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Abstract
Polymerization of a ring-like cytoskeletal structure, the Z-ring, at midcell is a highly con-

served feature in virtually all bacteria. The Z-ring is composed of short protofilaments of the

tubulin homolog FtsZ, randomly arranged and held together through lateral interactions. In
vitro, lateral associations between FtsZ protofilaments are stabilized by crowding agents,

high concentrations of divalent cations, or in some cases, low pH. In vivo, the last 4–10

amino acid residues at the C-terminus of FtsZ (the C-terminal variable region, CTV) have

been implicated in mediating lateral associations between FtsZ protofilaments through

charge shielding. Multiple Z-ring associated proteins (Zaps), also promote lateral interac-

tions between FtsZ protofilaments to stabilize the FtsZ ring in vivo. Here we characterize the

complementary role/s of the CTV of E. coli FtsZ and the FtsZ-ring stabilizing protein ZapD,

in FtsZ assembly. We show that the net charge of the FtsZ CTV not only affects FtsZ protofi-

lament bundling, confirming earlier observations, but likely also the length of the FtsZ proto-

filaments in vitro. The CTV residues also have important consequences for Z-ring assembly

and interaction with ZapD in the cell. ZapD requires the FtsZ CTV region for interaction with

FtsZ in vitro and for localization to midcell in vivo. Our data suggest a mechanism in which

the CTV residues, particularly K380, facilitate a conformation for the conserved carboxy-ter-

minal residues in FtsZ, that lie immediately N-terminal to the CTV, to enable optimal contact

with ZapD. Further, phylogenetic analyses suggest a correlation between the nature of FtsZ

CTV residues and the presence of ZapD in the β- γ-proteobacterial species.

Introduction
The assembly of the tubulin-like GTPase, FtsZ, at midcell is a conserved, essential feature of
bacterial cytokinesis in most species. Polymers of FtsZ form a cytokinetic ring-like structure
called the Z-ring that provides a scaffold for the recruitment of other division proteins and
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plausibly contributes towards the generation of a constriction force on the inner cell membrane
[1–5].

In its GTP-bound state, FtsZ assembles into single stranded polymers (protofilaments) [6–
10]. In vitro, FtsZ protofilaments can assemble with various geometries including bundles,
sheets or rings but the in vivo relevance of these structures is unclear [11,12]. Super-resolution
microscopy of E. coli cells have revealed the Z-ring to consist of short, randomly arranged,
overlapping protofilaments that are held together by lateral interactions [13–16].

The FtsZ monomer comprises four domains: an unstructured poorly conserved region of
~10 residues at the extreme N-terminus; a highly conserved globular core containing the GTP
binding and hydrolytic functions; a disordered flexible linker that is poorly conserved in length
and sequence among species; and the C-terminal conserved peptide (CCTP) which contains
two sub-regions: a conserved C-terminal constant region (CTC) and a C-terminal variable
region (CTV) (Fig 1) [17–19]. In vitro, the globular core alone is sufficient for formation of
FtsZ protofilaments [20,21]. But, recent work has implicated the flexible linker and FtsZ CTV
sequences to be key determinants of the end-to-end and lateral interactions of FtsZ in vitro
implying a role for these domains in the architecture of FtsZ assemblies in the cell [17,18,22].
Most known stabilizers and destabilizers of FtsZ interact with the CCTP, which serves as a
dock for proteins that regulate FtsZ-ring assembly dynamics. Such proteins include the essen-
tial FtsZ membrane tethers FtsA and ZipA, positional regulators MinC and SlmA, the con-
served protease ClpX, and the Z-ring stabilizer ZapD [23–28]. The structure of CCTP bound to
ZipA in E. coli and FtsA in T.maritima have been solved [29,30]. Although the CCTP in each
case contains a helical segment starting at a conserved proline, the extended structures are not
identical, suggesting that the CCTP is capable of acquiring a variety of structures possibly to
enable interactions with varied binding partners [30,31].

In E. coli and related species, Z-ring assembly is thought to initiate through the formation of
an unstable proto-ring that consists of FtsZ, FtsA, and ZipA [32]. In addition to attaching FtsZ
filaments to the membrane, both FtsA and ZipA contribute to the integrity of the Z-ring, ZipA
by increasing lateral associations among FtsZ protofilaments [21,33,34]. The Z-ring is subse-
quently stabilized through interactions with several FtsZ-ring associated proteins (Zaps):
ZapA, ZapB, ZapC, and ZapD. The Zaps localize to midcell early during cytokinesis and exhibit
functional overlap in affecting the assembly dynamics of FtsZ [25,28,35–41]. Although deletion
of a single zap gene shows only modest defects in division and Z-ring morphology in WT cells,
the phenotypes are exacerbated in cells lacking two or more Zap proteins indicating their
important contributions to the architecture and function of the Z-ring. Notably, though the
Zaps are functionally redundant they are not homologous proteins, and only ZapA is widely
conserved [35].

ZapA interacts directly with FtsZ and promotes both longitudinal and lateral interactions of
FtsZ polymers in vitro with a concomitant reduction in FtsZ GTPase activity [37,38,42,43].
Both ZapA and ZapB, which is recruited to the Z-ring by ZapA, are implicated in condensing
FtsZ polymers into a tight-pitched ring at midcell, and influencing cell constriction [44–47].
The structure of ZapC has recently been solved by two groups independently, and evidence
suggests that it employs an extensive binding surface to interact with FtsZ [48–50]. Less is
known about the specific contributions of ZapD to Z-ring architecture and function.

Towards our long-term goal of characterizing the modulatory roles of the Zap proteins in
Z-ring dynamics, we sought to understand their functional overlap in stabilizing Z-ring assem-
bly in E. coli and related species. The net-charge of amino acid residues in the FtsZ CTV has
been shown to affect FtsZ lateral interactions in vitro independent of modulatory proteins [22].
Since the net-charge of the FtsZ CTV varies from species to species, we sought to test the
hypothesis, first suggested by Buske and Levin, that modulatory proteins may act by
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compensating for CTV charge variations via their interactions with FtsZ CCTP. We focused
on the Z-ring stabilizer ZapD as prior studies pointed to FtsZ CCTP to be its binding site [25].
E. coli FtsZ mutants with varying net-charges on their CTV were generated and assayed for

Fig 1. FtsZ domain structure, FtsZ C-terminal tail (CTT) structure and FtsZ C-terminal variable (CTV) mutant constructs. A. Domain organization of E.
coli FtsZ: an unstructured 10 residues at the N-terminal end (squiggly line), a conserved globular core domain containing the nucleotide binding and
hydrolysis residues, a flexible variable linker about 50 residues long (squiggly line), and a conserved carboxy terminal peptide (CCTP) which contains both a
constant region of ~13 residues (CTC) and a variable region of 4 residues (CTV). B. Structural model of the FtsZ C-terminal residues 367–383 (PDB 1F47)
[29]. In a X-ray crystal structure complex with the essential division protein ZipA, the 17 residue FtsZ CCTP binds as an extended β-strand followed by an α-
helix. The CTV residue side-chains are identified in the α-helix: K380 (blue), Q381 and A382 (gray) and D383 (red). C. Schematic of the FtsZ CTVmutant
constructs used in the study, not drawn to scale.

doi:10.1371/journal.pone.0153337.g001
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their interactions with ZapD using a variety of methods including yeast-two hybrid, co-sedi-
mentation assays, bundling, complementation, and in their ability to recruit ZapD to midcell
in vivo. Our results indicate that FtsZ CTV residues, in particular K380, are important for
interaction with ZapD. In addition, FtsZ CTV residues not only play a critical role in defining
the lateral interaction potential of FtsZ assembly, confirming an earlier report, but also likely
impact the end-to-end associations of FtsZ monomers in vitro.

Materials and Methods

Strains, Plasmids, and Growth Conditions
All strains and plasmids used in this study are listed in Tables 1 and 2. Plasmids were intro-
duced into bacterial and yeast strains by electroporation and chemical transformation, respec-
tively. E. coli strains were grown in LB (0.5% NaCl) broth or agar plates with appropriate
antibiotics at 30°C unless otherwise mentioned. Antibiotics were applied at the following con-
centration: ampicillin, 100 μg/ml; kanamycin, 50 μg/ml; spectinomycin, 100 μg/ml (in LB) and
40 μg/ml in LB no salt (LBNS); and tetracycline, 12.5 μg/ml. Yeast strains were maintained in
YPD media at 30°C, and upon transformation with pDEST-AD—or pDEST-BD fusion vectors
(Arabidopsis Biological Resources Center) were grown in YNB complete medium (MP Biome-
dicals) lacking Leucine (-Leu) or Tryptophan (-Trp), respectively. Appropriate pairs of trans-
formants were mated on YPD media at room temperature, and diploid yeast strains were
grown in selective YNB broth (-Leu -Trp) at 30°C.

Plasmid Construction
All primers used in the study are listed in S1 Table. Plasmid pNG162 expressing FtsZ WT or
CTV mutant proteins under the control of an IPTG-inducible promoter were constructed by
amplifying ftsZ using the NcoI ftsZ forward primer and HindIII (or SalI) ftsZ reverse primer
from the pET21b (+)—EcftsZ or pET21b (+)—EcftsZCTVB plasmids. The PCR product was
digested by NcoI/HindIII or NcoI/BamHI and ligated into pNG162 vector treated with the
same restriction enzymes. After PCR amplification with ftsZ forward GW and ftsZ (or one of
ftsZCTV mutants) reverse GW primer, plasmids pDEST-GADT7-FtsZ or FtsZCTV mutants
were cloned by Gateway recombination BP and LR reactions (Life Technologies). Plasmid
pDSW208-zapD-gfp was constructed by amplifying zapD using the SacI zapD forward primer
and SalI-yacF reverse primer from pTrc99a-zapD. The PCR product was digested by SacI/SalI
and ligated into the pDSW208 vector treated with the same restriction enzymes. Resulting
clones were verified by Sanger sequencing (Genewiz).

Construction of Strains for Protein Expression and Purification
Using EcFtsZ1Fwd-pET21b primer with varying FtsZ reverse primers, all ftsZ CTV variants
were amplified by PCR and the products were digested by NdeI in combination with BamHI or
HindIII or SalI restriction enzymes and cloned into the same sites of pET21b (+) vector. After
sequence verification, clones were transformed into C41/DE3 to express FtsZ CTV mutant
proteins.

Yeast-Two-Hybrid (Y2H) Assay
Diploid yeast were grown in YNB (-Leu-Trp) broth at 30°C for ~20 hours until OD660 = 0.5–
1.0 and β-galactosidase measurements were made using the Y2H assay kit (ThermoFisher)
essentially as described by the manufacturer. Briefly, 175 μls of cell suspension was diluted into
an equal volume of YNB (-Leu-Trp) broth and mixed with 175 μls of 2X β-galactosidase assay
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Table 1. Bacterial and yeast strains used in the study.

Strains and
plasmids

Description Source or
Referencea

E. coli

MG1655 K12 F- λ- ilvG- rfb-50 rph-1 Laboratory
collection

MGZ84 MG1655 leu::Tn10 ftsZ84 (Ts) Manjula Reddy

C41(DE3) F- ompT hsdSB (rB- mB-) gal dcm (DE3) Petra Levin

TB28 MG1655 ΔlacIZYA::frt [62]

AMZ84 TB28 leu::Tn10 ftsZ84 (Ts)

KHH72 C41(DE3) pET28b-his10x-smt3-zapD

KHH216 MG1655 pNG162

KHH242 MG1655 pNG162-ftsZ

KHH243 MG1655 pNG162-ftsZDQAD

KHH317 MG1655 pNG162-ftsZ1-379

KHH351 MGZ84 pNG162-ftsZ

KHH352 MGZ84 pNG162-ftsZ1-379

KHH353 MGZ84 pNG162

KHH356 MGZ84 pNG162-ftsZDQAD

KHH357 MGZ84 pNG162-ftsZDQAK

KHH358 MGZ84 pNG162- ftsZQQQQ

KHH367 MGZ84 pNG162-ftsZKQAK

KHH368 MGZ84 pNG162-ftsZRQAR

KHH369 MGZ84 pNG162-ftsZNRNKRG

KHH373 AMZ84 pNG162-ftsZ pDSW208-zapD-gfp

KHH379 AMZ84 pNG162-ftsZ1-379 pDSW208-zapD-gfp

KHH384 AMZ84 pNG162 pDSW208-zapD-gfp

KHH389 AMZ84 pNG162-ftsZDQAK pDSW208-zapD-gfp

KHH391 AMZ84 pNG162-ftsZQQQQ pDSW208-zapD-gfp

KHH392 AMZ84 pNG162-ftsZKQAK pDSW208-zapD-gfp

KHH395 AMZ84pNG162-ftsZNRNKRG pDSW208-zapD-gfp

KHH397 TB28 pNG162-ftsZ pDSW208-zapD-gfp

KHH401 AMZ84 pNG162-ftsZRQAR pDSW208-zapD-gfp

S. cerevisiae

PJ69-4A MATa trp1-901 leu2-3,112 ura3-52 his3-200 gal4Δ gal80Δ LYS2::
GAL1-HIS3 GAL2-ADE2 met2::GAL7-lacZ

Beate Schwer

SL3004 MATα trp1-901 leu2 ura3 his3 gal4 gal80 lys2-801 ade2-101 Sandra Lemmon

KHH-Y27 SL3004 pDEST-GADT7-ftsZ

KHH-Y28 SL3004 pDEST-GADT7-ftsZ1-379

KHH-Y29 SL3004 pDEST-GADT7-ftsZDQAD

KHH-Y30 SL3004 pDEST-GADT7-ftsZKQAK

KHH-Y31 SL3004 pDEST-GADT7-ftsZQQQQ

KHH-Y33 SL3004 pDEST-GADT7

KHH-Y34 PJ69-4A pDEST-GBKT7-zapD

KHH-Y35 PJ69-4A pDEST-GBKT7

KHH-Y36 SL3004 pDEST-GADT7-ftsZDQAK

KHH-Y56 SL3004 pDEST-GADT7-ftsZRQAR

KHH-Y57 SL3004 pDEST-GADT7-ftsZNRNKRG

a This study unless otherwise mentioned.

doi:10.1371/journal.pone.0153337.t001
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buffer and 175 μls of Y-PER yeast protein extraction reagent. After incubating the mixtures at
37°C for ~25 minutes, reactions were stopped by adding 300 μls 1 M Na2CO3. Cell debris was
removed by centrifugation and the absorbance of the supernatants was measured at 420 nm.
Miller units were calculated based on the formula (1000 x A420)/(T x V x OD660) where T and
V relate to reaction times and volumes.

Protein Expression and Purification
Plasmid pET28b-His10-Smt3-ZapD was expressed in C41/DE3 cells and ZapD was purified as
described previously [25]. FtsZ and FtsZ CTV mutants in C41/DE3 cells were grown to OD600

= 0.4 for 2–3 hours at which time IPTG was added to a final concentration of 0.7 mM and
allowed to continue growth for an additional 2–3 hours. Proteins were extracted and purified
by adding saturated ammonium sulfate as described [51]. All FtsZ CTV variants were purified

Table 2. Plasmids used in the study.

Plasmid Description Source or Referencea

pAM1 pNG162-ftsZRQAR

pAM2 pNG162-ftsZNRNKRG

pAM3 pET-21b(+)-ftsZRQAR

pDEST-GADT7 pGADT7 derived vector, attR1 CmR ccdB attR2 ABRCb

pDest-GADT7-ftsZ [25]

pDEST-GBKT7 pGBKT7 derived vector, attR1 CmR ccdB attR2

pDSW208 pDSW204-MCS-gfp, AmpR [63]

pET21b(+) pBR322 ori, AmpR P.A. Levin

pET-21b(+)-ftsZ1-379 pET-21b(+)-ftsZ1-379 [22]

pET28b-His10-Smt3 pBR322 ori pT7-his10-smt3, KanR S. Shuman

pKHH1 pDEST-GADT7-ftsZ1-379

pKHH2 pDEST-GADT7-ftsZDQAD

pKHH3 pDEST-GADT7-ftsZKQAK

pKHH4 pDEST-GADT8-ftsZDQAK

pKHH5 pDEST-GADT7-ftsZQQQQ

pKHH7 pET-21b(+)-ftsZDQAD

pKHH8 pET-21b(+)-ftsZKQAK

pKHH9 pET-21b(+)-ftsZDQAK

pKHH11 pNG162-ftsZ

pKHH12 pNG162-ftsZ1-379

pKHH13 pNG162-ftsZDQAD

pKHH14 pNG162-ftsZKQAK

pKHH15 pNG162-ftsZDQAK

pKHH16 pNG162-ftsZQQQQ

pKHH17 pDEST-GADT7-ftsZRQAR

pKHH18 pDEST-GADT7-ftsZNRNKRG

pKHH19 pDSW208-zapD-gfp

pLT1 pET-21b(+)-ftsZQQQQ

pPJ2 pET-21b(+)-ftsZ [22]

pPJ6 pET-21b(+)-ftsZNRNKRG ”

pNG162 pSC101, SpecR [64]

a This study unless otherwise mentioned.
b Arabidopsis Biological Resources Center.

doi:10.1371/journal.pone.0153337.t002
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at a 25% saturated ammonium sulfate cutoff except for the DQADmutant, for which 20%
ammonium sulfate cutoff was used.

Sedimentation Assay
Purified FtsZ or FtsZ CTV mutants (5 μM) were combined with purified ZapD (1 or 5 μM) in
our standard FtsZ polymerization buffer (50 mM K-MOPS; pH 6.5, 50 mM KCl, 2.5 mM
MgCl2) containing 3 μM BSA, unless otherwise mentioned. Polymerization was initiated by
addition of GTP (1 mM) to the assembled reaction above. Reaction mixtures (100 μls) were
processed at room temperature and products were recovered by centrifugation using a
TLA100.2 rotor at 80,000 rpm for 10 mins. An 81-μl aliquot of the supernatant was collected to
which 27 μls of 4X loading dye was added for later analysis. The rest of the supernatant was
carefully discarded, and the pellets were resuspended in 100 μls of the polymerization buffer
and incubated at 65°C for 10 mins followed by addition of 33 μls of 4X loading dye. The super-
natants and pellets were resolved in a 12.5% SDS-PAGE gel (Bio-Rad) and band intensities
measured using Image J (NIH).

Quantitative Immunoblotting
Growth conditions are described in the respective figure legends. Whole cell protein prepara-
tions were separated on 12.5% SDS-PAGE gels and transferred to nitrocellulose membranes.
Blots were processed and analyzed essentially as described [25]. Briefly, FtsZ, FtsZ84, and FtsZ
CTV mutant protein levels from E. coli strains were detected with an anti-FtsZ rabbit poly-
clonal antibody (Genscript) at 1:10,000 dilution, and ZapD-GFP was detected with an anti-
GFP rabbit polyclonal antibody (Life Technologies) at 1:1000 dilution. RpoD (Sigma70) was
detected with an anti-RpoD mouse monoclonal antibody (BioLegend) at 1:1000 dilution. Infra-
red fluorescence IRDye1 secondary antibodies 800CW (Goat anti-rabbit) or 680RD (Goat
anti-mouse) (LI-COR) were used at 1:20,000 dilutions. Bands were visualized using a LI-COR
Odyssey CLx imager and intensities were measured using ImageStudio software (LI-COR).

Transmission Electron Microscopy
FtsZ polymerization reactions were performed essentially as described above but without BSA.
After 5 mins at room temperature a 10-μl aliquot was placed on a carbon-coated copper grid,
negatively stained with 2% uranyl acetate for 5–10 secs, and wicked dry. Images were collected
on a JEOL 2100 Lab6 TEM operated at 200kV with 30 pA/cm2 current density and recorded
on a US1000 XP1 camera at a nominal magnification of X 30,000, unless otherwise mentioned.

Spot Viability Assays
Overnight cultures of ftsZ84 (Ts) with FtsZ or different FtsZ CTV mutants expressed in trans
were grown in LB with 0.2% glucose and appropriate antibiotics at 30°C. Overnight cultures
were spun, washed, and normalized to OD600 = 1.0 in LB or LBNS. Cell suspensions were seri-
ally diluted from 10–1 to 10–6 and 3 μls from each dilution was spotted on LB or LBNS plates
with appropriate antibiotics plus 1 mM IPTG, and grown at 30°C or 42°C for ~24 hrs, at which
point the plates were imaged (Syngene Gel-Doc system).

Fluorescence Microscopy
Overnight cultures of ftsZ84 (Ts) cells expressing FtsZ or FtsZ CTV mutants and/or ZapD in
trans were grown as described in the figure legends and imaged by phase or fluorescent micros-
copy on 1.5% agarose pads using a Nikon TiE microscope. Slide temperature was maintained
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at 42°C using a TC-500 temperature controller (20/20 Inc). ObjectJ (NIH) was used to measure
cell lengths and ZapD-GFP midcell localization from images as described [25].

For immunofluorescence studies, overnight cultures grown in LB were subcultured to
OD600 = ~0.08 in LB in the presence of spectinomycin at 30°C and grown till OD600 = ~0.2, at
which point cells were shifted to 42°C in LBNS media with 1 mM IPTG for 3 doublings (~1 hr
15 mins). Cells were fixed for immunofluorescence studies essentially as described [52]. FtsZ-
rings were imaged using an anti-FtsZ rabbit polyclonal primary antibody (Genscript) at
1:10,000 dilution and a Texas-Red conjugated anti-rabbit secondary antibody at 1:50 dilution.

Bioinformatics
FtsZ and/or ZapD homolog sequences from 427 species of α-, β- and γ- proteobacteria with
fully sequenced genomes were collected from the NCBI Microbial Genomes Resources data-
base (http://www.ncbi.nlm.nih.gov/genomes/MICROBES/microbial_taxtree.html). Sequences
were analyzed by BLAST using the E. coliMG1655 FtsZ (NP_414637) and ZapD (NP_414644)
sequences as queries. To identify potential zapD homologs sequences that meet the following
criteria were chosen:� 80% ORF coverage,� 40% similarity and� 20% identity compared to
E. coliMG1655 ZapD sequence. The FtsZ C-terminal structure was extracted from PDB
(1F47), and analyzed with PyMOL software (Schrödinger, LLC) [29].

Results and Discussion

FtsZ CTV Residues Contribute to the Interaction with ZapD in Yeast
Previous data from our lab indicated that ZapD interacts with the FtsZ CCTP in a PIP (pro-
tein-protein interaction) assay in yeast [25]. Briefly the PIP assay probes for interactions
between two proteins when one protein is fused to a fluorophore and another to the reoviral
scaffolding protein, μNS, which forms large focal inclusions in yeast [53]. Interactions between
the query protein and a likely binding partner can be identified by visual screens for fluorescent
foci in yeast. Notably, a GFP-ZapD fusion failed to form fluorescent foci with FtsZ lacking
CCTP, but showed interactions with FtsZ residues 374–383 alone suggesting that FtsZ CCTP
was necessary and sufficient for interaction with ZapD in yeast [25]. Furthermore, ZapD failed
to bind and bundle FtsZ lacking the last 11 amino acids in a co-sedimentation assay in vitro
suggesting the requirement of the CCTP sequences in binding ZapD [48].

FtsZ CTV regions are variable in length and sequence among species and consequently vary
in their net-charge [22]. As the net charge of this region has been shown to have a dramatic
impact on FtsZ lateral association potential [22], and ZapD mediates lateral bundling of FtsZ
protofilaments, we sought to examine how the net charge content of the E. coli CTV residues
contributes to the interaction with ZapD. To this end we first used a Y2H assay to examine the
interactions between ZapD and either WT FtsZ, an FtsZ mutant in which the CTV has been
removed (FtsZ1-379), and several FtsZ mutant derivatives (Fig 1) in which the native E. coli
CTV sequence (KQAD) were replaced by (i) a net-neutral (DQAK or QQQQ) or (ii) a net-pos-
itive (RQAR or KQAK) or (iii) the B. subtilis CTV sequence (NRNKRG), which carries a net-
positive CTV but differs in length, in the number of basic residues, and in their spacing com-
pared to the KQAK and RQAR constructs or (iv) a net-negative (DQAD) CTV. We find that
ZapD interacts with WT FtsZ and FtsZ CTV net-neutral (DQAK or QQQQ) or net-positive
(RQAR or NRNKRG) variants (Table 3). In contrast, ZapD failed to interact with FtsZ lacking
the CTV residues (FtsZ1-379), or with FtsZ CTV net-positive variant KQAK or net-negative
variant DQAD (Table 3). All protein fusions were expressed stably in yeast except the KQAK
variant, suggesting that the lack of interaction of ZapD with FtsZ CTV bearing KQAK residues
was likely due to the instability of the fusion protein in yeast (S1 Fig). The protein-protein
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interaction studies suggest that the FtsZ CCTP plays a critical role in the interaction with ZapD
in E. coli, and that the net-charge content of the FtsZ CTV residues maybe important for this
association.

ZapD Fails to Interact with FtsZ Lacking the CTV Residues In Vitro
To test direct evidence of the interactions between FtsZ and the FtsZ CTV mutants with ZapD
in vitro, we used purified proteins and conducted co-sedimentation assays. As mentioned ear-
lier, our results indicate that ZapD fails to bind and bundle FtsZ lacking the CCTP residues
suggesting their importance in mediating the ZapD/FtsZ interaction [48]. Our data indicate
that ZapD promotes polymer assemblies of net-neutral, and specific net-positive FtsZ CTV
mutant proteins (KQAK and RQAR) but fails to enhance polymerization of FtsZ lacking the
CTV sequences, FtsZ with a net-negative CTV (DQAD), or FtsZ containing a B. subtilis CTV
sequence (NRNKRG).

When incubated with GTP, 26 ± 8% of WT FtsZ and similar amounts of FtsZ1-379 and other
FtsZ CTV variants, except the NRNKRG variant were present in the pellet (Fig 2). It has been
previously reported that an E. coli FtsZ chimeric construct containing a B. subtilis CTV
sequence (NRNKRG) shows enhanced bundling compared to E. coli FtsZ [22]. In the presence
of ZapD, ~2–3 fold increases in amounts of WT FtsZ were noted together with ~55–62% of
ZapD recovered in the pellet. ZapD alone was barely detectable after sedimentation in the pres-
ence of GTP (Fig 2). These data are consistent with an increase in the sedimentable WT FtsZ
polymer mass. However, no significant changes in pelletable amounts of FtsZ without the CTV
region (FtsZ1-379) were observed with or without ZapD, nor did significant amounts of ZapD
co-sediment with FtsZ1-379 (Fig 2).

In the presence of ZapD, net-neutral (DQAK, QQQQ) or net-positive (KQAK, RQAR) FtsZ
CTV mutants showed ~2–3 fold increases in pelletable amounts of mutant FtsZ proteins simi-
lar to WT FtsZ, consistent with increases in sedimentable FtsZ polymeric assemblies. Addition-
ally, ZapD co-pelleted with the FtsZ variants in more or less similar amounts in reactions
where ZapD and FtsZ were present in equimolar concentrations (Fig 2). As expected, in the
presence of GTP, increased amounts of the NRNKRGmutant was present in the pellet com-
pared to WT FtsZ, even at lower concentrations of the variant protein (Fig 2, S2 Fig). Addition

Table 3. A GAL4 BD-ZapDa fusion fails to interact with FtsZ lacking the CTV residues in a yeast two-
hybrid assay.

GAL4 AD fused proteinb β-galactosidase activityc ± SDd

_e 40.9 ± 22.0

FtsZ 355.2 ± 56.9

FtsZ1-379 48.7 ± 16.7

FtsZDQAK 170.5 ± 81.7

FtsZQQQQ 114.9 ± 31.8

FtsZKQAK 39.5 ± 17.3

FtsZRQAR 155.1 ± 16.5

FtsZNRNKRG 105.6 ± 10.4

FtsZDQAD 50.5 ± 28.5

a, b BD = DNA binding domain and AD = Activation domain.
c β-galactosidase activity is in Miller units and represents mean activity of 10 independent trials.
d SD = Standard Deviation.
e AD vector alone.

doi:10.1371/journal.pone.0153337.t003
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of ZapD did not increase the fraction of sedimentable NRNKRG polymers though ZapD is
recovered in the pellet in these reactions (Fig 2, S2 Fig). This suggests that while ZapD can bind
the NRNKRG CTV, it does not result in a functional interaction. Another possibility is that the
ZapD/NRNKRG interaction is non-specific, and the presence of ZapD in the pellet results
from crowding effects of NRNKRG polymeric bundles. Lastly, an FtsZ variant that carries a
net-negative CTV (DQAD) failed to show any significant increases in the sedimentable
amounts of the DQADmutant in the presence of ZapD nor did ZapD co-pellet in any appre-
ciable amount in these reactions even at equimolar ratios (Fig 2). These results indicate that
FtsZ CTV residues make a critical contribution in ZapD-mediated FtsZ polymerization and
are discussed in concert with the TEM results below.

Fig 2. Sedimentation reactions of purified FtsZ and FtsZ CTVmutant proteins with ZapD. A. FtsZ and FtsZ CTVmutants (5/M) were incubated alone
or combined with purified ZapD at 1:0.2 or 1:1 ratios in a polymerization buffer (50 mM K-MOPS; pH 6.5, 50 mM KCl, 2.5 mMMgCl2, and 1 mMGTP)
containing 3/MBSA. Reactions were processed as outlined in the Materials and Methods section in the main text. Equivalent aliquots (5/l) of pellet
(bottom panel) and supernatants (top panel) were resolved on a 12.5% SDS-PAGE gel and stained with SimplyBlue SafeStain (Invitrogen). A representative
gel image of three independent experiments is shown.B. The amounts of FtsZ or FtsZ CTVmutant proteins present in the pellet fractions in reactions with or
without ZapD are reported as a percentage. The average numbers and standard deviation bars are from at least three independent experiments. Of note,
FtsZ CTV containing NRNKRG sequences show the highest pelletable amounts of FtsZ under the experimental conditions of this study.C. The amounts of
ZapD protein present in the pellet fractions in reactions with FtsZ or FtsZ CTVmutants are reported as a percentage. The average numbers and standard
deviation bars are from at least three independent experiments.

doi:10.1371/journal.pone.0153337.g002
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ZapD Does Not Promote Bundling of FtsZ Mutants Lacking CTV
Sequences In Vitro
In order to ascertain whether an increase in sedimentable amounts of FtsZ or FtsZ CTV
mutants either alone, or in the presence of ZapD, corresponds to morphological changes in
FtsZ polymeric assemblies, we visualized the products of the polymerization reactions using
transmission electron microscopy (TEM). Our data suggest that CTV residues, particularly
K380, play an important role in ZapD mediated FtsZ lateral bundling. Furthermore, our data
extend Buske and Levin’s results by revealing that the net-charge of the FtsZ CTV not only
contributes to the lateral interaction potential of FtsZ but may also enhance longitudinal inter-
actions within the FtsZ protofilament [22].

We observed that WT FtsZ shows typical single protofilaments in the presence of GTP and
polymeric bundles upon addition of ZapD as previously reported in the literature (Fig 3) [25].
As expected, no FtsZ protofilaments were observed in the absence of GTP (data not shown).
To visualize the FtsZ CTV mutants alone or in the presence of ZapD, we used equimolar ratios
of ZapD and FtsZ, as the co-sedimentation profiles of ZapD at lower concentration (1 μM)
were not significantly different than those at higher concentration (5 μM) (Fig 2). FtsZ missing
the CTV sequences (FtsZ1-379) forms single protofilaments that are slightly shorter than WT
FtsZ, confirming an earlier observation by Buske and Levin (Fig 3 and S3 Fig) [22]. Addition of
ZapD fails to promote bundling of FtsZ1-379 polymers (Fig 3 and S3 Fig). The net-neutral
DQAK mutant showed largely single protofilaments similar to WT FtsZ, while the QQQQ
mutant displayed modest amounts of lateral bundling on its own, perhaps due to the tendency
of poly-glutamine sequences to aggregate (Fig 3). This suggests that a net-neutral FtsZ CTV
retains the ability to maintain a functional interaction with ZapD as in the presence of ZapD,
both FtsZ variants showed significant increases in bundled forms similar to WT FtsZ (Fig 3).
The net-negative DQAD mutant displayed single protofilaments in the presence of GTP and
no detectable changes in polymerization were observed upon addition of ZapD (Fig 3).

An E. coli FtsZ CTV mutant with the net-positive B. subtilis NRNKRG is able to associate
laterally to form filament bundles without the aid of modulatory proteins consistent with a pre-
vious report (Fig 3) [22]. However, other net-positive CTV mutants (KQAK and RQAR) form
significantly longer protofilaments compared to WT FtsZ and only form polymeric assemblies
such as rings or bundles in the presence of ZapD (Fig 3 and S3 Fig). These data show that a
net-positive CTV impacts both longitudinal and lateral interactions of FtsZ assembly, likely
depending on the length and residues of CTV, and that the CTV net-charge alone is not a pri-
mary determinant of FtsZ lateral interaction potential. This notion is reinforced by the obser-
vations that the disordered FtsZ linker domain, which is variable in length and amino acid
content between species, is implicated in FtsZ lateral associations [17].

The in vitro assays indicate that in addition to the native KQAD CTV sequence, ZapD is
also able to interact with net-neutral (DQAK and QQQQ) and net-positive (KQAK, RQAR,
and NRNKRG) FtsZ variants but fails do so with one that lacks the CTV region or one carrying
a net-negative DQAD sequence. These results suggest that ZapD primarily recognizes the FtsZ
CTV through hydrogen bonding to the peptide backbone rather than specific amino acids.
However, the data also suggest that a basic residue is preferred at position 380 of FtsZ to enable
optimal interactions with ZapD since a K380D mutation leading to a DQAD sequence signifi-
cantly reduces the FtsZ/ZapD interactions. This suggests that K380 likely participates in a
charge-mediated interaction, perhaps through the formation of a salt-bridge with a negatively
charged side chain on ZapD. The lysine in a sequence of reverse polarity (DQAK) can perhaps
also contact an acidic residue of ZapD in that region due to the inherently flexible nature of the
FtsZ CCTP [29,30]. That an electrostatic component contributes to the ZapD/FtsZ interactions
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Fig 3. Morphologies of polymeric assemblies of FtsZ and FtsZ CTVmutant proteins. In vitro reactions containing FtsZ and FtsZ CTVmutants (5/M)
alone or combined with purified ZapD at 1:1 ratios in a polymerization buffer (50 mM K-MOPS pH 6.5, 50 mM KCl, 2.5 mMMgCl2, and 1 mMGTP) were
incubated for 5 mins at room temperature. A 10-μl aliquot of each reaction was placed on carbon-coated copper grids (Electron Microscopy Sciences),
processed and imaged as described in the material and methods section of the main text. Negative stained transmission electron microscopy images of FtsZ
or FtsZ CTVmutants with or without ZapD are shown. Bar = 200 nm.

doi:10.1371/journal.pone.0153337.g003
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is also suggested by a decrease in ZapD-mediated pelletable FtsZ amounts in physiological
buffer conditions containing high salt (S4 Fig) While these data are consistent with E. coli FtsZ
CTV residues, particularly K380, being an important interacting residue, it is highly likely that
other conserved FtsZ CCTP residues belonging to the CTC region participate in establishing
key contacts with ZapD. Furthermore, we cannot exclude the alternative possibility that the
FtsZ CTV variants FtsZ1-379 and DQADmay alter the structure of the C-terminus in a manner
that precludes ZapD from making critical contacts with the CTC region.

Differential Viability of ftsZ84(Ts) Cells Expressing FtsZ CTV Variants In
Trans
FtsZ CTV mutant variants can impact FtsZ function in vivo given that K380, discussed above,
is implicated in interactions with multiple FtsZ regulators in E. coli, and as shown here, with
ZapD [24,26,27]. Therefore, we sought to examine the in vivo functionality of the FtsZ CTV
mutants used in this study by examining the cell viability in an ftsZ84 (Ts) background at the
restrictive temperature. At 42°C, an ftsZ84 (Ts) mutant fails to localize to the division site lead-
ing to lethal filamentation [54,55]. LB no salt (LBNS) media was used since it provides a more
stringent condition for controlling the expression levels of ftsZ84 (Ts) [56,57]. Our results indi-
cate that most FtsZ CTV mutants examined here, including E. coli FtsZ with the B. subtilis
NRNKRG CTV region (as shown previously; [22]), restore viability to ftsZ84 (Ts) cells at the
restrictive temperature (Fig 4). A net-negative CTV variant (DQAD), however, failed to com-
plement ftsZ84 (Ts) cells under both permissive and non-permissive conditions (Fig 4).
Intriguingly, in addition to the DQAD variant, expression of FtsZ1-379 severely impaired
growth of ftsZ84 (Ts) cells only at the permissive condition (Fig 4). The reduced viability for
some CTV variants and not others was not simply due to changes in stability or expression lev-
els of plasmid-borne FtsZ CTV variants as they were all expressed within 2-fold of WT FtsZ
levels in trans (Fig 4). Additionally, expression of FtsZ1-379 in the presence of WT FtsZ caused
similar reduction in cell viability as in ftsZ84 (Ts) cells at the permissive temperature (S5 Fig).
The DQAD variant was dominant negative under both permissive and non-permissive condi-
tions in the presence of either WT FtsZ or FtsZ84 (S5 Fig).

We further probed the reduced viability of FtsZ1-379 and the DQAD variant by visualizing
the localization and morphologies of the Z-rings by immunofluorescence. Cells expressing the
DQAD variant showed stable protein at levels similar to the other FtsZ variants expressed in
trans (Fig 4). Yet Z-rings failed to localize in these cells under restrictive conditions suggesting
that overexpression of DQAD perturbs the conformation of this variant protein such that it
interferes with WT and FtsZ84 localization under both permissive and non-permissive condi-
tions (Fig 4). FtsZ1-379 expressed in trans displayed aberrant Z-rings with significant filamenta-
tion under permissive conditions suggesting hyperstable assemblies of FtsZ84 (Fig 4).
Conversely, under restrictive conditions, cells expressing the FtsZ1-379 variant displayed normal
Z-rings without any significant filamentation (Fig 4). Furthermore, increasing salt concentra-
tions at the restrictive temperature led to reduced viability of ftsZ84 cells expressing FtsZ1-379,
suggesting that rings forming under these conditions are hyperstabilized upon increased
endogenous expression of ftsZ84, similar to what is observed under permissive conditions
(S5 Fig).

It has been shown that an approximately 2-fold increase in expression of FtsZ84 can rescue
the heat sensitivity of the ftsZ84 (Ts) mutant [56]. Also it has been noted that E. coli FtsZ C-ter-
minal tail mutants that fail to form rings in an ftsZ depletion strain can assemble rings in the
ftsZ84 (Ts) strain, leading to the suggestion that exogenous production of mutant FtsZ
increases the concentration of the total FtsZ, and this in turn allows incorporation of both
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Fig 4. Spot-plate viabilities, Z-ringmorphologies, and expression levels of FtsZ or FtsZ CTVmutants
in ftsZ84 (Ts) cells. A. FtsZ or FtsZ CTVmutants were maintained off of the low-copy pNG162 vector in the
MGZ84 background carrying the ftsZ84 (Ts) allele. Overnight cultures were normalized to OD600, serially
diluted, and 3 μl aliquots were spotted on LB and LBNS agar plates with 1 mM IPTG plus appropriate
antibiotics, and incubated at 30°C and 42°C as described in the material and methods section. At the
permissive condition (30°C LB; left) FtsZ and FtsZ CTVmutants are able to support growth except FtsZ1-379

and DQAD. At the non-permissive condition (42°C LBNS; right) most FtsZ CTVmutants are able to support
growth to WT levels except DQAD. B. FtsZ-ring morphologies as determined by immunofluorescence of
MGZ84 cells expressing FtsZ1-379 or DQADmutants in trans at mid-log phase (OD600 = ~0.6) during growth

E. coli FtsZ-ZapD Interaction

PLOS ONE | DOI:10.1371/journal.pone.0153337 April 18, 2016 14 / 24



FtsZ84 and FtsZ mutants into a mixed ring [58]. The viability defects and Z-ring morphologies
seen upon FtsZ1-379 overexpression at 30°C in LB, are consistent with endogenous FtsZ84 and
FtsZ CTV variants co-assembling into hybrid ring assemblies that are defective in constriction.
However, similar levels of FtsZ1-379 variant expression at 42°C in LBNS, lead to functional Z-
ring assemblies with rings that are morphologically normal. These results suggest that Z-ring
assemblies are mostly made up of exogenously expressed FtsZ under stringent ftsZ expression
conditions (growth in LBNS) at the restrictive temperature. Furthermore, it is likely that the
structural conformation of FtsZ1-379 is not significantly altered, as cells expressing the FtsZ1-379

variant under restrictive conditions are viable. However, our data do not rule out an alternative
possibility that under more stringent conditions—high temperature and no salt, FtsZ84 poly-
mers are unstable and these can counteract the hyperstabilizing effects of FtsZ1-379 but not the
more severe effect of the DQAD variant. Expression of all the other FtsZ variants (DQAK,
QQQQ, KQAK, RQAR, and NRNKRG) must not interfere with the essential activities of
endogenous FtsZ84, as their overexpression does not affect the viability of ftsZ84 (Ts) cells
under permissive conditions.

ZapD Fails to Localize to Midcell in the Absence of the FtsZ CTV
Residues
ZapD binds FtsZ and accumulates at the midcell division site during the FtsZ-ring assembly
and stabilization steps of E. coli cytokinesis, and aids in the efficiency of division. To assess the
impact of FtsZ CTV mutants on both cell division and ZapD midcell localization in vivo, we
examined both cell morphologies, and recruitment of a ZapD-GFP fusion to midcell in the
presence of either WT FtsZ or various FtsZ CTV mutants expressed in trans in an ftsZ84 (Ts)
strain at 42°C. The DQADmutant was not tested in these assays as it was dominant negative
and failed to localize functional rings as described above. Our results reveal that cells expressing
FtsZ1-379, NRNKRG, or DQAK variants showed a mix of filaments and normal length cells
suggesting modest impairment of division. Additionally, ZapD-GFP failed to localize to mid-
cell at appreciable frequencies in the absence of FtsZ CTV residues or in the presence of the
NRNKRG variant. All other CTV variants, namely DQAK, QQQQ, KQAK, and RQAR, sup-
ported ZapD-GFP recruitment to midcell but only to moderate frequencies when compared to
the WT (KQAD) sequence.

The cell lengths of the various FtsZ CTV mutants expressed in trans in an ftsZ84 (Ts) back-
ground at 42°C displayed considerable variability suggesting that the CTV region has implica-
tions in supporting division in ftsZ84 (Ts) cells at the restrictive temperature (Table 4). At
42°C, the net-neutral QQQQ, and the net-positive KQAK and RQAR variants restore division
similar to WT FtsZ levels (Fig 5 and Table 4). However, FtsZ1-379, a net-neutral (DQAK)

at permissive or restrictive conditions as described in the materials and methods section in the main text. (a)
ftsZ84 (Ts) cells grown at 30°C in LB; (b) ftsZ84 (Ts) cells grown at 42°C in LBNS; (c) ftsZ84 (Ts) cells with
FtsZ1-379 expressed in trans grown at 30°C in LB; (d) ftsZ84 (Ts) cells with FtsZ1-379 expressed in trans grown
at 42°C in LBNS; and (e) ftsZ84 (Ts) cells with DQAD expressed in trans grown at 42°C in LBNS. Both phase
and fluorescence images are shown with arrowheads pointing to FtsZ-rings. Bar = 5 μm. C.Overnight
cultures of MGZ84 strains bearing FtsZ and FtsZ CTVmutant plasmids were grown in permissive conditions
and subcultured into LB at 30°C till OD600 = 0.2–0.3 at which point an aliquot was washed, and backdiluted to
OD600 = 0.05 in LBNSmedia and transferred to 42°C. After one doubling (~25–30 mins) at 42°C, 1 mM IPTG
was added and cells were grown for an additional two doublings (~1 hour). Cells were harvested for whole
cell protein preparations and sampled at equivalent optical densities. Protein samples were analyzed by
immunoblotting. RpoD was used as a loading and transfer control. ImageStudio software was used to
quantify band intensities. Three independent experiments were conducted and a representative blot with
relative intensities is shown.

doi:10.1371/journal.pone.0153337.g004
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mutant, or a NRNKRG variant, displayed a mix of filaments and WT cells (Fig 5 and Table 4).
The plate viability of FtsZ1-379, DQAK, or NRNKRG variants showed no significant changes,
although microscopic analysis reveals moderate degrees of division impairment confirming a
prior report that expression of a plasmid-borne FtsZΔ380–383 lacking CTV residues in ftsZ84
(Ts) cells show a modest reduction in viable plate counts at the restrictive temperature [27].
Since each FtsZ CTV variant was expressed to similar levels as WT FtsZ in trans, we attribute
the division defects to not be simply a result of differential protein expression (S6 Fig). These
data allude to the possibility of FtsZ1-379, DQAK, or a NRNKRG having altered structural con-
formation impacting interactions with multiple regulatory partners such as MinC, ClpX, SlmA,
and ZapD, and influencing division (Fig 5 and Table 4).

We first confirmed that a ZapD-GFP fusion protein localizes to midcell at 42°C in ftsZ84
(Ts) cells when WT FtsZ is expressed in trans. The fusion protein however failed to display
appreciable amounts of localization in the presence of FtsZ1-379 indicating an important role
for CTV residues in recruiting ZapD to midcell (Fig 5 and Table 5). Loss of ZapD localization
in these cells is not due to lack of localization of FtsZ1-379 as immunofluorescence images
revealed normal Z-rings under these conditions (Fig 4). These data are also consistent with a
prior study where GFP fused to FtsZΔ380–383 displayed normal Z-rings [27]. Cells expressing
the net-positive B. subtilis CTV (NRNKRG) mutant also failed to accumulate ZapD-GFP at
appreciable frequencies at midcell (Fig 5 and Table 5). Although ZapD was able to bind the
FtsZ NRNKRG variant in vitro, it was not able to enhance sedimentable amounts of the
NRNKRG mutant. Together these results suggest that the ZapD/NRNKRG binding can either
be better accommodated in vitro or is non-specific. It is also conceivable that some other FtsZ
regulator binds the NRNKRG variant with greater affinity in the cell thereby outcompeting
ZapD localization to midcell. Net-neutral (DQAK and QQQQ) and other net-positive CTV
mutants (KQAK and RQAR) all support localization of ZapD-GFP to midcell although
ZapD-GFP localization frequencies were not as robust as those in cells expressing WT KQAD

Table 4. Cell lengths of strains expressing FtsZ or FtsZ CTVmutants in trans in ftsZ84 (Ts) background.

Straina FtsZ/FtsZ CTV mutantb 30°C 42°C

Average ± SD (μm)c Nd Average ± SD (μm)c Nd

Wild type - 2.1 ± 0.6 394 2.8 ± 1.3 448

ftsZ84 - 2.4 ± 0.6 443 18.4 ± 17.4 391

FtsZ 2.1 ± 0.5 365 3.4 ± 1.6 443

FtsZ1-379 3.4 ± 1.2 434 7.1 ± 4.1 324

FtsZDQAK 2.4 ± 0.6 421 5.6 ± 4.3 369

FtsZQQQQ 2.1 ± 0.5 344 3.2 ± 1.3 399

FtsZKQAK 1.8 ± 0.4 458 3.4 ± 1.6 449

FtsZRQAR 2.0 ± 0.4 435 2.9 ± 1.5 508

FtsZNRNKRG 2.0 ± 0.6 497 4.3 ± 2.6 439

a Strains backgrounds were TB28 and AMZ84.
b Plasmids pNG162 bearing FtsZ and FtsZ CTV mutants and pDSW208 carrying a ZapD-GFP fusion were expressed in trans and grown in M63 glycerol

minimal medium at 30°C, till OD600 = 0.2–0.3 at which point an aliquot was washed and transferred to 42°C in the same media. After one doubling (~1

hour) at 42°C, 1 mM IPTG was added and cells were grown for an additional one-two doublings (~75–90 mins) at which point cells were imaged. Cells

were also imaged at 30°C prior to transfer to 42°C. Cell lengths were measured as described in the text.
c SD = Standard Deviation.
d N represents the number of individual cells measured for each strain. In case of filamentous strains, fewer numbers of cells were present within each

field of view.

doi:10.1371/journal.pone.0153337.t004
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Fig 5. The FtsZ CTV region is required for localization of ZapD-GFP to midcell.Overnight cultures of
AMZ84 cells expressing FtsZ or FtsZ CTV variants and a ZapD-GFP fusion in trans were subcultured in M63
glycerol minimal media in the presence of appropriate antibiotics at the permissive temperature (30°C) till
OD600 = 0.2–0.3 at which point an aliquot was washed and backdiluted to OD600 = 0.05 in the same media
and transferred to the restrictive temperature (42°C) for one doubling (~ 1 hour). Expression of FtsZ and
ZapD were induced by addition of 1 mM IPTG and grown for an additional one-two doublings (~90 mins) at
the same temperature. Fluorescent images were obtained as described in the materials and methods
section. Arrows point to midcell ZapD-GFP fusion localization. Bar = 5 μm.

doi:10.1371/journal.pone.0153337.g005
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residues (Fig 5 and Table 5). Differences in ZapD-GFP localization frequencies were not simply
a result of changes in protein levels, due to plasmid-borne expression of FtsZ or ZapD, since all
FtsZ CTV variants were expressed to similar levels as WT FtsZ in trans, and ZapD-GFP levels
were also similar amongst the various strains (S6 Fig). However, we cannot exclude the possi-
bility that ZapD recruitment may be sensitive to differences in polymer stability or bundling of
the FtsZ variants in the cell.

Taken together, the in vivo results underscore the importance of CTV residues in mediating
interactions with ZapD. While K380 in E. coli is a critical interacting residue with multiple FtsZ
regulatory proteins, MinC, SlmA, and ClpX, this study and other work indicate that removal of
K380 in the context of removing the entire CTV, or substitutions with Q (this study), A or M
are largely tolerated by the cell [24,26,27]. This indicates that the lysine is not absolutely neces-
sary but that it plays a critical role, perhaps by forming a salt-bridge with an acidic residue in
ZapD and in facilitating the structural conformation of all the CCTP residues that contact
ZapD.

Most β- and γ-Proteobacterial Species with Net-Neutral FtsZ CTV
Regions Retain a zapD Homolog
A preliminary phylogenetic analysis of proteobacterial classes revealed that orthologs of zapD
are restricted to the β- and γ-proteobacteria [25]. To explore the possibility that ZapD was
restricted to bacterial phyla where the FtsZ CTV sequences were similar to those of E. coli FtsZ
CTV, we analyzed FtsZ C-terminal tail sequences from 427 select α-, β- and γ-proteobacterial
species with fully sequenced genomes and without ambiguities in their taxonomic classifica-
tion. Of these, ~88% γ-species and ~94% of β-species have a net-neutral FtsZ CTV while an
overwhelming majority (� 99%) of the α-proteobacterial species contained net-positive CTV
amino acid content. Orthologs of zapD were present only in β- and γ-species and were pre-
dominantly associated with net-neutral FtsZ CTV sequences (Table 6). Strikingly, only ~5% of

Table 5. Midcell localization frequencies of a ZapD-GFP fusion in ftsZ84 cells grown under restrictive conditions.

Strain backgrounda FtsZ/FtsZ CTV mutantb 42°C

Average ± SD (%)c Nd

ftsZ84 vector ND 410

FtsZ 65.1 ± 11.8 679

FtsZ1-379 1.1 ± 1.2 421

FtsZDQAK 37.8 ± 7.2 362

FtsZQQQQ 33.3 ± 4.7 877

FtsZKQAK 37.2 ± 5.0 560

FtsZRQAR 21.6 ± 6.9 830

FtsZNRNKRG ND 620

a Strains background was AMZ84.
b Plasmids pNG162 bearing FtsZ and FtsZ CTV mutants and pDSW208 carrying a ZapD-GFP fusion were expressed in trans and grown in minimal M63

glycerol medium at 30°C, till OD600 = 0.2–0.3 at which point an aliquot was washed and transferred to 42°C in the same media. After one doubling (~1

hour) at 42°C, 1 mM IPTG was added and cells were grown for an additional one-two doublings (~75–90 mins) at which point cells were imaged.
c Midcell localization of ZapD-GFP was quantified using ImageJ and is reported as average ± standard deviation (SD) of three different colonies. ND = not

detectable.
d N represents the total number of individual cells measured for each strain from three different colonies. In case of filamentous strains, fewer numbers of

cells were present within each field of view.

doi:10.1371/journal.pone.0153337.t005
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the species analyzed contained net-negative FtsZ CTV sequences and these were present only
in the γ-proteobacterial class. Of the 277 β- and γ-species analyzed, a majority (~86%) con-
tained net-neutral (KQAD, RQAD or KQAD-like) amino acids in their FtsZ CTV and of these
a majority (~98%) retain a zapD homolog in their genomes (Table 6). These results indicate a
correlation between the presence of a net-neutral FtsZ CTV and presence of ZapD. While it’s
not surprising that species closely related to E. coli have similar FtsZ CTV residues and retain
ZapD, a possible interpretation is that such a CTV region plays a structural role in defining the
ZapD binding site in these species. It is also tempting to speculate that the role of ZapD in bac-
terial species that contain KQAD-like and/or mostly net-neutral FtsZ CTV sequences may in
part serve to enhance the lateral interaction potential of FtsZ. Refer to S2 Table for the entire
list of species analyzed.

Conclusions
In the present study we sought to define the interaction of the E. coli FtsZ regulatory protein
ZapD, with the FtsZ C-terminal variable (CTV) region. Our results provide insights into two
aspects of FtsZ assembly in E. coli and related bacteria: (i) the role of the FtsZ CTV residues in
the interaction with ZapD, and (ii) the role of the FtsZ CTV on FtsZ-ring assembly and cytoki-
nesis. Our data support a model in which the FtsZ CTV residues provide an optimal structural
conformation that allows ZapD to interact with the FtsZ CCTP. Although a lysine at position
380 is not absolutely required in vivo, it appears to contribute a critical electrostatic interaction
since ZapD binding to FtsZ is significantly decreased by a K380D substitution in vitro. The
ZapD/FtsZ interactions are somewhat reminiscent of what is seen with ZipA, and the B. subtilis
FtsZ regulator SepF, interactions with FtsZ CCTP [23,29,59]. The ZipA/FtsZ CCTP interaction
is predominantly through hydrophobic interactions and hydrogen bond formation with the
peptide backbone [19,23,29]. The interaction of SepF with FtsZ CCTP is also deemed to be
largely through hydrophobic contacts and recognition of secondary and tertiary structural con-
formations, rather than specific amino acids [59]. However, changes in the FtsZ CTV residues,
do reduce the SepF/FtsZ interaction suggesting that CTV residues may provide some

Table 6. Phylogenetic analysis of the FtsZ CTV region correlated to the presence of zapD orthologs in proteobacteria.a

A. Presence of zapD orthologs in relation to the net-charge of FtsZ CTV sequences.

Class zapD Net-Charge of FtsZ CTV sequence

Neutral Positive Negative

α - 1 149 0

β + 72 2 0

- 0 3 0

γ + 109 1 4

- 66 15 5

B. Presence of zapD orthologs and nature of FtsZ CTV amino acid residues.

Class zapD FtsZ CTV Sequence

KQAD-like Non-KQAD-like

KQAD RQAD Other Total RQNN RQEE/A VPSN KKVK Other Total

β + 66 5 0 71 2 0 1 0 0 3

- 0 0 0 0 0 0 0 0 3 3

γ + 80 27 3 110 0 3 0 1 0 4

- 6 41 9 56 0 1 0 0 29 30

a One hundred fifty alpha-, 77 beta-, and 247 gamma-proteobacterial species were analyzed.

doi:10.1371/journal.pone.0153337.t006
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additional electrostatic interactions [59]. The FtsZ CTV is also involved in T.maritima FtsA/
CCTP interaction through the formation of a salt bridge with the extreme C-terminal amino
acid residue [30]. Collectively, the data suggest that the CCTP, found at the end of the disor-
dered linker, is driven towards specific structural conformations in the presence of specific
binding partners. It has been shown that intrinsically disordered regions (IDR) and intrinsi-
cally disordered proteins (IDP), common in eukaryotic cells, have evolved this property to
engage multiple binding partners [19,60,61]. We propose that the ZapD/FtsZ interaction drives
the conformation of the FtsZ CCTP in a similar manner and that the CTV residues play non-
specific roles, such as steering or charge stabilization, in this process.

In addition to a role for FtsZ CTV in the interactions with ZapD, our work extends previous
observations that the net-charge of CTV contributes to not only the lateral interaction potential
but perhaps also the longitudinal associations of FtsZ protofilaments in vitro. While the CTV
residues from B. subtilis lead to enhanced lateral interactions of E. coli FtsZ protofilaments in
vitro, they do not support robust division in E. coli suggesting that B. subtilis CTV residues can-
not provide the optimal structural definition for interactions with the various binding partners
present in E. coli. Chimeric B. subtilis FtsZ with E. coli CTV residues do not support division in
B. subtilis and it was suggested that this maybe due to the loss of lateral interaction potential
[22]. But B. subtilis FtsZ linker mutants, that don’t support FtsZ lateral interaction potential,
are still viable for division [17]. These data suggest that in the cell, in addition to their role in
FtsZ assembly dynamics, the FtsZ CTV region provides a stabilizing structural motif that aids
in interactions of multiple binding partners with the FtsZ CCTP. More detailed information of
the precise role(s) of CTV residues in Z-ring assembly and interactions with FtsZ-regulatory
proteins can be obtained from studying FtsZ CTV variants in the chromosomal context, and
by employing structure-function studies of the FtsZ CCTP with different binding partners,
including ZapD.
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