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ABSTRACT

Introduction: Mechanisms of resistance to EGFR exon 20
insertion mutation active inhibitors have not been exten-
sively studied in either robust preclinical models or
patient-derived rebiopsy specimens. We sought to char-
acterize on-target resistance mutations identified in EGFR
exon 20 insertion-mutated lung cancers treated with
mobocertinib or poziotinib and evaluate whether these
mutations would or would not have cross-resistance to
next-generation inhibitors zipalertinib, furmonertinib, and
sunvozertinib.

Methods: We identified mechanisms of resistance to EGFR
exon 20 insertion mutation active inhibitors and then used
preclinical models of EGFR exon 20 insertion mutations
(A767_V769dupASV, D770_N771insSVD, V773_C774insH)
plus common EGFR mutants to probe inhibitors in the
absence/presence of EGFR-T790M or EGFR-C797S.

Results: Mobocertinib had a favorable therapeutic window
in relation to EGFR wild type for EGFR exon 20 insertion
mutants, but the addition of EGFR-T790M or EGFR-C797S
negated the observed window. Zipalertinib had a favor-
able therapeutic window for cells driven by EGFR-
A767_V769dupASV or EGFR-D770_N771insSVD in the
presence or absence of EGFR-T790M. Furmonertinib and
sunvozertinib had the most favorable therapeutic windows
in the presence or absence of EGFR-T790M in all cells
tested. EGFR-C797S in cis to all EGFR mutations evaluated
generated dependent cells that were resistant to the cova-
lent EGFR tyrosine kinase inhibitors mobocertinib, zipa-
lertinib, furmonertinib, sunvozertinib, poziotinib, and
osimertinib.
Conclusions: This report highlights that poziotinib and
mobocertinib are susceptible to on-target resistance medi-
atedbyEGFR-T790Mor -C797S in thebackgroundof themost
prevalent EGFR exon 20 insertion mutations. Furmonertinib,
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sunvozertinib, and to a less extent zipalertinib can overcome
EGFR-T790M compound mutants, whereas EGFR-C797S
leads to covalent inhibitor cross-resistance—robust data
that support the limitations of mobocertinib and should
further spawn the development of next-generation covalent
and reversible EGFR exon 20 insertion mutation active in-
hibitors with favorable therapeutic windows that are less
vulnerable to on-target resistance.

� 2023 The Authors. Published by Elsevier Inc. on behalf of
the International Association for the Study of Lung Cancer.
This is an open access article under the CC BY-NC-ND li-
cense (http://creativecommons.org/licenses/by-nc-nd/
4.0/).

Keywords: EGFR-T790M; EGFR-C797S; Mobocertinib; Zipa-
lertinib; Furmonertinib; Sunvozertinib

Introduction
Acquired resistance to targeted therapies is a common

thread in oncogene-driven lung cancers. This phenome-
non has been extensively studied in preclinical models
and rebiopsy specimens of lung cancers driven by the
most common EGFR mutations (exon 19 insertion/dele-
tion or L858R), where it is established that a combination
of on-target EGFR mutations, off-target activation of
alternative oncogenic signaling, or cellular differentiation
from epithelial to neuroendocrine phenotypes explains
most cases with resistance to EGFR tyrosine kinase in-
hibitors (TKIs).1 Themajor on-target resistancemutations
have been identified for the approved reversible first-
generation EGFR TKIs gefitinib and erlotinib (EGFR-
T790M), the irreversible second-generation EGFR TKIs
afatinib and dacomitinib (EGFR-T790Mand EGFR-C797S),
and the covalent mutation-selective third-generation
EGFR TKI osimertinib (EGFR-C797S).1,2

Nevertheless, the heterogeneous group of EGFR exon
20 insertion mutations (approximately 10% of all EGFR
mutants identified in lung adenocarcinomas) is usually
insensitive to the aforementioned EGFR TKIs owing to
their structure within the kinase domain of EGFR that
precludes a therapeutic window to the drug motifs of
gefitinib, erlotinib, afatinib, dacomitinib, and osimerti-
nib.3,4 Only recently have novel EGFR exon 20 insertion
mutation active inhibitors reached clinical development,
and this has led to the short-term regulatory approval
(from 2021 to 2023) of the EGFR TKI mobocertinib.5–15

The only other approved therapy is the dual EGFR-MET
antibody amivantamab that has modest clinical activity
as a single agent but more potential as an add-on therapy
to traditional platinum-doublet chemotherapy.5,16,17

Multiple more selective EGFR exon 20 insertion muta-
tion active TKIs—such as zipalertinib, furmonertinib, and
sunvozertinib—have entered later stage clinical trials
seeking regulatory approval.5 Mobocertinib achieved
regulatory approval for patient care on the basis of initial
phase 1 and phase 2 trials after failure of traditional
therapies. The clinical results were modest at best, with
the highest dose of mobocertinib 160 mg daily only
achieving response rates below 30% with progression-
free survival times below 8 months.5 The data for pozio-
tinib are even less robust.5 In addition, mobocertinib has
been reported to not be superior to traditional chemo-
therapy in the treatment-naive setting of advanced EGFR
exon 20 insertion-mutated lung cancers (data not yet
presented from ClinicalTrials.gov ID NCT04129502)—a
result that has halted the clinical trial development of
mobocertinib and will lead to removal of the regulatory
approval of this EGFR TKI. Zipalertinib has undergone
initial development with acceptable toxicities with
seemingly more robust clinical activity thanmobocertinib
or poziotinib,5,13 and an ongoing registration clinical trial
(NCT05973773-REZILIENT3) is attempting to showcase
the superiority of chemotherapy plus zipalertinib versus
chemotherapy alone. Sunvozertinib is undergoing a
similar path of clinical development but with seemingly
even more robust clinical activity5,14 and a registration
phase 3 clinical trial (NCT05668988) that attempts to
display superiority of sunvozertinib monotherapy versus
platinum-doublet chemotherapy. Furmonertinib is
already an approved EGFR TKI for more common EGFR-
mutated lung cancers (those with EGFR-exon 19 inser-
tion/deletion or -L858R) and is undergoing earlier stages
of clinical development at high doses (160 mg or 240 mg
daily instead of the approved 80 mg daily) for advanced
EGFR exon 20 insertion-mutated lung cancer with prom-
ising clinical results15 and a global registration trial
(NCT05607550-FURVENT) of this EGFR TKI versus
platinum-based chemotherapy.

Mechanisms of resistance to the aforementioned
EGFR TKIs in the context of EGFR exon 20 insertion
mutations have not been extensively studied in either
robust preclinical models or in patient-derived rebiopsy
specimens.5–15 We sought to characterize on-target
resistance mutations identified in EGFR exon 20
insertion-mutated lung cancer treated with mobocerti-
nib or poziotinib and to establish whether these would
or would have cross-resistance to the next-generation
inhibitors zipalertinib, furmonertinib, or sunvozertinib
with a goal of attempting to maximize precision oncology
for this cohort of NSCLCs.
Materials and Methods
Literature Review of Acquired Resistance to
EGFR Inhibitors

Genotype-inhibitor resistance data were obtained
through a literature review of studies published in

http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://ClinicalTrials.gov


Table 1. Mechanisms of Reported On-Target and Off-Target Resistance to EGFR Exon 20 Insertion Mutation Active TKIs

EGFR Exon 20 Insertion
Active TKI

On-Target Resistance
(Clinical Samples)

On-Target Resistance
(Preclinical Models)

Off-Target Resistance
(Clinical Samples)

Mobocertinib EGFR-T790M (prevalence unknown)
EGFR-C797S (prevalence unknown)

EGFR-T790M
EGFR-C797S

Not reported to date

Poziotinib EGFR-T790M (13% prevalence) EGFR-T790M
EGFR-C797S

MET amplification
PIK3CA mutation

Zipalertinib Not reported to date EGFR-C797S Not reported to date
Sunvozertinib Not reported to date EGFR-C797S Not reported to date
Furmonertinib Not reported to date EGFR-C797S Not reported to date

Note. The data were obtained from Vincent et al.,9 Park et al.,10 Elamin et al.,11 Hamada et al.,12 and the current report (Fig. 2).
TKI, tyrosine kinase inhibitor.
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PubMed and other databases, including oncology
meeting abstracts using the search field “EGFR exon 20
insertion” plus fields “mobocertinib,” “poziotinib,”
“zipalertinib,” “furmonertinib,” and “sunvozertinib.”

Drugs
Osimertinib (LC Laboratories), mobocertinib (Med-

ChemExpress), zipalertinib (MedChemExpress), and
sunvozertinib (MedChemExpress) were dissolved in
DMSO (Fisher Scientific) at 10 mM and stored at �80�C
before dilutions. Furmonertinib (MedChemExpress) was
mixed with DMSO at 5 mM immediately before each
experiment.

Cell Lines and Reagents
Ba/F3 murine cells were maintained as described

previously3,6–8 and interleukin-3 independent Ba/F3
cells were used for further experiments.6–8 In the case of
EGFR-WT–driven Ba/F3 cells, 10 ng/mL of EGF
(PeproTech) was added to allow for interleukin-3 inde-
pendence. All cells were grown at 37�C in a humidified
atmosphere with 5% CO2 and tested for absence of
mycoplasma contamination (MycoAlert Mycoplasma
Detection Kit, Lonza) before the experiments (initiated
within the initial one to five passages).

EGFR-Mutant Constructs
The mutant EGFR constructs used in this study were

A767_V769dupASV, D770_N771insSVD, V773_C774insH,
delE746_A750, and L858R with or without EGFR-T790M
or EGFR-C797S in cis to the aforementioned EGFR mu-
tation. The resulting constructs were confirmed by
nucleotide sequencing (Azenta Life Sciences).

Cell Proliferation Assays
Cell viability was determined by CellTiter 96 aqueous

one solution proliferation kit (Promega) for Ba/F3 cells,
as previously described.6–8 Inhibitory proliferation
curves and the 50% inhibitory concentration (IC50) were
generated using GraphPad Prism 7 (GraphPad Software).
Preclinical therapeutic window was calculated using
logarithm of IC50 of EGFR mutants compared with EGFR
wild type (WT) with values below zero indicating
sensitivity (favorable therapeutic window) and values
above zero indicating resistance (unfavorable therapeu-
tic window) to each EGFR TKI.
Immunoblotting
Cells were treated with indicated EGFR TKIs for 6

hours at various concentrations. Cytoplasmic proteins
were isolated through cell lysis for Western blotting, as
detailed in prior reports.3,6–8 Total EGFR (Santa Cruz
Biotechnology), phospho-EGFR antibody (pY1068) (Cell
Signaling), and b-actin (Cell Signaling) antibodies were
used at 1:1000 dilution.
Results
On-Target Resistance EGFR Mutations Identified
in Clinical Specimens

There are few reports of liquid biopsy or tissue
rebiopsy in patients treated with mobocertinib or
similar EGFR TKIs.9–11 We were able to identify two
studies that reported on liquid biopsy after mobocerti-
nib resistance and one study evaluating on tissue
rebiopsy after poziotinib resistance (Table 1). Both
EGFR-T790M and EGFR-C797S have been reported (in
unknown prevalence in larger cohorts) in
mobocertinib-treated patients with lung cancer with
EGFR exon 20 insertion-mutated lung cancer, whereas
only EGFR-T790M was identified in poziotinib-treated
cases (Table 1). To the best of our knowledge and
from the available literature,12 mechanisms of on-target
or off-target resistance have not been reported from
clinical cases that received the newer EGFR TKIs zipa-
lertinib, furmonertinib, or sunvozertinib.

In view of these clinical findings, we decided to
characterize in preclinical models on-target resistance
mediated both by EGFR-T790M or EGFR-C797S in the
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Figure 1. Characterization of EGFR-T790M as on-target resistance to mobocertinib. (A) Therapeutic window of mobocertinib
in selected EGFR exon 20 insertion mutants (A767_V769dupASV, D770_N771insSVD, V773_C774insH) in the absence or pres-
ence of EGFR-T790M or -C797S. Cells were plated at a density of 10,000 cells per well (96-well plates) and grown over 3 days
after treatment. Logarithm of the IC50 of EGFR mutants compared with EGFR-WT is plotted with three separate experiments
used to generate IC50. Values below zero (0) indicate sensitivity, whereas values above 0 indicate resistance to EGFR TKIs. (B)
Dose-response proliferation assays (percent viability) for cell lines harboring EGFR mutants (A767_V769dupASV,
D770_N771insSVD, V773_C774insH) in the absence or presence of EGFR-T790M after exposure to increasing concentrations of
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context of the most common clusters of representative
EGFR exon 20 insertion mutants.
Preclinical Characterization of EGFR-T790M or
EGFR-C797S as Modulators of Sensitivity to
Different EGFR Exon 20 Insertion Mutation
Active TKIs

We generated compound mutations of EGFR-
A767_V769dupASV, -D770_N771insSVD, and
-V773_C774insH in cis to EGFR-T790M or EGFR-C797S
and made Ba/F3 cells dependent on EGFR signaling to
study different EGFR TKIs.

Mobocertinib had a favorable therapeutic window in
relation to EGFR-WT for all EGFR exon 20 insertion
mutants, but the addition of EGFR-T790M or EGFR-
C797S negated that therapeutic window (Fig. 1A).

The dose-response proliferation assay curves high-
lighted a shift in sensitivity curves when each exon 20
insertion mutant had EGFR-T790M, with more than 6- to
20-fold increase in IC50 for mobocertinib (Fig. 1B). The
same pattern of EGFR-T790M–induced resistance to
mobocertinib was noticeable at the protein level as
delineated by the need of more than 10-fold higher dose
of mobocertinib to achieve inhibition of EGFR auto-
phosphorylation (Fig. 1B)—a measure of EGFR signaling.
These results confirmed EGFR-T790M as a major on-
target mechanism of resistance to mobocertinib in
EGFR exon 20 insertion-mutated lung cancer.

We next evaluated the impact of compound EGFR-
T790M mutants in other EGFR exon 20 insertion muta-
tion active TKIs. Zipalertinib had a favorable therapeutic
window in the presence or absence of EGFR-T790M for
cells driven by EGFR-A767_V769dupASV and EGFR-
D770_N771insSVD but not EGFR-V773_C774insH
(Fig. 2A). Both furmonertinib and sunvozertinib had
favorable therapeutic windows in the presence or
absence of EGFR-T790M in all cells tested (Fig. 2A). The
detailed dose-response curve of cells driven by EGFR-
D770_N771insSVD against these EGFR inhibitors helps
highlight how the presence of EGFR-T790M has minimal
effects on inhibitory curves of furmonertinib and sun-
vozertinib, whereas zipalertinib is affected with an
eightfold increase in IC50 (Fig. 2B).

To place these results into context, we also evaluated
zipalertinib, furmonertinib, sunvozertinib, mobocertinib,
poziotinib, and osimertinib in more common TKI-
sensitive EGFR mutants (EGFR-delE746_A750 and
mobocertinib. Three separate experiments were used to gen
blotting of Ba/F3 cells driven by EGFR exon 20 insertion muta
treated with mobocertinib for 6 hours at the indicated ascendin
actin (loading control) are exhibited. IC50, 50% inhibitory conce
inhibitor; WT, wild type.
EGFR-L858R with or without EGFR-T790M), with all
drugs—outside poziotinib—with favorable therapeutic
windows in the presence of EGFR-T790M (Fig. 2A). Both
osimertinib and poziotinib had unfavorable therapeutic
windows in the context of EGFR exon 20 insertion mu-
tations tested when combined with EGFR-T790M
(Fig. 2A and B). These results highlight that the pres-
ence of EGFR-T790M generates different sensitivity/
resistance patterns in the background of EGFR exon 20
insertion mutations when compared with the pan-EGFR
TKI-sensitive classical EGFR mutants (exon 19 deletion
and L858R).

The addition of EGFR-C797S to all EGFR mutants
evaluated generated dependent cells that were resistant
to (as measured by therapeutic window in relation to
EGFR-WT) all the covalent EGFR TKIs tested (zipalerti-
nib, furmonertinib, sunvozertinib, mobocertinib, pozio-
tinib, and osimertinib) in this report (Fig. 2A and B), a
result expected on the basis of the need for covalent
bonding to EGFR amino acid position C797 for all these
TKIs.2,4
Discussion
To the best of our knowledge, the current report

represents the largest preclinical report on the impact of
on-target EGFR mutations in the efficacy and therapeutic
window of EGFR exon 20 insertion mutation active in-
hibitors. Our data support that the first-generation of
EGFR exon 20 insertion mutation active TKIs (such as
poziotinib and mobocertinib) are susceptible to on-
target resistance mediated by EGFR-T790M, and this
type of compound mutation can be overcome by next-
generation EGFR exon 20 insertion mutation active
TKIs (such as zipalertinib, furmonertinib, sunvozertinib),
whereas EGFR-C797S acts as an on-target mechanism of
resistance to all the aforementioned TKIs that share a
mechanism of covalent bond to amino acid position
EGFR-C797.

These results expand on emerging reports from other
groups12 and may have implications for the clinical
development of EGFR exon 20 insertion mutation active
TKIs. Our preclinical data lend some insights into the
shortcomings of mobocertinib and poziotinib. Both these
first-generation EGFR exon 20 insertion mutation active
TKIs have narrow therapeutic windows (highlighting the
common dose-limiting skin and gastrointestinal adverse
events) and are susceptible to on-target EGFR-T790M
erate IC50, and SDs are depicted in vertical bars. Western
nts in the absence or presence of EGFR-T790M. Cells were
g concentrations. pEGFR at position 1068, total EGFR and b-
ntration; pEGFR, phosphorylated EGFR; TKI, tyrosine kinase
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Figure 2. The impact of EGFR-T790M or EGFR-C797S in the sensitivity of different EGFR TKIs in the background of different
types of EGFR mutants. (A) Therapeutic window of different EGFR TKIs to EGFR mutants. Cells were plated at a density of
10,000 cells per well (96-well plates) and grown over 3 days after treatment. IC50 of EGFR mutants compared with EGFR-WT is
plotted with three separate experiments used to generate IC50. Values below zero (0) indicate sensitivity, whereas values
above 0 indicate resistance to EGFR TKIs. The therapeutic window of Ba/F3 cells with EGFR mutants (A767_V769dupASV,
D770_N771insSVD, V773_C774insH, delE746_A750, L858R in the presence or absence of EGFR-T790M or EGFR-C797S) were
plotted for each EGFR TKI (osimertinib, poziotinib, mobocertinib, zipalertinib, furmonertinib, sunvozertinib). (B) Dose-
response proliferation assays (percent viability) for cell lines harboring EGFR-D770_N771insSVD in the absence or presence
of EGFR-T790M or EGFR-C797S after exposure to increasing concentrations of zipalertinib, furmonertinib, and sunvozertinib.
Three separate experiments were used to generate IC50, and SDs are depicted in vertical bars. IC50, 50% inhibitory con-
centration; pEGFR, phosphorylated EGFR; TKI, tyrosine kinase inhibitor; WT, wild type.
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resistance (highlighting the limited potency of the
drugs).

The next-generation EGFR exon 20 insertion muta-
tion active TKIs have better potential to achieving more
meaningful clinical outcomes and obtaining durable
regulatory approvals. Our data support that zipalertinib,
furmonertinib, and sunvozertinib have improved ther-
apeutic windows in relation to EGFR-WT in most tested
models and are also EGFR TKIs with less susceptibility
to on-target EGFR-T790M resistance. Specifically, fur-
monertinib or sunvozertinib was minimally affected by
EGFR-T790M in all preclinical models used herein.
These preclinical data dovetail with evolving clinical
trial development for these drugs (as detailed in the
Introduction5,13–15). The combined preclinical data
from our report and others when added to the
encouraging initial clinical responses plus the ongoing
registration trials are supportive of a more robust
pathway for future clinical utility of zipalertinib, fur-
monertinib, and sunvozertinib.5,12–15 In the meantime,
there will be a period without an EGFR TKI approved
for EGFR exon 20 insertion-mutated lung cancer. The
only other approved therapy is the dual EGFR-MET
antibody amivantamab.5 It is unknown from either
preclinical models or clinical trials how to sequence
amivantamab-based therapies with EGFR exon 20
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insertion mutation active TKIs. As even next-generation
EGFR exon 20 insertion mutation active TKIs (such as
zipalertinib, furmonertinib, sunvozertinib) are suscep-
tible to on-target EGFR-C797S resistance, there remains
an unmet need to further develop EGFR exon 20
insertion mutation active TKIs with different mecha-
nisms of EGFR kinase domain binding and other
combinatory therapies for these recalcitrant lung
cancers.

Limitations of our study include our focus on on-
target resistance (that has an unknown prevalence in
clinical cases treated with next-generation EGFR exon
20 insertion active TKIs), the lack of characterization
of off-target mechanisms of resistance (albeit these
have not been reported in clinical cases treated with
mobocertinib, zipalertinib, furmonertinib, or sunvo-
zertinib—as described in Table 1), and the lack of an
in vivo preclinical model that would have allowed the
analysis of the dual EGFR-MET antibody amivantamab
in the context of EGFR-T790M or EGFR- C797S (it is
expected that compound EGFR mutations will not
affect amivantamab5). In addition, we were only able
to obtain commercially available EGFR TKIs that have
known covalent binding to EGFR-C797 and we did not
have commercial access to test EGFR exon 20 insertion
mutation active EGFR TKIs with a reversible (non-
covalent) binding mode, such as the newly developed
drug BAY 2927088. We also only focused on the first-,
second-, and third-generation EGFR TKI-resistant
cohort of EGFR exon 20 insertion mutations (repre-
sented herein by EGFR-A767_V769dupASV and EGFR-
D770_N771insSVD but not EGFR-V773_C774insH
mutants that our group and others have previously
collated as the most common representatives for pre-
clinical studies2–8,12) and purposely neglected to study
the rare group of exon 20 insertions that have sensi-
tivity to first-, second-, and third-generation EGFR
TKIs—including EGFR-A763_Y764insFQEA that is pan-
sensitive to EGFR TKIs and where we would not expect
EGFR-T790M to be an on-target resistance to osi-
mertinib or any of the EGFR exon 20 insertion active
TKIs analyzed.2–12

In summary, our preclinical data characterize mech-
anisms of on-target resistance to EGFR TKIs mediated by
EGFR-T790M or EGFR-C797S in the background of the
most prevalent EGFR exon 20 insertion mutants. The
agglomeration of results support zipalertinib, furmo-
nertinib, and sunvozertinib as next-generation EGFR
exon 20 insertion mutation active TKIs with superior
therapeutic windows for clinical development than
mobocertinib or poziotinib (both drugs have failed to
gain sustained regulatory approval for clinical use) and
as EGFR TKIs less susceptible to on-target EGFR-T790M
resistance.
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