and that T-cell-specific
Klf4 KO mice show reduced Th17 cells and attenuated
EAE development. We hypothesize that the KLF4 elevation
in our TMKO T cells increases Th17 differentiation and thereby
causes the exacerbated EAE development observed in TMKO
mice.

Impaired immune responses against LCMV in TMKO mice.
To determine Mule’s function in CD8þ effector T-cell differ-
entiation, we infected WT and TMKO mice with LCMV and
analysed CD8þ T-cell responses at 7 days post-infection. TMKO
mice had significantly lower percentages and absolute numbers of
splenic LCMV-specific GP33–41 CD8þ T cells compared with
controls (Fig. 8a), suggesting impaired development of LCMV-
specific CD8þ effector T cells. In infected WT mice, most
GP33–41 CD8þ T cells were KLRG1hiCD127lo short-lived effector
cells, whereas this subset was markedly reduced in TMKO mice
(Fig. 8b). After in vitro stimulation with GP33–41 peptide, the
percentages of TNFa- and IFNg-producing cells among TMKO
T cells were much lower than in controls (Fig. 8c). Accordingly,
unlike WT mice, TMKO mice failed to clear the virus from the
spleen (Fig. 8d). Thus, loss of Mule in CD8þ T cells reduces
LCMV-induced differentiation of CD8þ effector T cells,
production of antiviral cytokines and virus clearance.
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Discussion
Our TMKO mice share many phenotypic defects, including
impaired lymphocyte homoeostasis, activation and proliferation,
with B-cell-specific Mule KO (BMKO) mice. However, while
loss of p53 in BMKO mice rescues these defects23, p53 ablation
in TMKO mice failed to restore T-cell activation and
proliferation. Thus, Mule’s main molecular effector in T cells
differs from that in B cells. This effector is not cMyc, since the
functions of this regulator and its transcriptional targets were not
impaired in TMKO T cells. Instead, we identified the
transcription factor KLF4 as a novel Mule substrate that is
ubiquitinated by this E3 ligase and thus undergoes proteasomal
degradation in T cells. Our results indicate that the elevated

KLF4 in TMKO T cells blocks their TCR-mediated proliferation
by increasing p21, p27 and E2F2, thereby inhibiting cell
cycle entry. A model illustrating how Mule appears to
control T-cell proliferation by orchestrating KLF4 degradation
is shown in Fig. 9. In resting naive mature T cells (Fig. 9a),
the low level of Mule protein present is not sufficient to facilitate
the degradation of significant amounts of KLF4. Enough KLF4
is therefore present to activate expression of p21, p27 and
E2F2, which transcriptionally repress genes promoting cell
cycle entry14,29,30. As a result, in the absence of antigenic
stimulation, T cells remain in the resting state. Given that Mule
can ubiquitinate itself39, we speculate that Mule protein is
constantly being degraded to maintain a low level in normal

a-CD3 +
a-CD28 0 0

Mulefl/fl(y)

CD4Cre

Mulefl/fl(y)CD4Cre

CD8CD4

E2F2

Mulefl/fl(y)

Mulefl/fl(y)

2 
h

2 
h

4 
h

4 
h

0

pRb

β-actin

24
 h

48
 h

0 24
 h

48
 h

KDa

110

43

20
 h

20
 h

KDa

55
21
27
43

KLF4
P21

P27

β-actin

Mulefl/fl(y)

Mulefl/fl(y)
Mulefl/fl(y)

CD4Cre

Mulefl/fl(y)CD4Cre

Mulefl/fl(y)

Mulefl/fl(y)CD4Cre

Mulefl/fl(y)

Mulefl/fl(y)CD4Cre

*

*

m
R

N
A

/β
-a

ct
in

4.0

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0

7

6

5

4

F
ol

d 
en

ric
hm

en
t

3

2

1

0

E
D

U
+
 S

 p
ha

se
 c

el
ls

 (
%

)
45

35

25

15

5

CD4

**
** **

**

Anti-CD3
(μg ml–1) CD8

1 31 3

E2F2E2F1

CD4 CD8 CD4 CD8

Ctl MEFs T cells

a b

dc

e

f

Figure 6 | Activation of KLF4 in Mule-deficient T cells impairs cell cycle entry. (a) IB to detect KLF4, p21 and p27 proteins in purified control and TMKO

T cells that were left untreated (0) or treated with anti-CD3/28 Abs for the indicated times. (b) IB to detect phospho-Rb in purified control and TMKO

T cells that were left untreated (0) or treated with anti-CD3/28 Abs for the indicated times. (c) FCM analysis of E2F2 expression by gated purified control

and TMKO CD4þ or CD8þ T cells that were fixed, permeabilized and subjected to intracellular staining with anti-E2F2 Ab. (d) Quantitation of RT–PCR

analysis of E2F1 and E2F2 mRNA expression in purified, untreated control and TMKO CD4þ and CD8þ T cells. Data were normalized to b-actin mRNA and

the relative change in gene expression was calculated using the comparative threshold cycle method (2DDCt). Results are the mean±s.d. (n¼ 3–4).

(e) Quantitation of ChIP assays of the binding of KLF4 to the E2F2 enhancer in control (Ctl) and Mule-deficient MEFs, and in purified control and TMKO

T cells. (f) Quantitation by EDU assay of the percentage of cycling cells in cultures of purified control and TMKO T cells that were treated for 24 h with

anti-CD3/28 Abs at the indicated doses. Data are expressed as the percentage of S phase-positive T cells and are the mean±s.d. (n¼ 3). *Po0.05;

**Po0.005; Student’s t-test; control versus TMKO. Results are representative of two to three independent experiments involving three to six mice per

genotype.

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms14003

8 NATURE COMMUNICATIONS | 8:14003 | DOI: 10.1038/ncomms14003 | www.nature.com/naturecommunications

http://www.nature.com/naturecommunications


resting T cells. Upon TCR engagement by antigen and T-cell
activation (Fig. 9b), Mule protein is rapidly elevated to a level that
is sufficient to ubiquitinate most of the KLF4 present, driving
KLF4’s proteasomal degradation. We hypothesize that this
TCR-induced increase in Mule is achieved by a blockade
of self-ubiquitination imposed by factors modulated by
TCR signalling. Upon the degradation of KLF4 mediated by
elevated Mule, expression levels of p21, p27 and E2F2 are
decreased, the inhibition mediated by these molecules is relieved,
and the T cells can enter into S phase and proliferate. However,
in Mule-deficient T cells (Fig. 9c), KLF4 cannot be ubiquitinated

and efficiently degraded upon TCR stimulation, so that KLF4
accumulates and not only upregulates p21 and p27 but
also maintains the E2F2 pathway in an activated state.
Consequently, these Mule-deficient T cells cannot enter S phase
and fail to proliferate vigorously in response to TCR engagement.

The above is a neat and tidy model, but in fact, the response
of Mule-deficient T cells to TCR ligation was heterogeneous
and some Mule-deficient T cells were able to proliferate. The
normal Th1 and Th2 differentiation of Mule-deficient CD4þ

T cells suggests that, at least in vitro, these cells can bypass the
early proliferation defect through an unknown compensation
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mechanism and eventually undergo normal differentiation.
In contrast, TMKO CD4þ T cells showed an abnormal increase
in Th17 cell differentiation that was likely due to the elevated
KLF4 levels present in proliferation-competent cells.
This hypothesis is supported both by the reduced EAE
development observed in T-cell-specific Klf4 KO mice11,12, and
by the severe EAE associated with increased Th17 cell differentia-
tion displayed by our TMKO mice. Further investigation is
required to understand the molecular mechanism(s) accounting
for the heterogeneous response of TMKO CD4þ T cells to
TCR engagement and their preference for Th17 differentiation.

We also showed that genetic ablation of Mule had a greater
impact on the homoeostasis of CD8þ T cells than on that
of CD4þ T cells. The defective cytokine production and impaired
differentiation of TMKO CD8þ T cells in response to
LCMV infection may be associated with their increased
KLF4 and p27, as elevated p27 is known to prevent T-cell
differentiation and to induce anergy40. While KLF4 was
significantly elevated in TMKO T cells other transcription

factors involved in CD8þ T-cell differentiation remain
under investigation. Previous work has shown that Mcl-1
coordinates with Noxa to set the apoptotic threshold for
selection of high-affinity T-cell clones during T-cell activation41.
Given that Mcl-1 is a Mule substrate that accumulates in response
to TCR engagement, it would be interesting to investigate if
Mcl-1’s function in affinity selection affects CD8þ T-cell
differentiation.

It remains unclear how TCR engagement causes Mule
to accumulate so quickly, and why this upregulated level of Mule
is retained for at least 24 h post-TCR stimulation. We previously
showed that Mule also accumulates rapidly in response to
DNA damage23. Given that Mule levels rise significantly by
2 h post-stimulation, and that Mule self-ubiquitinates to control
its stability and protein levels39, we speculate that
TCR engagement may influence factors that are able to
modulate Mule self-ubiquitination. For example, it has been
shown that downregulation of the deubiquitination enzyme
USP7S inhibits Mule self-ubiquitination and subsequent
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proteasomal degradation, thereby regulating Mule stability42.
Further molecular investigations are needed to determine
whether TCR stimulation downregulates USP7S to prevent
Mule self-ubiquitination, which would promote Mule
accumulation and drive KLF4 degradation.

It has long been known that ubiquitination mediated by
E3 ligases regulates T-cell functions through the targeting of
TCR proximal and downstream signalling components5,43. In
our study, we have identified the transcription factor KLF4 as a
novel target of Mule-mediated ubiquitination leading
to proteasomal degradation. Mule has a crucial function in
TCR-mediated proliferation because it controls levels of KLF4
and, by extension, levels of its transcriptional targets p21, p27
and E2F2. This novel regulatory mechanism sheds new light
on our understanding of the control of TCR-mediated T-cell
proliferation by identifying a mechanism that integrates
ubiquitination with cell cycle entry. The importance of these
multiple layers of E3 ligase-mediated ubiquitination is highlighted
by the phenotype of Mule-deficient T cells, which exhibit
defective homoeostasis and functional deficits. Thus, the
E3 ubiquitin ligase Mule is a key player in the network of cell
cycle regulators and transcription factors that control
downstream elements of TCR signalling and ultimately
autoimmune and antiviral immune responses.

Methods
Mice. Mulefl/fl(y) mice generated by our laboratory previously23 were bred
with CD4Cre24 or CD2Cre25 Tg mice imported from Jackson laboratory to
generate Mulefl/fl(y)CD4Cre and Mulefl/fl(y)CD2Cre mice, respectively. These
animals (collectively, TMKO mice) were backcrossed for 6–10 generations to
C57BL/6. Because Cre expression can be toxic44, we included Mulefl/þCD4Cre
and Mulefl/þCD2Cre mice in all initial analyses of the corresponding mutants.
These control mice were phenotypically indistinguishable from the control
Mulefl/fl(y) animals used in this study, as judged by cellular composition and size
of spleen and LN. Both male and female mice used in the same ratio for
experiments were at the age of 6–20 weeks unless otherwise specified. All
animal experiments were approved by the University Health Network Animal
Care Committee.

Flow cytometry. Lymphoid cells prepared from spleen, LN or thymus of
Mulefl/fl(y) and Mulefl/fl(y)CD4Cre animals were treated to lyse red blood
cells. About 1–2 million cells were preincubated with anti-CD16/CD32
Ab (2.4G2, 1:100) to block FcR for 15 min at 4 �C and immunostained with
different combinations of fluorochrome-conjugated Abs recognizing the
following: CD3 (145-2C-11, 1:50), CD4 (GK1.5, 1:100), CD5 (53-7.3, 1:50),
CD8 (53-6.7, 1:50), CD25 (PC61, 1:50), CD44 (IM7, 1:100), CD62L (MEL-14, 1:50)
or CD69 (H1.2F3, 1:50) (all from BioLegend, BD Biosciences or eBioscience).

For BrdU staining, Mulefl/fl(y and Mulefl/fl(y)CD4Cre mice were supplied with
BrdU-containing drinking water (1 mg ml� 1) for 3 days. Single cell suspensions of
total LN cells were immunostained with anti-CD4 (GK1.5, 1:50) and anti-CD8
(53-6.7, 1:50) Abs. BrdU incorporation by each subset was detected by flow
cytometry using the BrdU-Flow kit according to the manufacturer’s instructions
(BD).

Protein detection by intracellular staining was performed as described
previously45. Briefly, cells were fixed with 1.6% paraformaldehyde and incubated
for 30 min at room temperature (RT). After one wash in phosphate-buffered saline
(PBS), ice-cold methanol (100%) was added dropwise and cells were incubated on
ice for 30 min. Washed cells were incubated for 30 min with Abs recognizing CD3
(145-2C-11, 1:50), CD4 (GK1.5, 1:50), CD8 (53-6.7, 1:50) or E2F2 (Abcam). FCM
data were acquired using a BD FCMCanto flow cytometer and analysed with
FlowJo software (Tree Star Inc.).

Violet cell tracker labelling. Purified T cells (1� 106 ml� 1) from Mulefl/fl(y),
Mulefl/fl(y)CD4Cre or congenic SJL mice (CD45.1) mice were incubated with
2.5 mM CellTracker Violet (VCT; Life Technologies) in phosphate-buffered saline
(PBS) for 10 min at 37 �C. Culture medium containing 10% foetal calf serum (FCS)
was added to 5� the original staining volume and incubation was continued for
5 min at RT. Cells were washed and resuspended at a density of 1� 106 cells ml� 1

in pre-warmed
RPMI-1640 medium containing 10% FCS. Cells were either seeded onto plates
coated with anti-CD3 plus anti-CD28 Abs, or mixed with lethally irradiated
CD45.1þ splenocytes loaded with GP33–41 peptide, and cultured for 2–3 days. The
proliferation capacity of the stimulated T cells was measured by FCM as
determined by a decrease in VCT fluorescence intensity.

Ca2þ flux. LN cells from Mulefl/fl(y and Mulefl/fl(y)CD4Cre mice were immunos-
tained with anti-CD4 and anti-CD8 Abs as described above. Stained cells (1� 107)
were incubated at 37 �C for 45 min with 5 mg ml� 1 Indo-1 AM (Invitrogen) in
RPMI-1640 medium supplemented with 10% FCS. Indo-loaded cells were
resuspended at 5� 106 ml� 1 and incubated with anti-CD3 (10 mg ml� 1) on ice for
20 min. Cell aliquots (500 ml) were warmed to 37 �C for 5 min and a baseline
reading was acquired for 3 min. Ca2þ flux induction was triggered by the
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Figure 9 | Model of mechanism by which Mule may control T-cell proliferation through ubiquitination and degradation of KLF4. (a) WT T cells at

steady-state. In the absence of antigenic stimulation, Mule expression in T cells is low due to self-ubiquitination and degradation and its E3 ligase activity is

insufficient to remove KLF4. KLF4 transactivates E2F2, which acts as a transcriptional repressor together with CDKI p21 and p27 to block entry into the cell

cycle. (b) Antigen-stimulated WT T cells. In response to TCR engagement by antigen, Mule expression is rapidly increased and sustained due to inhibition

of its self-ubiquitination and degradation. Mule ubiquitinates KLF4 and promotes its degradation such that insufficient KLF4 remains to successfully

transactivate E2F2, p21 and p27. T cells can thus transcribe genes promoting cell cycle entry. (c) In antigen-stimulated Mule-deficient T cells, KLF4 cannot

be degraded. The accumulating KLF4 protein transactivates E2F2, p21 and p27, leading to repressed expression of cell cycle genes. These T cells then fail to

proliferate efficiently.
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addition of 2.4 mg ml� 1 rabbit anti-hamster Ab (Jackson ImmunoResearch
Laboratories, Inc.) followed 7 min later by addition of 100 ng ml� 1 PMA plus
1 ng ml� 1 Ca2þ ionophore A23187 (Sigma). Data collection was continued for
another 3 min. The Ca2þ response was measured based on the ratio of violet
(Ca2þ bound) to blue (Ca2þ free) fluorescence as detected by FCM (LSRII; BD).

Mule-overexpressing and MuleC4341A-overexpressing 293T cell lines. We
transfected 293T cells (from ATCC) with 3� Flag-pCI-neo plasmid expressing
either human Mule or MuleC4341A (see below) cDNA. Neomycin-resistant
clones were selected by culture in G418 (700 mg ml� 1) for 7–10 days. Single
cells were sorted into 96-well plates and individual clones allowed to grow into cell
lines. Clones expressing abundant Mule or MuleC4341 protein were identified
by immunoblotting analysis. Selected Mule-overexpressing or MuleC4341A-over-
expressing cells were expanded in number and used to produce the Mule or
MuleC4341 proteins, respectively, which were employed for in vitro ubiquitination
assays (see below).

Immunoblotting and immunoprecipitation. For immunoblotting, every 1� 107

cells were lysed in 100 ml of 0.5% NP-40 lysis buffer (20 mM Tris-HCl pH 8,
137 mM NaCl, 10% glycerol, 0.5% NP-40, 2.5 mM EDTA), or RIPA buffer
(50 mM Tris-HCl pH 8, 150 mM NaCl, 0.5% NP-40, 0.5% sodium deoxycholate,
0.1% SDS), with protease inhibitor and phosphatase inhibitor (Roche) freshly
added. Lysates were vortexed for 15 s, incubated on ice for 30 min and cleared
by centrifugation. Protein concentrations in lysates were determined using the
BCA protein assay (Thermo Scientific). Cell lysates were loaded onto 4–12%
bis-Tris gels to detect proteins below 200 kDa or 3–8% Tris-acetate gels to detect
proteins above 200 kDa. For immoprecipitations, lysates of 293T cells were
incubated with anti-Flag (M2; Sigma) or anti-HA (HA-7; Sigma) Ab-coated
Protein G-Sepharose beads at 4 �C for 2 h to overnight. Immunocomplexes were
washed 5� with lysis bufunfer and subjected to SDS/PAGE. Fractioned proteins
were transferred to a nitrocellulose membrane by i-Blot according to the manu-
facturer’s instructions (Invitrogen) and immunoblotted using Abs recognizing the
following: ubiquitin (FK2; Enzo Life Sciences; 1:1,000); Lys-specific ubiquitin
(Apu2; Millipore; 1:1,000); KLF4 (GeneTex; 1:1,000 ); Mule (Bethyl Laboratories
Inc.; 1:1,000); p21 (Santa Cruz; 1:1,000); p27 (BD Biosciences; 1:1,000); p53
(Santa Cruz; 1:1,000); Ser18-p53 (R&D; 1:1,000); or phospho-Erk1/2,
phospho-JNK1/2, IkBa, phospho-IkBa, p65 or phospho-IKKa/b (all from Cell
Signaling; 1:1,000). Infrared dye-labelled secondary Abs (anti-rabbit Alexa 680,
Invitrogen; 1:10,000 and anti-mouse IR800; 1:20,000, LICOR) were visualized
with an Odyssey scanner (LICOR). The whole gel images of western blots are
presented in Supplementary Figs 4–6.

In vitro assay of Mule-mediated KLF4 ubiquitination. 293T cells overexpressing
Mule or MuleC4341A (see below) were grown to near-confluence. Lysates were
prepared using standard methods and incubated with Anti-Flag M2 affinity gel
beads (Sigma) at 4 �C with rotation for 2 h. Flag-Mule or Flag-MuleC4341A was
eluted by adding 3� Flag peptide (Sigma) at a final concentration of 100mg ml� 1

in 1� ubiquitination buffer (50 mM Tris pH 7.4, 2 mM ATP, 5 mM MgCl2 and
fresh 2 mM DTT) to the washed beads. Tubes were rotated at 4 �C for 5–10 min.
For the KLF4 ubiquitination assay, 0.1 ng human E1, 0.4 ng Ubc5/7 E2, 3 ml of
eluted Mule or MuleC4341 protein, 2 mM ubiquitin and 2 mM fresh ATP were
mixed in ubiquitination buffer to a final volume of 20 ml. The reaction mixtures
were incubated in a PCR machine at 30 �C for 90 min, when 5 ml SDS–PAGE buffer
(5� ) was added to stop the reaction. Ubiquitinated proteins were separated by
4–12% SDS–PAGE and detected by immunoblotting with anti-ubiquitin
(FK2; Enzo Life Science) or anti-KLF4 (GeneTex) Ab.

In vitro assay of Mule-mediated KLF4 ubiquitination. Mule-overexpressing
293T cells and control 293T cells were transiently transfected with HA-KLF4
plasmid and His-ubiquitin, and cultured for 24 h. For ubiquitin linkage experi-
ments, these cells were transiently transfected with HA-KLF4 plasmid
together with either WT ubiquitin, K48-only ubiquitin or K63-only ubiquitin
(Addgene plasmids #17605 and 17606). Transfected cells were treated with
MG132 (10mM) for 6 h to prevent any proteasome-mediated degradation of
ubiquitinated proteins. Cell lysates were immunoprecipitated with anti-HA beads.
The beads were subjected to immunoblotting with anti-KLF4, anti-K48-linked Ub,
anti-ubiquitin or anti-HA Abs. Total cell lysates were immunoblotted with
anti-KLF4 Ab.

[3H]-Thymidine incorporation. Purified T cells from Mulefl/fl(y and
Mulefl/fl(y)CD4Cre mice were seeded in triplicate in 96-well U-bottom plates at
1� 105 cells per 200 ml in RPMI-1640 containing 10% FCS. Cells were left
untreated, or stimulated with various amounts of anti-CD3 Ab (#2C-11–45,
BD Biosciences) or with anti-CD3 plus 1 mg ml� 1 of anti-CD28 (#37.51, BD
Biosciences). At 16 h post-seeding with stimuli, [3H]-thymidine (1 mCi) was added
to each well and cells were cultured for another 8 h to determine proliferation at
24 h. [3H]-thymidine uptake was assessed using a liquid scintillation b-counter
(TopCount reader).

LCMV infection. Mice with a genotype of Mulefl/fl(y and Mulefl/fl(y)CD4Cre
mice were infected with 2000 pfu LCMV (Armstrong) by IV injection and bled
7 days post-infection. The proportions of CD8þ T cells that were specific for
LCMV GP33–41 among lymphocytes in peripheral blood and spleen were
assayed using either PE- or APC-conjugated H-2Db/ GP33–41 (KAVYNFATM)
at 1:50 dilution at 4 �C for 1 h followed by FCM46.

Gel mobility shift assay. Nuclear extracts of purified T cells from Mulefl/fl(y

and Mulefl/fl(y)CD4Cre mice were prepared according to a standard protocol.
Extract (4mg) was mixed with 2 mg poly(dI-dC) (Pharmacia) plus infrared dye
end-labelled DNA oligonucleotides (LICOR) specific for NFkB, and incubated for
30 min at RT according to the manufacturer’s protocol. Complexes were visualized
using an Odyssey scanner (LICOR).

Generation of MuleC4341A by site-directed mutagenesis. Full-length
human Mule cDNA (4374 amino acids) was the kind gift of Dr Qing Zhong
(UT Southwestern Medical Center). Using the Quick Change Mutagenesis II ^TM
system (Stratagene), a silent SacII site was introduced into this cDNA in the region
spanning amino acids 3881 to 3883 by changing bases cag cct gct to ca*a* cc*c*
gc*g*. Primers used for creation of the silent SacII site were: 50-CGG TGC TAG
TGC TAC AAC CCG CGG TCG AGG CCT TCT TTC TGG-30 and 50-CCA GAA
AGA AGG CCT CGA CCG CGG GTT GTA GCA CTA GCA CCG-30 . For
mutation of the active cysteine regulating Mule E3 ligase activity16, a C to
A mutation of amino acid 4341 was introduced by changing bases aca tgt to ac*c*
*gc*t via site-directed mutagenesis. Primers used were: 50-CCT GCC TTC AGC
TCA CAC CGC TTT TAA TCA GCT GGA TCT G-30 and 50-CAG ATC CAG
CTG ATT AAA AGC GGT GTG AGC TGA AGG CAG G-30. All PCR-generated
mutagenized fragments were completely sequenced to verify their sequences.
Following mutagenesis and sequencing, theB3 kb Nhe1/Not1 C-terminal
fragment, containing both the silent SacII site and the C4341A mutation, was
ligated to anB3.5 kb ApaI/NheI hMule middle fragment and an B7.9 kb SalI/ApaI
N-terminal fragment of hMule. This reconstructed cDNA was subcloned into a
pCI_Neo plasmid backbone with an N-terminal 3� Flag tag and 12�His tag to
generate the B19 kb full-length pCI-Neo-12His-3� Flag MuleC4341A.

Real-time PCR. RNA extracted from purified CD4þ or CD8þ T cells from
Mulefl/fl(y and Mulefl/fl(y)CD4Cre mice was reverse-transcribed as per the manu-
facturer’s protocol (Invitrogen). The resulting cDNAs served as templates for
real-time PCR reactions using Power SYBR-Green PCR Master Mix
(Applied Biosystems) and an ABI 7700HT Fast Real-Time PCR System
(Applied Biosystems). Data were analysed using SDS software provided by
Applied Biosystems.

The mRNA expression of E2F2 was analysed using the following primer
sequences: e2f1 forward, 50-gacatcaccaatgtcctggag-30 ; e2f1 reverse, 50-cttcaag
ccgcttaccaatc-30 ; e2f2 forward, 50-tggagggtatccagctcatc-30 ; e2f2 reverse, 50-agctggtc
caaggtctgct-30. Each sample was assessed in triplicate. Relative mRNA levels were
normalized to the housekeeping gene S18 and calculated using the comparative
threshold cycle method (2-DDCt).

The mRNA expression of cMyc target genes was determined by RT–PCR
using custom RT2 Profiler PCR Arrays from Qiagen. The relative change in gene
expression was calculated by Qiagen’s Data Analysis Centre, which set the value of
the untreated control group to 1. Relative mRNA levels were normalized to the
housekeeping gene b-actin.

Cytokine and transcription factor detection. For analyses of cytokine profiles
in mice with genotype of Mulefl/fl(y and Mulefl/fl(y)CD4Cre mice at 12 days

post-EAE induction, single cell suspensions prepared from draining LN (inguinal)
were stimulated for 5 h with 50 nM PMA plus 750 nM Iono (Sigma-Aldrich) in the
presence of Golgi Plug (1: 1,000; BD Biosciences)47. For Th1 and Th2
differentiation, purified naive CD4þ T cells (5� 106 ml� 1) from spleen and/or
LNs were stimulated with anti-CD3 (1 mg ml� 1; 145-2C11) plus 10mg ml� 1 anti-
IL-4 (11B11) for Th1 differentiation, or 10 mg ml� 1 anti-IFNg (XMG1.2) for Th2
differentiation. After overnight culture, Th1 cultures received 50 U ml� 1

recombinant murine
IL-2, whereas Th2 cultures received 50 U ml� 1 murine IL-2 plus 500 U ml� 1

murine IL-4. After 3–5 days culture, Th1 and Th2 cells were restimulated with
anti-CD3 for 6 h in the presence of GolgiPlug (BD Biosciences). The proportions of
Th1 cells secreting IFNg and Th2 cells secreting IL-4 were determined by
intracellular anti-IL4 (11B11, BD Biosciences, 1:50) and anti- IFNg (XMG1.2,
Biolegend, 1:50) antibody staining. For Th17 cell differentiation, purified naı̈ve
CD4þ T cells (2–10� 106 ml� 1) were cultured at a ratio of 1:1 with 3,000-rad
irradiated C57BL/6 splenocytes in the presence of 20 ng ml� 1 IL-6 (Peprotech),
10 ng ml� 1 IL-23 (R&D Systems), 3 ng ml� 1 TGFb (R&D Systems), 10mg ml� 1

anti-IL-4 (11B11) and 10mg ml� 1 anti-IFNg (XMG1.2). On day 2, cultures
received 50 U ml� 1 murine IL-2 (Biosource). On day 5, cells were stimulated with
anti-CD3 for 4 h in the presence of GolgiPlug. The proportion of IL-17-producing
cells was determined by intracellular cytokine staining using anti-IL-17 antibody
(BD Biosciences, TC11-18H10). For Treg cell differentiation, purified naı̈ve CD4þ

T cells (5� 106 ml� 1) were stimulated with anti-CD3 (1mg ml� 1; 145-2C11)
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plus 4 ng ml� 1 TGF-b, 50 U ml� 1 IL-2, 5 mg ml� 1 anti-IFN-g (XMG1.2) and
1 mg ml� 1 anti-CD28 (37.51). After 3 days culture, cells were stimulated for
5 h with 50 nM PMA plus 750 nM Iono (Sigma-Aldrich) in the presence of
Golgi Plug (1: 1,000; BD Biosciences). The stimulated cells were incubated with
anti-CD16/CD32 Ab (2.4G2, 1:100) to block FcR and then fixed and permeabilized
using the Foxp3 detection kit (eBioscience) according to the manufacturer’s
instructions, followed by FCM.

Chromatin immunoprecipitation (ChIP) assay. Crosslinked MEFs or purified
T cells from Mulefl/fl(y and Mulefl/fl(y)CD4Cre mice were lysed in ChIP lysis buffer.
Samples were sonicated and centrifuged for 10 min at 10,000g. Supernatants
were incubated at 4 �C overnight with anti-KLF4 Ab (sc-20691; Santa Cruz)
plus Protein G-Sepharose beads in a 100 ml volume. Chromatin complexes were
washed, eluted and reverse-crosslinked. Purified precipitated DNA was used
for RT–PCR as described above. Primer sequences were: control-forward: 50-CCA
ATACAGATGGGGAGGCT-30 , control-reverse: 50-CCCGTTAATGCCAGAAA
AGG-30 ; e2f2-enhancer-forward: 50-AGACTCCCTAAAAGCCTGCC-30 ,
e2f2-enhancer-reverse: 5-AGCAGCTCCAGGTCACAC-30 .

Statistical analyses. The Student’s t-test was employed for statistical analyses
(one-sided and unpaired). Analyses were performed by manuscript authors who
were blinded to the experimental group designations. Values are expressed as
the mean±s.d. and each experiment was repeated at least twice. For statistical
significance: *Po0.05; **Po0.005; ***Po0.0005.

Data availability. The authors declare that the data supporting the findings of this
study are available within the article and its Supplementary Information Files, or
from the corresponding authors on a reasonable request.
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