
D1022–D1030 Nucleic Acids Research, 2020, Vol. 48, Database issue Published online 4 November 2019
doi: 10.1093/nar/gkz957

TSEA-DB: a trait–tissue association map for human
complex traits and diseases
Peilin Jia 1,†, Yulin Dai 1,†, Ruifeng Hu1, Guangsheng Pei1, Astrid Marilyn Manuel1 and
Zhongming Zhao 1,2,3,4,*

1Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at
Houston, Houston, TX 77030, USA, 2Human Genetics Center, School of Public Health, The University of Texas
Health Science Center at Houston, Houston, TX 77030, USA, 3MD Anderson Cancer Center UTHealth Graduate
School of Biomedical Sciences, Houston, TX 77030, USA and 4Department of Biomedical Informatics, Vanderbilt
University Medical Center, Nashville, TN 37203, USA

Received August 14, 2019; Revised October 07, 2019; Editorial Decision October 08, 2019; Accepted October 23, 2019

ABSTRACT

Assessing the causal tissues of human traits and
diseases is important for better interpreting trait-
associated genetic variants, understanding disease
etiology, and improving treatment strategies. Here,
we present a reference database for trait-associated
tissue specificity based on genome-wide associa-
tion study (GWAS) results, named Tissue-Specific
Enrichment Analysis DataBase (TSEA-DB, available
at https://bioinfo.uth.edu/TSEADB/). We collected
GWAS summary statistics data for a wide range
of human traits and diseases followed by rigorous
quality control. The current version of TSEA-DB in-
cludes 4423 data sets from the UK Biobank (UKBB)
and 596 from other resources (GWAS Catalog and
literature mining), totaling 5019 unique GWAS data
sets and 15 770 trait-associated gene sets. TSEA-DB
aims to provide reference tissue(s) enriched with the
genes from GWAS. To this end, we systematically
performed a tissue-specific enrichment analysis us-
ing our recently developed tool deTS and gene ex-
pression profiles from two reference tissue panels:
the GTEx panel (47 tissues) and the ENCODE panel
(44 tissues). The comprehensive trait–tissue associ-
ation results can be easily accessed, searched, vi-
sualized, analyzed, and compared across the stud-
ies and traits through our web site. TSEA-DB rep-
resents one of the many timely and comprehensive
approaches in exploring human trait–tissue associa-
tion.

INTRODUCTION

The past decade has witnessed a dramatic growth of
genome-wide association studies (GWAS) to investigate the
susceptibility of genetic variants that are associated with
human traits and diseases (1,2). However, the interpreta-
tion of trait-associated genetic variants currently remains
an open challenge. One powerful approach is to study the
potential roles of genetic variants through expression quan-
titative trait loci (eQTL) analyses (3). One example is the
rapid emergence of transcriptome-wide association studies
(TWAS) which link the DNA variation with gene expres-
sion for better searching reliable genetic association signals.
However, because genetic regulation of gene expression is
highly tissue specific, a critical step is to identify the tis-
sue and cell-type context when interpreting genetic vari-
ants. Several methods have been reported to identify causal
or relevant tissues to traits (4–6). In some methods, eQTL
are implemented to identify the tissues in which the trait-
associated loci are most likely functional (6), whereas in
other methods gene expression profiles are used to conduct
tissue-specific enrichment analysis (TSEA) (4). We recently
developed a software package, deTS, to decode tissue speci-
ficity based on reference gene expression panels and demon-
strated the robustness of the methods (chi-square test for a
list of genes and t-test for transcriptomes) in 26 traits and
14 cancer types (7).

Tissue specificity of gene expression has been widely in-
vestigated in many studies, ranging from Mendelian disor-
ders (8,9) to complex diseases (10,11), from germline vari-
ants (5) to somatic mutations (12,13), and from basic bi-
ological processes (14) to drug response (15,16). Impor-
tantly, decoding the tissue specificity of GWAS-implied loci
(e.g. genes) has many important applications. First, it pro-
vides a reference of tissues in which trait-associated genes
likely act (17). While a number of traits are known for their
causal tissues (e.g. cancer (18), diabetes), many other traits
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remain elusive. TSEA of GWAS data enables an unbiased
investigation of tissues in which GWAS-implied genes are
enriched. Second, identification of the trait–tissue associa-
tions will provide insights into trait-trait relationships and
possibly disease comorbidity. Traits that are associated with
the same tissue likely share genes or pathways in their under-
lying mechanisms (19). Third, trait-associated tissues serve
as an attractive implication for identification and interpre-
tation of causal variants. Many computational methods re-
quire analyses to be conducted in a disease-relevant tissue
context. For example, TWAS have prediction models that
are trained for each tissue separately (20) and colocalization
tests are conducted in a tissue-specific manner (21). There-
fore, an exploration of trait-associated tissues and a trait–
tissue association map will provide a valuable reference for
these studies.

In this work, we conducted TSEA using our deTS pack-
age for >5000 GWAS summary statistics data sets and con-
structed the database TSEA-DB to present these results to
the public. The GWAS data were collected from several ma-
jor sources and literature mining. We built a pipeline to per-
form strict quality control of the data. deTS was applied to
each qualified GWAS data set using two reference panels,
one from the Genotype-Tissue Expression (GTEx) project
(47 tissues) (22) and the other from the Encyclopedia of
DNA Elements (ENCODE) project (44 tissues) (23). The
design of multiple layers of trait-associated genes (TAGs)
from GWAS data with different thresholds allows users the
flexibility to explore the data with specific interests. Finally,
all results are publicly available to the users with specific
data freezes (update with the continuous growth of GWAS),
serving as a reference to trait–tissue association map.

DATA COLLECTION, ANALYSIS AND INTEGRATION

GWAS summary statistics

Data collection. The GWAS summary statistics data were
collected and processed from the following sources: ma-
jor multi-trait studies (21,24,25), GWAS Catalog (26), the
UK Biobank (UKBB) resource (http://www.nealelab.is/uk-
biobank) (2), and extensive literature mining. Among them,
we named the data sets from the Multi-Trait Collection as
the MTC panel. This panel, which comprised of the data
from several publications (21,24,25), is fixed and will not
be updated in future. We named the union of data sets from
GWAS Catalog and from literature mining as the Expanded
Trait Collection (ETC). The ETC panel is under active cu-
ration and will be updated routinely in future. Both Multi-
Trait and Expanded Trait panels are also collectively re-
ferred to the non-UKBB panel in our database. The UKBB
panel, which was originally preprocessed by http://www.
nealelab.is/uk-biobank and was released in 1 August 2018
(referred originally as ‘GWAS round 2’), represents the
largest resource of GWAS data sets for traits/diseases. We
downloaded the data sets using all samples including both
men and women and will update the data by closely follow-
ing the original project. We also explored other resources
of UKBB data, such as Gene ATLAS (27). By compar-
ing the covariates and genomic inflammation factor, we
found that the release by http://www.nealelab.is/uk-biobank

had stronger quality controls, more comprehensive covari-
ates (20 principal components, age, age2, sex, age × sex
and age2 × sex), relatively less inflation, and more phe-
notypes. Accordingly, we used the data processed by http:
//www.nealelab.is/uk-biobank.

Quality control (QC) of GWAS data. We applied the fol-
lowing filtering criteria for the non-UKBB panel whereas
the UKBB panel has been under comprehensive quality
control by the original consortium. First, we included only
GWAS datasets that were conducted using samples of Eu-
ropean ancestry. We excluded those meta-analyses cover-
ing trans-ethnic cohorts because there was no appropriate
linkage disequilibrium (LD) panel for calculation of gene-
based P-values (see below). Second, only the studies hav-
ing >100,000 analyzed genetic variants [mainly single nu-
cleotide polymorphisms (SNPs)] with genome-wide cover-
age were included. Third, we removed the studies having
incomplete information, e.g. those with missing SNP IDs
(NCBI rsIDs). Lastly, we calculated the genomic inflation
factor � and removed studies with large � values (i.e. �
> 1.5). This step excluded data files where only partial list
of genetic variants were provided (e.g. those with P < 0.05).
Note that the � cutoff value 1.5 was relatively large for the
typical GWAS analyses (typically from 1.0 to 1.1). We chose
this cutoff because in some studies, especially those meta-
analyses, their � values were quite high (e.g. 119 data sets
had � between 1.2 and 1.3), likely due to the dense genotyp-
ing after imputation. For example, when many SNPs share
a strong LD with the causal locus, the � value could become
high.

Calculation of gene-based P-value. We used the Pathway
scoring algorithm (Pascal) (28) to calculate gene-based P-
values based on the GWAS summary statistics. SNPs with
minor allele frequency (MAF) ≤ 0.05 were filtered out. For
each gene, we included the SNPs that were located in the
gene body or 50kb upstream/downstream of the gene body.
Pascal employs LD information in the reference panel to
estimate the SNP–SNP relationship. In our application, we
chose the European panel from the 1000 Genomes Project
(1KGP) (29) as the reference panel. SNPs in the Major His-
tocompatibility Complex (MHC) region on chromosome 6
or in sex chromosomes were excluded (30). Hence, in the
following analyses, only genes on autosomal chromosomes
were included. For the raw Pascal results, we selected genes
that were successfully analyzed by Pascal and excluded the
poorly genotyped genes. After this step, we further excluded
several GWAS data sets because Pascal failed to generate
the appropriate results or the number of successful genes
was <18 000. To further explore the distribution of associa-
tion results, we drew two Manhattan plots for each GWAS
set using SNPs and genes after QC, respectively, and made
them available through our database website. To keep con-
sistent, only autosomal chromosomes were included on the
Manhattan plots.

Exclusion of duplicated data sets. Using the Pascal
gene-based P-values, we calculated a pair-wise correlation
coefficient to identify potential duplicated data sets from
different sources. If two data sets had a Pearson Corre-
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lation Coefficient (PCC) > 0.99, we randomly chose one
to include in our database. It is worth noting that this
step is to exclude duplicated rather than similar data sets.
For example, even though two data sets ‘Sleep duration’
(https://bioinfo.uth.edu/TSEADB/showTraitDeTS.do?
gwasid=4620) and ‘Sleep duration adjusted for BMI’
(https://bioinfo.uth.edu/TSEADB/showTraitDeTS.do?
gwasid=4619) had a PCC = 0.98, both were included
because they represent two unique data sets. Our goal is to
provide as comprehensive results as possible of the GWAS
summary statistics and only excludes the redundant data
sets.

Human tissue transcriptome data and deTS

We collected two reference panels for tissue expression pro-
filing: the GTEx panel and the ENCODE panel, the two
widely-used expression panels currently available. The orig-
inal GTEx data (version 7) had expression profiles for 53
tissues (22). We selected 47 tissues by requiring sample size
at least 30. A t-score was calculated for each gene to measure
its tissue specificity for each tissue after adjusting for covari-
ates (7). For the ENCODE data, we collected 44 tissues,
each of which had at least two independent samples. Due
to the small sample size, we calculated a z-score for each
gene in each tissue to better estimate the tissue specificity.
Through our manual examination of the location and func-
tion of all tissues, we determined 20 shared or similar tissues
between the two tissue panels and a total of 32 unique tissue
groups (Supplementary Table S1). Both panels were made
available in our deTS package and TSEA-DB.

Definition of trait-associated gene (TAG) set

For each GWAS data set, we defined five TAG sets by using
different thresholds for the gene-based P-value from Pascal:
P < 0.05, P < 0.01, P < 1 × 10−3, P < 1 × 10−4, and P <
1 × 10−5. Among them, if a TAG set had >3000 genes or
<20 genes, the set would not be analyzed by deTS due to
too large or too small size in statistical analysis. The quali-
fied TAG sets are labeled in bold on the trait page. Having
multiple TAG sets for each GWA study allows users to ex-
plore the enriched tissues at different scales and increases
the chance to identify the appropriate tissues, because each
trait/disease may be related with multiple tissues with dif-
ferent extent. As a final QC step, for each GWA study, we re-
quired at least one TAG set passing the criteria so that deTS
could be subsequently applied. GWAS data sets without
any qualified TAG set were thus excluded. After these qual-
ity control steps, we obtained 435 GWAS summary statis-
tics data sets in the Multi-Trait Collection panel, 161 in the
Expanded Trait Collection panel, and 4423 in the UKBB
panel, totaling 5019 GWAS data sets and 15 770 qualified
TAG sets. There were 439, 613, 3206, 744 and 17 GWAS
data sets that had five, four, three, two and one qualified
TAG set, respectively.

Application of deTS and TSEA

For each TAG set, we applied deTS using the default chi-
square test for the association test. Specifically, for each tis-
sue, we defined the top 5% genes, ranked by tissue t-scores

(or z-scores), as the tissue-specific genes. The two groups of
genes, i.e. tissue-specific genes and TAGs, were compared to
build a 2 × 2 contingency table. Chi-square test was imple-
mented in R and the one-sided P-value for an overrepresen-
tation of shared genes was reported.

For each GWAS data set, we selected three tissues with
the most significance and performed Gene Set Enrichment
Analysis (GSEA) for further evaluation using the fgsea
package in R (31). We modified the default parameters of
the plot function of fgsea to label genes with their Pascal P-
values and thus, it could be visualized how the genes with
association P-values were enriched in each trait-associated
tissue. For each tissue and TAG pair, we applied 10 000 per-
mutations and calculated the normalized enrichment score
(NES). A higher NES score indicates that the TAGs are
more specifically expressed in the examined tissue. Both the
permutation P-value and NES are reported for each exam-
ined tissue.

APPLICATIONS OF THE TRAIT-TISSUE ASSOCIA-
TION MAP

Traits with enriched tissues

The current database had 15 770 qualified TAG sets from
the 5019 GWAS data sets. By applying deTS P-value <
0.05, we identified 13 247 (84.0%) qualified trait-TAG sets
with significant trait–tissue associations, covering a total of
4952 traits (Figure 1). These results included 161 (100%)
Expanded Trait Collection data sets, 433 (99.5%) Multi-
Trait Collection traits and 4358 (98.5%) UKBB data sets.
For the GTEx panel, we further used the P-value cutoff
0.001 (0.05/47, Bonferroni correction) to define significant
trait–tissue associations. Although this may be considered
an arbitrary value, using all trait × tissue pairs as the num-
ber of tests would be too strict. By setting threshold of the
trait–tissue association P-value < 0.001, we found 19.0%
(3000/15 770) trait-TAG sets having at least one signifi-
cantly enriched tissue, covering 99 (61.5%) Expanded Trait
Collection data sets, 183 (42.1%) Multi-Trait Collection
data sets, and 1355 (30.6%) UKBB data sets. For the EN-
CODE panel, by requiring the trait–tissue association P-
value < 0.05, we found that 87.8% (13 841/15 770) trait-
TAG sets had significant trait–tissue associations. Apply-
ing the same cutoff of 0.001 (0.05/44, Bonferroni correc-
tion), there were 98 Expanded Trait Collection data sets,
172 Multi-Trait Collection data sets and 1473 UKBB data
sets having at least one significant tissue. The two panels
shared 986 GWAS data sets (19.6% of 5019 data sets) with
significant associations (1637 from GTEx and 1743 from
ENCODE) at deTS P < 0.001.

Trait-enriched tissues

We also collected all traits whose TAGs were enriched in
each tissue. For each GTEx tissue, there were on average
151 (median: 127 and range: 6–712) TAG sets from 95 (me-
dian: 79 and range: 6–289) GWAS data sets using deTS P
< 0.001. The tissues having the largest number of enriched
GWAS data sets were spleen (289 GWAS data sets), lung
(234), whole blood (227), and brain–frontal cortex (BA9)

https://bioinfo.uth.edu/TSEADB/showTraitDeTS.do?gwasid=4620
https://bioinfo.uth.edu/TSEADB/showTraitDeTS.do?gwasid=4619


Nucleic Acids Research, 2020, Vol. 48, Database issue D1025

Figure 1. Data curation and quality control. (A) A pipeline of data quality control process. UKBB: UK Biobank. 1KGP: The 1000 Genomes Project.
TAG: trait-associated gene. (B) Comparison of traits with enriched tissues in the GTEx panel and the ENCODE panel. The red and blue bars are plotted
using trait–tissue associations defined using deTS P-value < 0.05 and deTS P-value < 0.001, respectively.

(159). These results were similarly replicated in the EN-
CODE tissue: the tissues having the largest number of en-
riched GWAS data sets was spleen (310), parietal lobe (232),
upper lobe of left lung (210) and suprapubic skin (176).
This is very promising because ENCODE tissues had much
smaller sample sizes. This high level of consistency indicated
that our panels and the deTS results were reproducible.

Asthma as an example

Thirty-two GWAS data sets were found in TSEA-DB when
searching using the keyword ‘asthma’. After a manual
check, we selected 11 data sets that had >1000 cases in spe-
cific asthma studies. We compared the deTS results from
all 11 GWAS data sets and examined the enriched tis-
sues. As shown in Figure 2 , three tissues (lung, spleen,
and whole blood) were overall consistently enriched in the
GTEx panel. Among them, lung and spleen were the shared
tissues between the GTEx and ENCODE panels, while
whole blood is only detected by the GTEx panel. By ex-
amining the enrichment results using the ENCODE panel,
we found that both lung and spleen were also enriched in
the ENCODE panel; this demonstrated our resource is use-
ful because the GWAS data sets were from independent
cohorts of asthma, indicating that the results were repro-
ducible not only across the studies but also across our ref-
erence gene expression panels. Asthma is a heterogeneous
disorder characterized by chronic inflammation of the res-
piratory airways, with conditions such as a patient’s airways

being inflamed, narrow and swell and producing extra mu-
cus. Our results of both lung (respiratory system) and spleen
(where white blood cells are stored) support that the genetic
signals have the direct link (or potentially causal) to the spe-
cific disease.

DESCRIPTION OF THE WEBSITE AND TOOLS

General functions: browse, search and visualization

Browse of traits. Users can browse traits (GWAS), tissues,
and trait–tissue associations through TSEA-DB website.
It provides functions to browse traits by panels (the ETC
panel, MTC panel, UKBB panel, or non-UKBB panel)
or by tissues. Notably, for the UKBB panel, there are 632
GWAS data sets that are annotated using the main ICD10
code. We mapped these traits using the 2019 International
Classification of Diseases, 10th Revision, Clinical Modifica-
tion (ICD-10-CM) diagnosis codes (https://www.icd10data.
com/ICD10CM/Codes) with levels 1 and 2. These data sets
are provided as a special subset of the UKBB panel and
can be browsed using the Dataset function. Users can also
search traits or tissues by keywords or using combinations
of conditions.

Trait page. The trait page has abundant information (Fig-
ure 3). It can be visited by the search or browse functions.
The trait page starts with basic information of a GWAS data
set, including full trait name, PubMed link, sample size,
number of SNPs and genes after quality control, � value

https://www.icd10data.com/ICD10CM/Codes
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Figure 3. Illustration of the trait page using the GWAS data set for attention deficit hyperactivity disorder (ADHD). (A) Basic information of the corre-
sponding GWAS data set. (B) Manhattan plots using all SNPs (top) and all genes (bottom) of the GWAS data set. (C) deTS results using the GTEx panel.
Boxes in red are annotations.

and the qualified TAG sets. Next, the page presents Man-
hattan plots for all SNPs and for all genes to show the over-
all association distributions. As aforementioned, sex chro-
mosomes are excluded. The top and bottom display of the
two plots allows users to explore and determine if the gene-
based P-values are consistent with the original GWAS asso-
ciation results. The deTS results are subsequently presented
for the GTEx panel and the ENCODE panel, respectively.
For each panel, the results from deTS for all qualified TAG
sets are shown as a heatmap, with the unadjusted P-values
presented and highlighted using gradient colors. The figure
can be downloaded as a SVG plot. It further selects the top
three tissues with the most significant enrichment results
and validates using GSEA. Specifically, for a tissue in exam-
ination, all genes with GTEx t-values are pooled. Genes are
ranked with a decreasing t-value, indicating decreasing tis-
sue specificity. The TAG set with the smallest deTS P-value
is selected and considered as the gene set. We modify the
original plot function to highlight TAG genes in the GSEA
plot, where the color theme is proportional to their Pascal
P-values. Both the permutation P-value and NES are shown
in the plot. For the ENCODE panel, the layout of results is
similar to the GTEx panel and GSEA is applied with genes
ranked by decreasing z-scores.

Tissue page. We allow users to search or browse by tissue.
For each tissue, the tissue page presents a dynamic trait–
tissue association network including traits that are nomi-

nally significantly associated with the tissue. Due to space
limitation, only traits from the non-UKBB panel are plot-
ted. The network view is implemented by the Cytoscape
plugin (32). Users can drag and zoom in or out to bet-
ter view the network. We take Adipose–Visceral (Omen-
tum) as an example (Supplementary Figure S1). This is a
tissue from the GTEx panel with 363 samples. At nomi-
nal P-value < 0.05, there are 189 TAG sets from 105 non-
UKBB GWAS data sets significantly associated with this
tissue. These traits are mainly adiponectin, waist hip ra-
tio (WHR), blood lipids, and fasting insulin, among oth-
ers. Similarly, for the ENCODE tissue Omental Fat Pad,
which is a counterpart tissue of the GTEx Adipose – Vis-
ceral (Omentum), a total of 146 TAG sets for 82 GWAS
data sets are associated with the ENCODE Omental Fat
Pad. Forty-five GWAS data sets (42.9% of those associated
with GTEx Adipose–Viseral Omentum and 54.9% of those
associated with Omental Fat Pad from ENCODE) are over-
lapped with the two panels, which is significantly higher
than expected (P < 2.2 × 10−16, Fisher’s Exact Test).

Documentation page. All data collection, preprocessing
and summary are presented in the documentation page
(https://bioinfo.uth.edu/TSEADB/html/document.jsp). Il-
lustration on how to use the search, browse, and compare
functions as well as explanation of each page is available
too.

https://bioinfo.uth.edu/TSEADB/html/document.jsp
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Figure 4. Illustration of the compare function with the input page and the result page. (A) Screenshot of the input page to select GWAS data sets for
comparison. (B) Demonstration and illustration of the deTS results for multiple data sets.

The function to compare multiple traits

The compare function allows users to compare multiple
traits. This is an important task on the study of multi-
traits or for multiple studies of the same trait. The com-
pare function can be evoked from the search results page
of traits or from the compare function directly. For exam-
ple, if one searches using ‘asthma’, all GWAS data sets that

have asthma in the trait name or trait full name will be listed
on the search results page. This list may include GWAS
conducted by different groups or with related phenotypes,
e.g. asthmaticus, asthma with adult onset and asthma with
childhood onset. A link to compare multiple GWAS data
sets is available at the bottom of the page, which leads to a
new page where users can select multiple data sets of inter-
ests for comparison of the deTS results. Alternatively, in the
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compare function page, we provide text boxes to allow users
to select traits with different keywords. To present the deTS
results concisely in one page, we allow up to 3 traits and
up to 10 data sets for comparison at the same time. Figure
4 shows an example for multiple GWAS data sets of three
psychiatric disorders: schizophrenia, autism, and attention
deficit hyperactivity disorder (ADHD). These three disor-
ders have been found with some shared genetic variants, but
also many results are different among them. In this case, we
selected four GWAS data sets, including one for schizophre-
nia, one for autism, and two for ADHD (one considering
ADHD as a binary phenotype and the other as a continu-
ous phenotype measured by a scale). Both ADHD data sets
and the schizophrenia data set show an enrichment in brain
regions, also evident in the ENCODE panel. However, the
GWAS-implied genes for autism do not show clear enrich-
ment pattern in either GTEx or ENCODE. This is not sur-
prising because the original autism GWAS data set we se-
lected does not have significant loci at the genome-wide sig-
nificance level 5 × 10−8 (33). Collectively, such analyses pro-
vide a convenient tool for studies across different pheno-
types to compare shared tissues or disease comorbidity.

DATABASE DESIGN AND UPDATES

TSEA-DB is developed using JavaServer Pages (JSP) and
JavaScript (JS). All data are stored in a local MySQL
database. The web site is hosted by an Apache TomCat
server and has been maintained by the university IT staff.
The design and the structure of the database allows us to
easily expand and add new data. The pipeline to run qual-
ity check, plot the Manhattan figures, run Pascal, and con-
duct deTS has been readily implemented using customized
scripts. This allows us to efficiently process any new data
sets when they are available and update regularly. Note that
all the results reported in this work are based on the ‘freeze’
set of data released on 6 August 2019 so that the users can
track their results.

CONCLUDING REMARKS AND FUTURE DEVELOP-
MENT

Decoding disease-relevant tissues is of utmost importance
to understand disease etiology. Many data types have been
explored for this task, such as histone marks, expression
profile, and eQTL annotations, along with various meth-
ods. In this work, we employed the raw GWAS signals and
tissue gene expression to infer trait–tissue associations at
large-scale. In TSEA-DB, we have observed many enrich-
ment associations that could recapture known biological
mechanisms, as well as provided new insights. For example,
Crohn’s disease is defined as a chronic inflammatory bowel
disease. While enrichment is expected to be observed in the
spleen and small intestine, both involved in Crohn’s disease,
it is also surprising to observe enrichment in lung. Impor-
tantly, with our comprehensive collection of GWAS data
sets from various studies with many cohorts and two inde-
pendent expression panels, we could validate and compare
the trait–tissue associations across studies. Indeed, for the
three non-UKBB GWAS data sets for Crohn’s disease, we
found lung was enriched in all three data sets in the GTEx

panel and upper lobe of left lung in the ENCODE panel.
Nevertheless, our method still could suffer from the under-
powered GWAS. Users could obtain the insight of this in-
formation from the Manhattan plot and sample size in each
trait page. Collectively, TSEA-DB presents a comprehen-
sive and complementary resource to the current field.

Currently, TSEA-DB deposits GWAS data sets that were
analyzed using both males and females. In future, we will
also include the UKBB GWAS data sets that are based
on males only or females only, and will use new UKBB
version too. The gene expression profile for the ENCODE
panel will be updated when new data are available, including
both new samples and new tissues. GTEx v8 was released
in August 2019. We will process the data, re-analyze it, and
update our TSEA-DB. In addition, we will expand to in-
clude GWAS summary statistics of other ethnicity ances-
tries, such as those conducted using individuals of African,
Latin American, and/or Asian ancestry. Another impor-
tant resource is cell type expression. There are a few on-
going large-scale consortium projects such as Human Cell
Atlas (34). When such data is available, we will incorporate
into our deTS tool and TSEA-DB database. In addition to
complex traits and diseases, tissue-specificity can be insight-
ful to understand many other biological problems, such as
pathway activities, drug responses, and protein-protein in-
teractions, to name a few. We will continue our efforts to im-
prove the methods in deTS and extend our current methods
for TSEA of new data types. In summary, while there have
been many methods for trait–tissue associations, TSEA-DB
provides a complement solution with user-friendly design
and comprehensive analyses.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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