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Childhood obesity and its comorbidities continue to ac-
celerate across the globe. Two-thirds of pregnant women
are obese/overweight, as are 20% of preschoolers. Ges-
tational diabetes mellitus (GDM) is escalating, affecting
up to 1 in 5 pregnant women. The field of developmental
origins of health and disease has begun to move beyond
associations to potential causal mechanisms for devel-
opmental programming. Evidence across species com-
pellingly demonstrates that maternal obesity, diabetes,
and Western-style diets create a long-lasting signature
on multiple systems, including infant stem cells, the early
immune system, and gut microbiota. Such exposures
accelerate adipogenesis, disrupt mitochondrial metab-
olism, and impair energy sensing, affecting neurodevel-
opment, liver, pancreas, and skeletal muscle. Attempts
to prevent developmental programming have met with
very limited success. A challenging level of complexity is
involved in how the host genome, metabolome, andmicro-
biome throughout pregnancy and lactation increase the
offspring’s risk ofmetabolic diseases across the life span.
Considerable gaps in knowledge include the timing of
exposure(s) and permanence or plasticity of the response,
encompassing effects from both maternal and paternal
dysmetabolism. Basic, translational, and human interven-
tion studies targeting pathways that connect diet, micro-
biota, and metabolism in mothers with obesity/GDM and
their infants are a critical unmet need and present new
challenges for disease prevention in the next generation.

The concept of Developmental Origins of Health and
Disease (DOHaD) has evolved rapidly since the National
Institutes of Health–sponsored Intrauterine Environ-
ment Investigators’ Meeting and Workshop was held
in Bethesda, MD, on 28 November 2007. This paradigm
supports that the nidus for major chronic diseases,

including diabetes, obesity, neuropsychiatric and immu-
nologic disorders, and cardiovascular, gastrointestinal,
and liver diseases begins in utero and in early develop-
ment, thus creating a malicious cycle with enormous public
health consequences. We are now aware that exposures
during the first 1,000 days of life beginning at conception
can herald early infant outcomes with persistent effects on
metabolic health and an acquired susceptibility to disease
later in life, possibly across generations. Half of childhood
obesity occurs among children who are obese by age 5 (1),
signaling that very early risk factors in the intrauterine and
postnatal environment influence the genesis of childhood
obesity. Alarmingly, recent models predict that a majority
of today’s children (57%) will be obese by age 35 and
roughly half of the projected prevalence will occur during
childhood (2). A recent longitudinal study of 970 mother-
child pairs reported that maternal hyperglycemia increased
the risk of abnormal glucose tolerance, obesity, and higher
blood pressure among offspring at 7 years of age. This
increased risk was independent of maternal obesity, being
born large for gestational age ($90th percentile), and
childhood BMI (3). These data emphasize the need for
very early interventions in mothers with gestational di-
abetes mellitus (GDM) and their offspring who are at risk
for reduced b-cell function and abnormal glucose toler-
ance. This is especially necessary in Asia, Africa, and the
Middle East, where childhood obesity, young-onset type
2 diabetes, and chronic diseases are rampant (4). The fetal
overnutrition hypothesis suggests that maternal fuels are
in greater abundance in maternal obesity and GDM,
leading to developmental programming, but these fuels
are not limited to glucose and fats (5,6). Substantial
evidence also exists for undernutrition causing DOHaD
(7). Because of limitations in space, this Perspective will
focus on emerging evidence concerning exposure to
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overnutrition and potential epigenetic, metabolic, endo-
crine, and molecular mechanisms underlying fetal pro-
gramming and outcomes in humans, primates, and other
models. The challenges and opportunities for future nutri-
tional interventions are also discussed.

EVIDENCE FOR PARENTAL ENVIRONMENT AND
TRANSGENERATIONAL EPIGENETIC
SUSCEPTIBILITY

Obesity and type 2 diabetes have a strong genetic compo-
nent; however, the genetic basis for both disorders re-
mains largely elusive. For example, a recent meta-analysis
of BMI genome-wide association studies estimated that
97 loci account for only 2.7% of BMI variation, and com-
mon genetic variation accounted for up to 21% of BMI
variation (8). Given this low frequency (,5%) and the
relatively modest effect size estimates, today’s high prev-
alence of childhood obesity and type 2 diabetes cannot be
easily explained by genetics alone. Transgenerational epi-
genetic inheritance has been proposed to contribute to
developmental programming; however, the concept itself
remains controversial (9,10). While supporting evidence is
mounting in animal models, evidence in humans is scarce,
in part because epidemiologic studies spanning multiple
generations are challenging and exposures are often cu-
mulative and difficult to isolate in time. Although whole
genome sequencing and epigenetic analyses have given us
a rapidly expanding list of genotypes and epigenotypes
associated with metabolic disease risk in offspring, the
expression of these variants depends on cumulative life-
style and environmental factors acting together in a tissue-
specific manner, likely at key points in development.
Histone modifications, noncoding RNAs, and the methyl-
ation of cytosine within DNA allow the transmission of
epigenetic signals, enabling the cell to “memorize” these
encounters in a tissue-specific manner. Genetic variation,
including single nucleotide polymorphisms located near
methylation site(s), can also affect DNA methylation,
which is often not considered in most epigenetic analyses
(11).

In humans, small changes in DNA methylation in
tissues consisting of heterogeneous cell types, such as
cord blood, are often found (12). Whether DNA methyl-
ation (the most common DNA marker studied) is a cause
or consequence of obesity and type 2 diabetes is an impor-
tant consideration that currently impedes our ability to dis-
cern mechanism from association. To date, candidate gene
studies have revealed persistent DNA methylation differ-
ences in the association of maternal obesity with adverse
offspring outcomes at birth and in later life (12). Genome-
wide methylation studies have shown differentially meth-
ylated regions in genes involved in cell differentiation, the
immune system, and transcriptional regulation (12). These
changes in methylation have been associative but might be
better accounted for by genetic or lifestyle factors over
a period of time rather than a causal intrauterine mech-
anism. However, additional analyses of newly identified

single nucleotide polymorphisms might be necessary to
explain where and how the sophisticated DNA methylation
changes act in the genome and whether this extends to
tissue-specific changes later in life. Further, methylation
throughout the genome, including promoter, intergenic,
and intragenic regions, can have very different correlations
with levels of transcript expression (13).

In animal models of maternal and paternal overnutri-
tion, specific methylation marks are found on individual
genes within different tissues of the offspring. Maternal
overnutrition in mice programmed hepatic DNA hyper-
methylation in male offspring (14) and altered fetal he-
patic histone modifications that persisted up to 5 weeks of
age, despite weaning to a low-fat diet (15). Animal studies
have shown that epigenetic information carried in sperm is
associated with phenotypes of the F2 generation (16–18).
For example, high-fat feeding–induced paternal obesity in
mice initiated intergenerational transmission of obesity
and insulin resistance in two generations of offspring and
was associated with altered sperm microRNA content
and germ cell methylation status (19). Epigenetic effects
of paternal genes can also occur in humans, as the DNA
methylome in sperm showed differences between obese
men before and following gastric bypass surgery (20).
Further, distinct methylation patterns were observed be-
tween blood, adipose tissue, and spermatozoa, pointing
toward tissue-specific remodeling after surgery (20). How-
ever, such studies are lacking causation for phenotype.
In humans, epidemiologic studies are susceptible to con-
founding, reverse causation (i.e., when the disease process
influences the exposure, rather than the other way
around), and other biases (as reviewed [21]). Most parental
DNA methylation marks found in embryos are erased
during embryogenesis. True epigenetic transgenerational
inheritance requires the presence of environmental cues
resulting in permanent epigenetic changes that are exempt
from erasure and persist across more than one generation
(22). Interestingly, regions that escape DNA demethyla-
tion and are linked to metabolic disorders were found
in human primordial germ cells, thus uncovering possible
candidates for transgenerational epigenetic inheritance
(23). Siklenka et al. (24) demonstrated that epigenetic
inheritance of aberrant development can be initiated by
histone demethylase activity in developing sperm without
changes to DNA methylation at CpG-rich regions in mice.
In addition to the nuclear genome, the effects of maternal
obesity on germline mitochondria and mitochondrial dys-
function must be considered as a mechanism for trans-
mission of metabolic diseases, since mitochondrial DNA is
inherited from the mother. Saben et al. (25) found that
consumption of a maternal high-fat, high-sugar diet pro-
grammed differential expression of electron transport
chain proteins and altered mitochondrial dynamics in
skeletal muscle via germline changes across three gener-
ations of mice. Epigenetic variation between individuals
might hold the key to more accurate predictions of obesity
risk, and better understanding of this variation could lead
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to new tools for fighting obesity. In addition to epigenetic
biomarkers, such as metastable epialleles (26,27), epige-
netic modifications established during early development
and expressed in multiple tissue types might provide
additional insight into intrauterine exposures and obesity
risk in later life.

PROGRAMMING IN PRIMATES AND THE CRITICAL
ROLE OF MATERNAL DIET

Addressing causation and mechanisms of human develop-
mental programming has been difficult because of tre-
mendous variation in environment, genetics, nutrition,
maternal behavior, and developmental programming of
preceding generations. Despite the differences in matura-
tion during fetal life, studies in sheep (28), rodents (29),
flies (30), and even worms (31) have shown that over-
nutrition results in developmental programming of obesity
and other disorders in the offspring. Since we do not
understand the causal mechanisms for many of the disease
outcomes in humans and therefore cannot institute pre-
vention or treatment, we need to know more about the
mechanisms involved, building on knowledge from animal
models. Our group has spent the past decade, first in
collaboration with Dr. Kevin Grove at the Oregon National
Primate Research Center and later with Dr. Kjersti Aagaard
at Baylor University (and others at other institutions),
developing and studying a sophisticated nonhuman pri-
mate (NHP) model (the Japanese macaque) of chronic
maternal high-fat, calorie-dense Western-style diet (WSD)
consumption starting early in the reproductive years.
Females are fed a WSD or chow diet for 3–8 years before
mating; cesarean section is performed in the early third
trimester for fetal studies or mothers are allowed to give
birth and juveniles are followed for up to 3 years while
either fed a WSD or switched to a healthy diet at weaning,
allowing us to study the persistence of developmental
programming. The importance of the NHP model is that
the developmental changes in the placenta, islets, and
brain are similar to those in humans, and it is the only
natural model that develops the full spectrum of metabolic
disease seen in humans, including complex psychosocial
behaviors that can be studied longitudinally in the off-
spring. These qualities make the NHP model uniquely
powerful and critically important.

Notably, as in humans, we find that WSD consumption
increases adiposity and insulin resistance in some, but not
all, NHP dams. One striking example of developmental
programming by maternal diet is our finding that all
fetuses from mothers fed a WSD during gestation, in-
dependent of maternal obesity, had increased intrahepatic
fat in the early third trimester (32). Remarkably, when
combined with obesity, WSD consumption in NHP during
gestation increased fetal hepatic oxidative stress and ap-
optosis, increased lipogenic gene expression, and altered
chromatin structure in the early third trimester (33,34)
(Fig. 1A and Table 1). Fetal hepatic metabolism is distinct
in that the fetus develops in a low-oxygen environment

and, compared with adult liver, the fetal liver has fewer
mitochondria and little-to-no gluconeogenesis (35,36).
Combined with low antioxidant activity (37), these con-
ditions make the fetus uniquely vulnerable to hepatic
oxidative stress and hypoxic injury prior to the develop-
ment of obesity. In our human studies using MRI/MRS, we
showed that infants born to mothers with obesity and
GDM had a striking 68%more intrahepatic lipid at 2 weeks
of life compared with those from normal-weight (NW)
mothers and that maternal BMI correlated with newborn
intrahepatocellular lipid storage (38), setting the stage
for later development of nonalcoholic fatty liver disease
(NAFLD) in offspring. NAFLD is a spectrum of conditions
ranging from steatosis to nonalcoholic steatohepatitis
(NASH) and a risk of progression to cirrhosis. NAFLD
affects approximately 34% of obese children ages 3–18
years worldwide (39), and half have already progressed to
the more severe NASH at time of diagnosis (40). Impor-
tantly, the severity of adolescent NAFLD and obesity in
humans correlates with maternal obesity (41) and birth
weight (42), even after adjusting for childhood BMI. In the
1-year-old juvenile offspring of obese, WSD-fed NHP dams
switched to a normal diet at weaning, we found innate
immune dysfunction and necro-inflammatory changes in
the liver (43) (Fig. 1A), along with dysbiosis of the juvenile
gut microbiome (44). Furthermore, we found that mater-
nal WSD persistently altered hematopoietic bone marrow
stem cell differentiation toward myeloid cells in both fetal
and 3-year-old NHP (Fig. 1B) (J.E.F., unpublished results).
As this population gives rise to the entire population of
circulating blood cells and immune cells that are found in
peripheral tissues, these results suggest that WSD expo-
sure in utero drives myeloid cell precursors in fetal life (45)
and contributes to unresolved inflammatory responses in
obesity (46,47). Similarly, in rodent models we and others
found that continued exposure to maternal WSD through
postnatal life triggers hepatocyte injury and rapid pro-
gression to liver fibrosis by 20 weeks of age (48–50). These
data reinforce the concept that multiple “first hits” occur in
the liver of infants born to obese mothers prior to de-
velopment of obesity (51). The disturbing consequences of
fetal overnutrition in infants and animal models is clear;
however, not all obese children get NAFLD. We know very
little about the mechanisms driving NAFLD progression
to advanced liver disease (NASH) in children. This is an
important challenge as we move forward to more long-
term studies.

In the pancreas, a study by Comstock et al. (52) in NHP
demonstrated that a maternal WSD leads to reduced fetal
islet a-cell mass, with no change in b-cell mass, resulting in
an increase in the b-cell:a-cell ratio. Furthermore, at 1 year
of age, NHP offspring born to WSD-fed dams continue to
display a significant reduction in a-cell area (52), indicat-
ing that an early insult to the development of the a-cell
persists into the juvenile period. a-Cells contain a gener-
ating system that produces glucagon-like peptide 1 locally
for paracrine actions within the islets, which likely
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promotes b-cell growth and survival and maintains b-cell
mass (53); however, the significance of a reduced a-cell
mass on diabetes risk remains to be tested. In NHP fetuses
exposed to maternal WSD, impaired islet capillary density
and decreased sympathetic islet innervation was observed
in the early third trimester (54). Interestingly, reduced
vascularity but not sympathetic innervation persisted into
juvenile life (54). Switching an obese NHP dam to a healthy
diet in the next pregnancy prevented the loss in islet
vascularity but not sympathetic innervation in utero (54).

In skeletal muscle, reduced metabolic flexibility is linked
to muscle insulin resistance (55), a key predictor for the
development of metabolic diseases. McCurdy et al. (56)
showed that maternal obesity in WSD-fed NHP leads to
reduced mitochondrial content, oxidative capacity, and
oxidative phosphorylation efficiency in fetal skeletal mus-
cle. A reduction in maximal oxidative capacity in muscle
fibers and in isolated primary fetal myotubes from off-
spring exposed to a maternal WSD was demonstrated.
Interestingly, unlike the liver, fetal skeletal muscle adapts

Figure 1—Programmed effects in the liver and bone marrow immune cells of NHP offspring exposed to maternal WSD. A: Livers from fetal
offspring (early third trimester) of obese, WSD-fed NHP dams demonstrate increases in gluconeogenic genes, oxidative stress, and
triglyceride accumulation. Diet reversal in obese mothers produces fetuses with lower lipogenic gene expression and normalized oxidative
stress yet persistently higher triglycerides, demonstrating incomplete amelioration of the steatotic phenotype. Global metabolomic profiling
of fetal liver and serum revealed decreased tricarboxylic acid (TCA) cycle intermediates, increased amino acid metabolism, and increased
gluconeogenesis, indicating increased reliance on amino acid metabolism to meet energy needs in fetuses from obese, WSD-fed mothers.
These fetuses have lower arterial oxygenation suggestive of mild hypoxia and exposure to higher plasma cytokine levels (shown in green).
Incomplete mitochondrial and lipid oxidation and/or respiratory chain dysfunction, when combined with limited antioxidant activity, increases
hepatic oxidative stress and liver injury prior to the development of obesity. Juvenile offspring from WSD-fed dams show innate immune
(Kupffer cell) activation and inflammatory cytokine expression (interleukin-6 [IL-6], tumor necrosis factor-a [TNFa]) and a persistent increase
in lipogenic gene expression (fatty acid synthase [FAS], sterol regulatory element binding protein [SREBP], acetyl-CoA carboxylase [ACC])
in vivo and in vitro (shown in red), even after weaning to a chow diet. B: Maternal WSD persistently alters bone marrow immune cell
proportions in NHP offspring. Bonemarrow from 3-year-old juvenile offspring exposed to maternal WSD, then shifted to a chow diet (CON) at
weaning, was studied using colony-forming assays of plated bone marrow cells. A significant 34.5% (P , 0.05) relative increase in myeloid
cell proliferation was observed at the expense of erythroid (278.9%) and multilineage (253.8%) progenitor cell types. RBCs, red blood cells;
ROS, reactive oxygen species; WBCs, white blood cells.
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to the obesogenic environment by upregulating fatty acid
oxidation and downregulating the ability to oxidize carbo-
hydrates, promoted by increased carnitine palmitoyltrans-
ferase 1B and pyruvate dehydrogenase kinase 4 (56).
Surprisingly, switching the obese mothers to a normal diet
did not improve the decrease in oxidative metabolism in
fetal skeletal muscle (56). Similar findings were observed in
isolated soleus and gastrocnemius muscles from 1-year-old
juveniles (C.E. McCurdy and J.E.F., unpublished results),
suggesting that this condition precedes overt obesity in
NHP offspring. Notably, mitochondrial dysfunction and
altered mitochondrial dynamic and complex proteins in

skeletal muscle have been demonstrated across three
generations of mice in offspring exposed to F0 maternal
high-fat/high-sugar diet (19).

Alterations in brain structure and function are funda-
mental to understanding the impact of maternal diet and
obesity on the next generation. In 1-year-old juvenile NHP
exposed to maternal WSD through pregnancy and lacta-
tion, decreased brain serotonin and increased anxious,
aggressive, and repetitive behaviors were observed, and
reduced social behaviors demonstrated some sexual di-
morphism (57,58). NHP offspring from WSD-fed dams
displayed elevated body weight at 7.5 and 13 months of

Table 1—Summary of findings from NHP cohorts studying the effects of maternal WSD and obesity on third-trimester fetuses
and juvenile offspring

Findings
First author,
year (ref.)

Placenta
Increased cytokine production and decreased function; reduced uterine volume blood flow Frias, 2011 (145)
Reduced mRNA expression of AMPKa, plasma membrane fatty acid binding protein, and fatty acid

transporter
O’Tierney-Ginn,

2015 (146)

Plasma
Increased n-6:n-3 ratio in fetal plasma; increased fetal hepatic apoptosis; lower levels of EPA and

DHA in breast milk Grant, 2011 (34)
Impact of maternal diet on the fetal metabolome Cox, 2009 (147)

Maternal diet
WSD and genomic variants resistant to weight gain Harris, 2016 (148)
Impact of maternal resveratrol supplementation on placenta and fetal outcomes Roberts, 2014 (149)

Microbiome
Maternal gut microbial dysbiosis and diminished abundance of Campylobacter in juveniles switched

to healthy diet at weaning Ma, 2014 (44)
Modulations in the offspring gut microbiome refractory to postnatal symbiotic supplementation

among juveniles Pace, 2018 (150)

Liver
Increased fetal hepatic inflammation, oxidative stress, and triglyceride accumulation McCurdy, 2009 (32)
Altered fetal chromatin structure and disrupted H3 acetylation Aagaard-Tillery,

2008 (33)
Disruption of circadian gene expression in fetal and juvenile liver Suter, 2011 (151)
Decreased fetal SIRT1 histone and protein deacetylase activity Suter, 2012 (152)
Decreased juvenile hepatic innervation; increased apoptosis and inflammation Grant, 2012 (153)
Increased inflammation, triglycerides, and de novo lipid synthesis; dysregulated juvenile hepatic

immune system Thorn, 2014 (43)

Skeletal muscle/vascular function
Fetal mitochondrial dysfunction and fatty acid oxidation in skeletal muscle McCurdy, 2016 (56)
Endothelial dysfunction, elevated expression levels of vascular inflammation, and fibrinolytic function

in juvenile aorta Fan, 2013 (154)

Pancreas
Reduced fetal/juvenile a-cell mass and increased b-cell:a-cell ratio Comstock, 2012 (52)
Increased inflammatory cytokines and islet-associated macrophages Nicol, 2013 (155)
Reduced fetal/juvenile islet vascularization and impaired sympathetic islet innervation Pound, 2014 (54)

Brain
Abnormalities in the fetal melanocortin system Grayson, 2010 (60)
Perturbations in the fetal serotonergic system; increased anxiety (female infants) and increase

aggression (male infants) Sullivan, 2010 (156)
Overconsumption of palatable energy-dense diet in juveniles; reduced dopamine signaling in juveniles Rivera, 2015 (59)
Altered peripheral and central serotonergic system and persistent anxiety and aggressive behaviors Aagaard, 2016 (157)
Increased anxiety in juveniles; modified cortisol stress response and decreased serotonergic

immunoreactivity
Thompson,
2017 (57)

Disturbances in body weight regulation; impairments in central melanocortin signaling Sullivan, 2017 (158)

DHA, docosahexaenoic acid; EPA, eicosapentaenoic acid.
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age, without a change in physical activity at 13 months
(59). These offspring preferred a diet high in fat and sugar
and demonstrated a reduction in dopamine signaling in
the prefrontal cortex (59). NHP fetuses from WSD-fed
dams had decreased expression of agouti-related peptide
mRNA and protein in the third trimester but increased
expression of proopiomelanocortin and melanocortin 4 re-
ceptor mRNA in the arcuate nucleus of the hypothalamus
(60), supporting a change in appetite regulation. Maternal
as well as postnatal WSD exposure reduced the level of
agouti-related peptide fibers in the paraventricular nucleus
of the hypothalamus in the NHP offspring (60). Exposure
to maternal WSD also reduced tryptophan hydroxylase
2 mRNA expression in the dorsal and median raphe and
reduced serotonin-positive fibers in the medial prefron-
tal cortex in 1-year-old juvenile NHP (57). These results
suggest that the developmental timing of WSD exposure
differentially impacts the melanocortin, dopamine, and
serotonin systems and energy balance regulation and
behavior. These effects extend past gestation into the
juvenile period and suggest that the effects are additive
after weaning. These data have important clinical impli-
cations as they suggest that, in NHP, exposure to ma-
ternal WSD increases the risk for early development of
a number of behavioral disorders in offspring, and thus
developmental changes in the central serotonergic cir-
cuitry could explain the comorbidity of obesity with
anxiety, depression, and attention-deficit/hyperactivity
disorder in humans (61,62). Together, these observations
in NHP demonstrate that maternal-fetal nutritional over-
load during gestation and the perinatal period is a major
driver of multiple neurologic and metabolic disease path-
ways that set the stage for development of metabolic
syndrome (Fig. 2). An overall summary of novel findings
in NHP is listed in Table 1.

PRENATAL FACTORS THAT PREDICT ONSET AND
WORSENING OF OBESITY AND DIABETES IN
HUMANS

A broad range of umbilical cord blood metabolites and
hormones are associated with birth weight and adiposity in
human infants (63,64). However, the hypothesis that
these substances cause biochemical changes in newborn
tissues remains largely untested. Maternal obesity is as-
sociated with multiple factors, including glucose, triglycer-
ides, free fatty acids (FFAs), adiponectin, leptin, hypoxia,
oxidative stress, inflammation, and the microbiome, that
are linked to developmental programming (65). In women
who are obese or insulin resistant prior to pregnancy, local
inflammation and metabolic stressors in skeletal muscle
and adipose tissue are already evident and likely become
exacerbated with the increasing insulin resistance of preg-
nancy (66). Thus, an obese gravida exhibits elevated cir-
culating lipids, glucose, insulin, leptin, and inflammatory
cytokines when compared with NW pregnant women. My
colleagues have demonstrated that even on a controlled,
eucaloric diet, obese pregnant women have higher 24-h

patterns of glycemia, fasting triglycerides, FFAs, and in-
sulin resistance than NW women both early and late in
gestation (5). These data suggest that obese pregnant
women have intrinsic metabolic differences in hepatic
and adipose tissue metabolism independent of maternal
diet that increase early fuel availability to the placenta and
fetus.

The developing fetus is an example of an organism that
is metabolically inflexible, defined as having an intrinsi-
cally low capacity for lipid oxidative metabolism, and
adverse metabolic consequences can result when it is
challenged with excess fuels (67). Because the fetus devel-
ops in an extremely low-oxygen environment (68) and
many of the enzymes for fatty acid oxidation are not highly
expressed until late pregnancy, the fetus is particularly
vulnerable to excess lipid exposure and oxidative stress
early in pregnancy. Further, placental transfer of antiox-
idant micronutrients and endogenous antioxidant enzymes
are limited until late in gestation in preparation for the
oxidative stress upon exposure to higher oxygen following
labor and birth (37). Activity levels of antioxidant enzymes
such as superoxide dismutase and catalase are much lower
in fetal tissues relative to adult values (69). As gestation
progresses, the increased growth demands of the fetus are
met by increases in placental glucose and FFA transfer,
both of which are carried or transferred by specific trans-
porters across the placenta. Notably, in the human fetus,
limited capacity exists for de novo lipogenesis, and the
precursors for fetal fat accretion are primarily supplied
transplacentally and consist of maternal substrates de-
rived from lipids rather than from glucose (70,71). How-
ever, in mothers with preexisting obesity or diabetes,
greater concentrations of fasting maternal lipids and glu-
cose early in pregnancy can have untoward effects on fetal
development that create a predisposition for later adiposity
and diabetes (72–74). Consistent with the hypothesis that
fuels early in pregnancy are key drivers of developmental
programming are epidemiologic observations that maternal
insulin resistance in the first half of pregnancy is highly
predictive of neonatal percent fat and that maternal glyce-
mia, even within the normal range, is associated with in-
creased neonatal adiposity, independent of prepregnancy
BMI (75). Some have speculated that infants born to
mothers with GDM have already developed insulin re-
sistance in utero, presumably in response to fetal over-
nutrition (76). However, given that maternal glucose is
transported down a concentration gradient to the fetus,
elevated insulin and umbilical cord glucose levels, used to
calculate HOMA-IR, might simply reflect elevated ma-
ternal glucose.

EVIDENCE THATMATERNAL OBESITY PROGRAMS
ADIPOGENESIS AND MITOCHONDRIAL
INFLEXIBILITY IN HUMAN UMBILICAL CORD–
DERIVED MESENCHYMAL STEM CELLS

Emerging evidence in human stem cells from the umbili-
cal cords of infants born to obese mothers suggests that
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mechanisms underlying an increase in infant adiposity
might involve stem cell determination factors that increase
adipogenesis (77). In utero, fetal muscle and adipose tissue
develop from mesenchymal stem cells (MSCs). MSCs are
progenitors to adult adipocytes, myocytes, osteocytes, chon-
drocytes, and hepatic stellate cells and reside in mature
tissues where they initiate tissue repair and maintain
tissue health (78). Although MSCs found in adult tissues
retain cell surface markers and in vitro differentiation
capacity consistent with fetal MSCs (79), adult MSCs
might accumulate further changes beyond infancy based
on postnatal exposures. Importantly, in rats, epigenetic
markers in offspring of obese dams were present in adult
tissue-resident MSCs, even when cells were subcultured for
multiple passages or differentiated in vitro (80). This cell-
autonomous phenotype suggests that early fetal program-
ming events at the level of the MSC lineage not only alter
the development of fetal tissue but can impact the health
of tissues throughout the life span. Using umbilical cord–
derived MSCs (uMSCs), we found evidence of greater
adipogenesis and increased peroxisome proliferator–
activated receptor g protein in uMSCs from infants born to
obese mothers compared with uMSCs from infants born to
NW mothers (77) (Fig. 3A). In undifferentiated cells, gly-
cogen synthase kinase 3b activation was higher, favoring
b-catenin degradation, which might drive stem cell fate

toward adipogenesis in uMSCs from infants born to obese
mothers (77). When uMSCs were differentiated into myo-
cytes, we found specific energy-sensing genes, including
AMP kinase, carnitine palmitoyltransferase, and acetyl-CoA
carboxylase, were downregulated and hypermethylation was
identified, corresponding to reduced fatty acid oxidation in
uMSCs from infants born to obese mothers (81) (Fig. 3B).
Using RNA-Seq and metabolomics, we analyzed specific
factors that might inform the changes in gene expression
in uMSC-differentiated adipocytes and myocytes from
infants born tomothers with normal versus obese prepreg-
nancy BMIs (82). Incomplete b-oxidation, with a compen-
satory upregulation of v-oxidation, was found in uMSC
myocytes from offspring of obese mothers and was posi-
tively correlated with neonatal adiposity at birth and ma-
ternal lipid levels (82). The uMSC adipocytes showed more
robust changes in transcriptomic analyses thanmyocytes. In
uMSC adipocytes, infant percent fat mass correlated with
a downregulation of genes in the AMPK, mTOR, PI3K, and
calcium-dependent signaling pathways (82). Interestingly,
a generalized upregulation of multiple genes in all respira-
tory chain complexes (I–V), mitochondrial ribosomal genes,
and mitochondrial replication genes was shown in uMSC
adipocytes relative to maternal FFA exposure (82). How-
ever, specific genes related to mitochondrial biogenesis,
mitophagy, and fission/fusion were downregulated only in

Figure 2—Maternal obesity in combination with WSD induces changes in fetal brain, offspring behavior, and the risk for neurocognitive
developmental disorders in NHP offspring. Redrawn with permission from Rivera et al. The role of maternal obesity in the risk of
neuropsychiatric disorders. Front Neurosci 2015;9:194.
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uMSCs from infants of obese mothers in relation to
maternal FFAs, suggesting a lack of quality control in ad-
dition to reduced function and biogenesis. We went on
to show that these changes in metabolism in uMSCs differ-
entiated into myocytes and adipocytes were correlated with
infant postnatal growth by determining adiposity at birth
and 5 months of age (83). Strikingly, we found that higher
long-chain acylcarnitine concentrations, lipid transport gene

expression, and indicators of oxidative stress in uMSC
adipocytes were correlated with accelerated adiposity
gain (but not increased body weight) in infants from
birth to 5 months of age. In uMSC myocytes, we found
lower amino acid concentrations, amino acid biosynthe-
sis, and oxidative stress in uMSCs from infants with
accelerated adiposity gain, particularly if those infants
were born to obese mothers (83). Overall, our findings

Figure 3—A: Human MSCs from the umbilical cord of infants born to obese mothers exhibit greater potential for adipogenesis. In
undifferentiated cells, glycogen synthase kinase 3b activation was higher, including less nuclear content of b-catenin and increased PPARg
protein. Greater lipid content was positively correlatedwith infant percent fat mass.B: Human umbilical cord–derivedMSCs from infants born
to obese mothers demonstrate decreases in energy-sensing pathways, AMP kinase (AMPK), acetyl-CoA carboxylase (ACC), and carnitine
palmitoyltransferase (CPT) in differentiated myocytes. Increased methylation of specific genes (indicated by stars) was found, affecting
mitochondrial transport and fatty acid oxidation in infants with increased percent fat mass at birth. ASM, acid-soluble metabolites; b-OX,
b-oxidation; ETS, electron transport system. Reprinted with permission from Boyle et al. (81).
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suggest that cell-specific programmed differences in in-
fant stem cell metabolism, and mitochondria function in
particular, correspond with differences in body compo-
sition at birth and predict changes in adiposity gain in
these infants. Importantly, this uMSC model can be used
to identify specific metabolites as important biomarkers
in infants, address efficacy of interventional studies in
mothers, and tackle major gaps in our understanding of
cell-specific biochemical and epigenetic developmental
programming of childhood obesity risk in early life.

NEW FACTORS ASSOCIATED WITH
DEVELOPMENTAL PROGRAMMING: THE
MATERNAL/INFANT MICROBIOMES AND LEGACY
EFFECTS ON THE IMMUNE SYSTEM

The establishment of the infant gut microbiome during the
first days and weeks of life can have lifelong implications
for disease risk. How the infant gut microbiome develops is
a complex, poorly understood process influenced by ma-
ternal modifiers and early-life infant dietary exposures.
During and after birth, infants are rapidly colonized by
microbes from the mother and surrounding environment,
suggesting that variations in the mothers’ microbiota re-
sult in variations in their infants’ gutmicrobes (84). At birth,
the intestine of the newborn is filled with contents acquired
in utero, which are passed postnatally as meconium.
Evidence of intrauterine seeding in the fetal gut exists
(85–87), but the role and importance of prenatal micro-
bial colonization is still open to debate (86,88,89). In
mice, the maternal microbiota was shown to drive early
postnatal innate immune development and to increase
the expression of large classes of genes in the newborn
intestine, including those involved in metabolism, oxi-
dative stress, and innate immunity (90). In the human
neonate, the immature gut is first colonized by aerobes
and facultative anaerobes, which are subsequently replaced
by strict anaerobes (91). The sequence and timing of the
colonization of each of these classes affect innate immune
signaling (92,93), endotoxin tolerance (92), and T helper
1 cell immune responses (94).

Disruption of microbiome colonization, including by
maternal obesity, during critical developmental windows
has been shown to initiate or predispose offspring to
a variety of immunologic disorders later in life, such as
asthma, allergies, and type 1 diabetes, and to contribute
to increased obesity risk and metabolic disease (92,95,96).
Cesarean delivery is associated with higher offspring risk
of immune and metabolic disorders (97,98) and obesity
(99). Antibiotics are commonly prescribed for women un-
dergoing cesarean section within 60 min prior to incision
(100). Maternal exposure to antibiotics in the second and
third trimesters of pregnancy or offspring’s exposure in
early infancy is associated with an approximately 80%
increased risk of childhood obesity (101). Perhaps not
surprisingly, increased maternal BMI was associated with
an altered intestinal microbial community structure of
infants’ stool at 2 days, 2 weeks, and up to 2 years of

age (96,102,103). In a birth cohort of 935 infants, fecal
samples collected at 3.7 months of age had a lesser abun-
dance of two families of Proteobacteria in infants born to
overweight or obese versus NW mothers, whereas four
bacterial families belonging to Actinobacteria and Firmi-
cutes were more abundant; those infants born to over-
weight or obese mothers were 3.8 times more likely to
become overweight or obese at 1 year of age compared with
infants born to NWmothers (104). Evidence that a maternal
high-fat diet has persistent effects on the composition of
the infant microbiota comes from studies in NHP (44) and
estimates of maternal diet composition in humans (105).
In NHP, a maternal WSD, independent of obesity status,
resulted in the loss of key bacteria in 1-year-old offspring,
as well as decreased overall bacterial diversity when com-
pared with control diet–fed offspring (44). This dysbiosis
was not fully corrected by weaning offspring fromWSD-fed
dams onto a control diet at a time when the microbiome is
thought to be stabilized (44). Mechanistic studies of disease
pathways due to differences in infants’ microbiomes are
difficult to perform in humans because of the tremendous
variation in environment, nutrition, and maternal factors.
Therefore, most of what is currently known about the infant
microbiome stems from experiments in animal models. Our
recent unpublished results using human infant stool samples
from babies born to obese mothers inoculated into germ-free
mice suggest that microbial shifts in the stool of 2-week-old
infants of obese mothers alter critical functions in hemato-
poietic bone marrow–derived macrophages and increase gut
permeability in germ-free mice. Colonization in germ-free
mice with stool from infants born to obese mothers leads to
hepatic infiltration of immune cells and susceptibility to
obesity and NAFLD in the mice when fed a WSD compared
with germ-free mice colonized with stool from infants born
to NW mothers (106). This suggests that human infant
microbes from babies born to obese mothers can be an
initiating factor to inflammation in infancy that precedes
childhood obesity.

In mice given antibiotics during pregnancy only in the
peripartum period, even brief disruption induced a skew-
ing of the host immune system and resulted in increased
susceptibility to inflammatory disease that persisted into
adulthood (107,108). On the other hand, a high-fiber/
high-acetate diet in pregnant mice, acting on the maternal
microbiome, prevented asthma in their adult offspring (109).
Rodent studies have also reported a legacy effect of exposure
to maternal WSD on postnatal innate immunity (110–112).
These results indicate that a mother’s diet can preset im-
mune cell fitness in utero and that age-sensitive contact with
commensal microbes is critical for establishing immune
tolerance to later environmental exposures (113).

With an estimated 10 million genes encoded in the gut
microbiome (114), compared with an estimated 19,000 in
humans (115), the highly enhanced metabolic capabilities
of microbes have yet to be solved. Microbiomes have the
genetic capacity to generate an extensive array of struc-
turally diverse metabolites; therefore, metabolomics is
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a valuable tool for understanding microbial community
function. Very little is known regarding how maternal diet,
obesity, or diabetes impacts blood or stool biomarkers
derived from the gut of breast-fed or formula-fed infants.
Short-chain fatty acids (SCFAs), primarily acetate, pro-
pionate, and butyrate, are the key metabolites produced
during the catabolism of carbohydrates (e.g., dietary fiber)
and proteins (116). Notably, butyrate, propionate, and
acetate are elevated in the plasma of obese youth (117)
and in the stool of infants born to obese mothers (102).
Distinct SCFA receptors are present in gut epithelial
cells, adipocytes, myocytes, and immune cells and might
increase energy expenditure or gut hormone production,
as well as improve insulin sensitivity (118). Recently, it was
reported that a high-fiber diet in humans with diabetes was
associated with increased SCFA-producing organisms and
correlated with elevated glucagon-like peptide 1, a decline
in acetylated hemoglobin, and improved blood glucose
regulation (119). Butyrate is widely regarded as an impor-
tant microbial metabolite for colonic mucosal homeostasis
(120), and understanding the factors that regulate its
production by intestinal microbes has broad-reaching
implications. Butyrate acts as a histone deacetylase in-
hibitor, creating hyporesponsivity in human intestinal
monocytes/macrophages (121) and regulatory T cells
(122) and resulting in altered innate and adaptive immu-
nity. However, a causal relationship between increased
SCFAs, glucose/fat metabolism, and immunity in humans
remains speculative. Integrative analyses of microbiomes
and untargeted metabolomes in the future will yield a more
detailed picture of when and how a deviation in microbial
metabolites in infants of obese mothers can pattern im-
mune and metabolic responses and will help us understand
the early origins of metabolic and inflammatory diseases
(Fig. 4).

NUTRITIONAL COUNTERMEASURES IN
MATERNAL OBESITY AND GDM: IS DISEASE
INTERCEPTION POSSIBLE?

Components of a typical WSD include excessive amounts
of simple sugars, saturated fats, and cholesterol, which are
particularly proinflammatory. A proinflammatory diet in
pregnancy and early childhood, estimated by diet recall,
was associated with development of adiposity in mid-
childhood (123). As noted above, our studies in WSD-
fed NHP dams showed that switching obese mothers to
a healthy diet prior to conception is an effective counter-
measure for some, but not all, of the critical pathways that
result in dysmetabolism and disease risk in the offspring
(Table 1). In transgenic mice, normalizing the high n-6
relative to n-3 polyunsaturated fatty acid ratio in obese
dams on WSD prevented inflammation in the placenta and
prevented NAFLD and obesity in the wild-type offspring
exposed to a high-fat diet (124,125). Likewise, our recent
studies demonstrated that the potent dietary antioxidant
pyrroloquinoline quinone, found in high concentration
in human breast milk (126), when administered to obese

dams only during gestation and lactation prevented early
microbial dysbiosis, hepatic macrophage accumulation,
and NAFLD in adult offspring (50). In humans with
GDM, high fasting glucose or high postprandial glucose
are major contributors to fetal fat accretion, and when
treatment is targeted with repeated glucose testing, fetal
overgrowth is mitigated (127), although not normalized
(128). A similar target and intervention to attenuate fetal
overgrowth in maternal obesity without GDM in humans
is sorely needed. Obesity in pregnancy accounts for the
largest number of newborns with increased adiposity,
a strong risk factor for childhood obesity. Despite over
40 randomized controlled trials implementing diet, phys-
ical activity, metformin, or probiotics in overweight and
obese pregnancies, no targeted intervention effectively
prevents fetal overgrowth (129). Our recently published
study (130), along with other data (131,132), strongly
support that maternal triglycerides are a clinically unrec-
ognized but important substrate for fetal fat accretion.
Specifically, we have shown that a 1- or 2-h postprandial
triglyceride level (at 14–16 weeks of gestation) is highly
correlated with newborn fat mass, accounting for 50% of
newborn fat mass variability (130). Maternal lipids have
not specifically been targeted for intervention. We are
conducting the first randomized controlled trial to chal-
lenge the conventional low-carbohydrate, higher-fat diet
prescribed for women with GDM with a higher–complex

Figure 4—Relationship between maternal obesity, imbalanced gut
microbiota, and host pathophysiology. Although maternal obesity is
associated with significant alterations in the infant gut microbiome,
the functional consequences of the early microbiome on changes in
disease pathways have not been investigated. Animal models sug-
gest that gut microbe disruption in early life profoundly alters de-
velopment of the innate and adaptive immune system and offspring
behavior. The increase in SCFA-producing bacteria found in infants
born to obese mothers suggests that the initial microbes necessary
for immune development and metabolic health are compromised.
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carbohydrate, lower-fat, isocaloric diet (termed CHOICE—
Choosing Healthy Options in Carbohydrate Energy). All
meals are provided from the time of diagnosis to delivery,
maternal metabolism is closely monitored, and short- and
long-term outcomes are measured in the offspring. Early
pilot data showed that isocalorically reducing dietary fat
and increasing complex carbohydrates resulted in no dif-
ference in gestational weight gain between diets and 24-h
glycemic profiles that were within current treatment tar-
gets for both diets (133). However, the CHOICE diet,
which was lower in fat, decreased gene expression of
inflammatory markers in adipose tissue in women with
GDM, resulting in a trend for reduced newborn adiposity
(133,134).

Human milk is a dynamic and complex substance that
delivers a milieu of hormones and other bioactive compo-
nents that supports infant development and optimizes
health but differs in mothers with increased BMI (135).
Exclusive breastfeeding imparts a modest protective effect
against later obesity and type 2 diabetes relative to formula
(136,137). However, the biologic mechanisms for protec-
tion remain controversial and might differ depending on
maternal overweight status, maternal insulin resistance,
maternal dietary intake, and length of exposure. Bioactive
components in human milk—for example, insulin—can
contribute to the regulation of fat mass and the early
infant microbiome in infants of NW versus overweight
mothers (102,135). We demonstrated that a high ratio of
n-6 relative to n-3 polyunsaturated fatty acids in human
breast milk correlates with high adiposity gain in 4-month-
old infants (138). Much more must be learned about the
bioactive components in human milk, individually and in
combination, that shape postnatal development of energy-
sensing pathways, particularly in the infant of a mother
with obesity or diabetes.

CONCLUSIONS AND FUTURE DIRECTIONS

We are now facing major challenges in tackling the alarm-
ing increase and rising epidemic of childhood obesity and
its consequences around the world. The considerable risk
of progression to advanced diseases including NAFLD,
diabetes, cardiovascular disease, and mental health disor-
ders and the lack of pharmacologic approaches and
suitable biomarkers for the early identification of disease
risk are important roadblocks in child health. In many
instances, the factors that trigger disease might not be the
same as those that influence its progression. For example,
while epigenetics might not be a cause of disease, it might
be amarker or “passenger” important for identifying disease
risk. Environmental exposures, particularly WSD, disrupt
the equilibrium in susceptible individuals to tip the balance
toward obesity and diabetes with a second hit that occurs
after primary exposures in utero, potentiated by genetic
susceptibility. Importantly, these “hits” occur throughout
the body, including the placenta, and impact bone marrow
and gut development, brain, muscle, liver, pancreas, and
adipose tissue progenitors, as well as the nascent immune

system. These effects are cumulative during critical periods
and occur on a continuum rather thanoperating on a thresh-
old effect. Changes that occur in the fetus during pregnancy
or in the infant during lactation, in combination with
genetics, likely cause exacerbation of a preexisting sus-
ceptibility or development of new pathways that impact
postnatal metabolic risk.

Currently, behavioral changes aimed at limiting gesta-
tional weight gain or improving dietary choices in mothers
with obesity or GDM have been found to have very little to
no effect on infant or childhood outcomes, despite im-
proved maternal metabolic control (139–141). Most of
these trials have started later in pregnancy, suggesting that
we need to rethink whether developmental programming
is occurring much earlier and whether interventions fo-
cusing on diets in pregnant humans with obesity or GDM
are missing the critical mix of nutrients. In our NHPmodel
of maternal obesity, the offspring complications are not
readily modifiable with an improved diet postweaning;
however, mechanistic studies in this model suggest that
returning obese mothers to a healthy diet prior to con-
ception can modify many of the adverse consequences of
an obese pregnancy. No new drugs have been introduced in
the past 20 years for treatment of pregnancy disorders.
Indeed, metformin use in pregnancy has been challenged
recently based on potential negative longer-term outcomes
(142). Although new mechanisms and pathways to de-
velopmental programming have been identified in animal
models, the pathogenesis of these diseases is incompletely
understood. We need better nutritional data and metabolic
targets that can be translated in controlled studies of
human pregnancy with longitudinal outcome data across
the life span. The National Institutes of Health has launched
a nationwide longitudinal cohort initiative of 83 observa-
tional cohorts, with an anticipated combined sample size
exceeding 50,000 children from diverse populations across
the U.S., termed Environmental Influences on Childhood
Health Outcomes (ECHO), with the goal of identifying mul-
tiple exposure outcomes from pregnancy through childhood
(143). This study is expected to generate massive amounts of
data (e.g., genomics, metagenomics/transcriptomics, and
metabolomics) and demands that biologists work with
informatics scientists to generate meaningful biologic
insights from these reams of data. A better understanding
of clinical biomarkers (causal or noncausal) that can be
revealed as “healthy” or unhealthy in infants and children
will lead to improved insight for when and how to design
sounder prevention strategies. As argued in a National
Academy of Medicine initiative (144), preemptive inter-
vention before disease begins not onlywill have a tremendous
impact on lifelong health but is also the most cost-effective
approach.
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