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Purpose: Computed tomography (CT)-derived ventilation methods compute respiratory induced
volume changes as a surrogate for pulmonary ventilation. Currently, there are no known methods to
derive perfusion information from noncontrast CT. We introduce a novel CT-Perfusion (CT-P)
method for computing the magnitude mass changes apparent on dynamic noncontrast CT as a surro-
gate for pulmonary perfusion.
Methods: CT-Perfusion is based on a mass conservation model which describes the unknown mass
change as a linear combination of spatially corresponding inhale and exhale HU estimated voxel den-
sities. CT-P requires a deformable image registration (DIR) between the inhale/exhale lung CT pair, a
preprocessing lung volume segmentation, and an estimate for the Jacobian of the DIR transformation.
Given this information, the CT-P image, which provides the magnitude mass change for each voxel
within the lung volume, is formulated as the solution to a constrained linear least squares problem
defined by a series of subregional mean magnitude mass change measurements. Similar to previous
robust CT-ventilation methods, the amount of uncertainty in a subregional sample mean measure-
ment is related to measurement resolution and can be characterized with respect to a tolerance param-
eter τ. Spatial Spearman correlation between single photon emission CT perfusion (SPECT-P) and
the proposed CT-P method was assessed in two patient cohorts via a parameter sweep of τ. The first
cohort was comprised of 15 patients diagnosed with pulmonary embolism (PE) who had SPECT-P
and 4DCT imaging acquired within 24 h of PE diagnosis. The second cohort was comprised of 15
nonsmall cell lung cancer patients who had SPECT-P and 4DCT images acquired prior to radiother-
apy. For each test case, CT-P images were computed for 30 different uncertainty parameter values,
uniformly sampled from the range [0.01, 0.125], and the Spearman correlation between the SPECT-P
and the resulting CT-P images were computed.
Results: The median correlations between CT-P and SPECT-P taken over all 30 test cases ranged
between 0.49 and 0.57 across the parameter sweep. For the optimal tolerance τ = 0.0385, the CT-P
and SPECT-P correlations across all 30 test cases ranged between 0.02 and 0.82. A one-sample sign
test was applied separately to the PE and lung cancer cohorts. A low Spearmen correlation of 15%
was set as the null median value and two-sided alternative was tested. The PE patients showed a med-
ian correlation of 0.57 (IQR = 0.305). One-sample sign test was statistically significant with 96.5 %
confidence interval: 0.20–0.63, P < 0.00001. Lung cancer patients had a median correlation of 0.57
(IQR = 0.230). Again, a one-sample sign test for median was statistically significant with 96.5 per-
cent confidence interval: 0.45–0.71, P < 0.00001.
Conclusion: CT-Perfusion is the first mechanistic model designed to quantify magnitude blood mass
changes on noncontrast dynamic CT as a surrogate for pulmonary perfusion. While the reported
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correlations with SPECT-P are promising, further investigation is required to determine the optimal
CT acquisition protocol and numerical method implementation for CT-P imaging. © 2021 The
Authors. Medical Physics published by Wiley Periodicals LLC on behalf of American Association of
Physicists in Medicine. [https://doi.org/10.1002/mp.14792]
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1. INTRODUCTION

Computed tomography (CT)-derived ventilation (CT-V) is an
image processing modality that quantifies voxel volume
changes within an inhale/exhale CT image pair as a surrogate
for pulmonary ventilation.1,2 CT-V has become increasingly
utilized in radiation oncology for functional avoidance radio-
therapy.3,4 In particular, CT-V has been used for functional
avoidance radiotherapy where the radiation plan is designed
to avoid functional portions of the lungs as measured by CT-
V.5 The major advantage of CT-V in the radiation oncology
domain is that patients routinely undergo four-dimensional
CT (4DCT) as part of standard of care prior to radiation ther-
apy; therefore, functional CT-V information can be obtained
without the need for extra imaging procedures. While prelim-
inary results for CT-V functional avoidance have been posi-
tive,3 a complete picture of lung function includes ventilation
(airflow) and perfusion (blood flow). Thus, methods for com-
puting perfusion information from noncontrast inhale/exhale
CT image pairs could potentially improve CT-V functional
avoidance strategies. However, there are no current methods
for quantifying perfusion from noncontrast CT.

Clinical utility of a noncontrast-based measure of pul-
monary perfusion is not limited to the field of radiation
oncology. Pulmonary embolism (PE) is associated with a
high short-term mortality, but is often difficult to diagnose on
presentation.6 While CT pulmonary angiography (CTA) is
the gold standard for accurate and rapid diagnosis of PE,
there are limited diagnostic options for those who cannot
undergo CTA due to contrast allergy or renal disease. More-
over, technical challenges of CTA, including respiratory
motion artifact and suboptimal intravenous contrast bolus,
can lead to nondiagnostic exams in up to 43% in some patient
populations.7 Single photon emission computed tomography
(SPECT) ventilation-perfusion imaging has been shown to be
effective,8,9 but is time-consuming to acquire and, unlike CT,
is not readily available in most emergency centers. Coupled
with CT-V, perfusion imaging derived from noncontrast CT
could be an additional diagnostic tool in certain situations for
the diagnosis of PE. Motivated by the goal of potentially
impacting clinical applications, such as radiotherapy func-
tional avoidance planning and pulmonary embolism diagnos-
tics, in this work, we propose a novel mechanistic physical
model for generating noncontrast CT-based perfusion images.

There are two primary classes of CT-V algorithms, inten-
sity-based and transformation-based. CT-V methods require
image segmentation to delineate the lung volume and
deformable image registration (DIR) to provide a spatial

transformation between the inhale and exhale lung geome-
tries. As opposed to transformation-based methods, which
recover volume changes directly from the Jacobian factor of
the DIR solution,10,11 intensity or Hounsfield Unit (HU)
methods estimate volume changes from the variations
between the HU values of spatially corresponding inhale/ex-
hale voxels.1,12 HU represents material density on a linear
scale where −1000 HU corresponds to air and 0 HU water
(or tissue). Intensity-based ventilation methods are mathemat-
ically built on the assumption that lung tissue can be physi-
cally modeled as a linear combination of air and tissue
components, an approach first proposed by Simon in the con-
text of computing specific lung compliance.13 A consequence
of the air/tissue model is that material density within the
lungs can be approximated (in units: g/ml) as Ref. [1,14]:

ρ xð Þ¼ 1þHU xð Þ
1000

: (1)

Most CT ventilation methods operate under the assump-
tion that HU and, consequently, density variations within
inhale/exhale CT images are caused solely by changes in air
content. This assumption implies that mass is constant within
the lung volume throughout the entire breath cycle.12 How-
ever, pulmonary capillary blood volume and gas exchange
from the alveoli to capillary side increases proportionately
with lung volume15 and there is a cyclical variation in blood
volume within the lung at any time point of the respiratory
cycle, increasing with inspiration during normal breath-
ing.16–18 Thus, mass change within the lung volume during
the respiratory cycle reflects changes in pulmonary blood
volume. Moreover, previous studies have shown that there is
an observable difference in lung tissue mass between inhale
and exhale segmented lung volumes based on Eq. (1),14,19

indicating that pulmonary blood mass dynamics can be quan-
tified from noncontrast inhale/exhale CT image pairs.

Recognizing that blood mass variations within the lung
during respiration are a fundamental violation of the con-
stant lung mass assumption employed by most CT-ventila-
tion algorithms,12 a global scaling factor, which assumes a
uniform perfusion effect, is often applied as a correction to
simulate mass consistency between segmented lung vol-
umes.2,20 It is also possible to derive a modification of
Simon’s model that accounts for the mass change variations
by incorporating the Jacobian factor computed from the DIR
transformation.21 Though the approach is not designed to
estimate perfusion, the resulting “hybrid” ventilation meth-
ods seemingly correct for the shortcomings associated with
the purely HU-based mass conserving approach. However,
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standard finite difference-based approximations for the DIR
Jacobian factor have been shown to be numerically unstable,
whereby small magnitude perturbations to the DIR displace-
ment field (on the order of a single voxel) can result in sig-
nificant changes in the Jacobian-estimated volume change.22

This, in part, contributes to the issues regarding low-repro-
ducibility of CT-ventilation previously reported in the litera-
ture,23–26 and introduces numerical instability into Jacobian-
based mass correction approaches. Having identified the
numerical challenges associated with Jacobian volume
change estimation, we previously developed a new class of
robust CT-ventilation algorithms designed to address
them11,12 and demonstrated that the robust algorithms have a
higher spatial correlation with single photon emission com-
puted tomography (SPECT) ventilation than any previously
reported methods.27

While previous studies have examined total lung and
gross regional mass variations,19 there are currently no
methods for computing voxel level magnitude blood mass
changes from dynamic noncontrast CT. The purpose of this
study is to (a) introduce the CT-Derived Perfusion (CT-P)
imaging method for computing magnitude blood mass
changes that occur between an inhale/exhale CT image pair
as a surrogate for pulmonary perfusion, and (b) character-
ize the spatial correlation between CT-perfusion and
SPECT perfusion (SPECT-P) imaging. CT-P employs physi-
cal modeling and numerical optimization to recover magni-
tude blood mass change at the voxel level, which results in
a CT-derived perfusion image. The proposed CT-P method
builds upon our previous work on robust HU-based CT
ventilation and follows a similar numerical implementa-
tion.11 As such, the CT-P algorithm is based on first com-
puting a series of magnitude mass change measurements
between spatially corresponding inhale/exhale lung subre-
gions. The uncertainty in the subregional measurements is
modeled with Gaussian statistics. This allows the uncer-
tainty to be controlled through the definition of an uncer-
tainty tolerance parameter. While this approach provides
robustness to DIR variability, it does so at the expense of
measurement resolution. We characterize the spatial correla-
tion between CT-P and SPECT-P using a systematic sweep
of the tolerance parameter and imaging data from two
patient cohorts. The first cohort is comprised of patients
treated with radiotherapy for nonsmall cell lung cancer and
the second is comprised of patients diagnosed with pul-
monary embolism.

2. MATERIALS AND METHODS

2.A. CT-derived perfusion formulation

Equation (1) converts an inhale/exhale CT image pair into
two corresponding density functions which we denote as the
reference image R(x), and the target image T(x). The distinc-
tion is irrelevant (i.e., inhale and exhale can correspond to
reference and target or vice versa). A spatial transformation

ϕ :3 !3 computed with a DIR algorithm maps the refer-
ence image lung volume ΩðRÞ onto the target image lung vol-
ume ΩðTÞ:

ΩðTÞ ¼ϕ ΩðRÞ
� �

: (2)

Unlike previous CT-ventilation formulations,12 for a gen-
eral subregion Ω∈ΩðRÞ, our proposed CT-perfusion formula-
tion allows mass to fluctuate in order to explicitly account for
any potential blood mass variations:Z
Ω

RðxÞdx�
Z
Ω

P̂ðxÞdx¼
Z

ϕ Ωð Þ

TðxÞdx¼
Z
Ω

TðϕðxÞÞJðxÞdx,

(3)

where
R
Ω
P̂ðxÞdx represents the signed total difference in mass

between the reference volume Ω∈ΩðRÞ and the target volume
ϕ Ωð Þ∈ΩðTÞ, and J is the Jacobian factor of ϕ. The Jacobian
factor itself is a well-known surrogate for pulmonary ventila-
tion and can be estimated robustly using the transformation-
based Intergrated Jacobian Formulation (IJF) method.11 Thus,
the magnitude blood mass difference estimation for Ω is
defined as:Z

Ω

PðxÞ dx ¼
Z
Ω

RðxÞ �TðϕðxÞÞ JðxÞj j dx , (4)

where the integrand on the right side of the equation is a data
term defined entirely from measurable quantities, namely, the
reference image, target image, DIR transformation, and Jaco-
bian. Our proposed CT-P imaging recovers the unknown P
using the Eq. (4) formulation.

We point out that making the standard CT-V mass consis-
tency assumption implies P̂¼ 0: From Eq. (3), this assump-
tion allows the Jacobian factor to be described strictly in
terms of the HU-estimated density values. A robust HU-
based CT-V strategy for recovering the Jacobian factor from
Eq. (3), under the assumption that P̂¼ 0, has previously been
described.12

2.B. Estimating subregional magnitude mass
change

Since the right side of Eq. (4) is comprised of measurable
quantitates, a straightforward implementation would be to
simply let Ω be a single voxel volume centered on grid loca-
tion x and set PðxÞ¼ RðxÞ �TðϕðxÞÞ JðxÞj j: However, simi-
lar to the situation that arises in HU-based ventilation
methods,12 this naı̈ve approach is susceptible to corruption
from image noise, errors in the DIR mapping, and errors in
the Jacobian estimation. As demonstrated in Refs. [11,12],
statistical modeling can be used to both describe the uncer-
tainties associated with potential errors and provide some
guidance on how to control them.

Standard Monte Carlo integration methods, under mild
assumptions, express an integral in terms of the integrand
average over a desired volume.28 Applying this approach to
Eq. (4) yields:
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Z
Ω

PðxÞdx¼ �PΩ �vol Ωð Þ≈ 1
Ωj j ∑

xi∈Ω
RðxiÞ�TðϕðxiÞÞJðxiÞj j

 !

�vol Ωð Þ¼ Ph iΩ � jΩj,
where the integrand sample mean, Ph iΩ, can be computed
directly from known image data. Assuming Gaussian statis-
tics on Ω, the uncertainty in the sample mean, Ph iΩ, is char-
acterized by the corresponding standard error. However,
image data are provided only on the voxel locations. As previ-
ously described in Ref. [12], there is a tradeoff between sam-
ple mean fidelity and measurement resolution. Larger
M¼ Ωj j reduces the uncertainty in the sample mean estimate,
but requires the measurement be taken over a larger subre-
gional volume. Since the Eq. (1) HU-estimated density values
are less than or equal to one, we assume 0≤ PðxÞ⪅ 1. As
described in Ref. [12], this implies that given a specified tol-
erance τ and scalar constant β¼ 1:96

�PΩ� Ph iΩ
�� ��≤ τ, (6)

with greater than 95% probability when Ω is chosen such
that

M ≥
β2

τ2
: (7)

2.C. CT-perfusion image generation

A full CT-P image, PðxÞ, requires computing the dis-
cretized variables

pi ¼PðxiÞ, 8xi∈ΩðRÞ, (8)

where pi>0 represents the magnitude mass change of the
undeformed unit volume voxel centered on xi. Our proposed
numerical method follows the framework used for our previ-
ously described robust CT-ventilation methods,11,12 and is
based on approximating the Eq. (5) integral for a series of
subvolumes Ωk∈ΩðRÞ, k¼ 1,2, . . .,K: For jΩðRÞj ¼ N, the
subvolume data acquisition process results in a linear system
of equations describing the unknown pi:

Ap¼ b,

A∈K�N , b∈K�1, p∈N�1,
(9)

where

Aki ¼
1

jΩkj if xi∈Ωk

0 otherwise
,

8<
: (10)

and the elements of b contain the corresponding subregional
sample mean estimates Ph iΩk

[Eq. (5)]. Depending on image
resolution, the number of unknowns, N, can be large (on the
order of 108). Thus, in order to lower overall computational
complexity and memory storage requirements, we parameter-
ize PðxÞ using moving least squares.

Given a set of L knot locations z j∈ΩðRÞ with correspond-
ing scalar parameter values qj, the Shepard’s class of moving

least squares approximation is defined as:

Pðxi;qÞ¼ pi ¼
∑
L

j¼1
w jjxi� z jjj
� �

qj

� �
∑
L

j¼1
w jjxi� z jjj
� � , (11)

where the proximal weighting function is of the form

wðrÞ¼ e�σr2 : (12)

The Eq. (12) parameterization reduces the number of
unknowns required to generate the magnitude mass change
(perfusion) image from N (the total number of voxels in the
reference lung region of interest) down to L (the number of
knots used for the discretization). The image is recovered by
solving the following constrained linear least squares prob-
lem:

min
q

k Âq�b k2
s:t:

qi ≥ 0, i¼ 1,2, . . .,L,

(13)

where

Â¼AC,

Â∈K�L, C∈N�L,
(14)

and

Cij ¼
w jjxi� z jjj
� �

∑
L

l¼1
w jjxi� zljjð Þ

: (15)

Choosing the number of subregional measurements such
that N ≥ K≫L results in an over-determined system of equa-
tions, while the Eq. (13) inequality constraints corresponds to
the fact that Pðx;qÞ represents magnitude mass change. The
solution to Problem (13), Pðx;qÞ, represents a density func-
tion in the same g=ml units as Eq. (1). Magnitude mass
change for the voxel volume vi centered on xi, as defined by
Eq. (4), can therefore be computed as:

Pðxi,qÞ �volðviÞ≈�Pvi �volðviÞ¼
Z
vi

Pðx;qÞdx: (16)

Voxel volume is constant on the image grid but is an
acquisition parameter that can vary from image-to-image.
Thus, we simply take Pðx;qÞ as our perfusion surrogate.

2.D. Numerical implementation

All softwares were written in MATLAB release R2019a
(The Mathworks Inc, Natick, Massachusetts, United States).
The maximum inhale and exhale 4DCT phases were used for
the study. Lung masks were generated using a semi-auto-
mated histogram segmentation (as done in Ref. [2]). A dart-
throwing algorithm29 was applied to ΩðRÞ in order to generate
MLS knot locations, z j∈ΩðRÞ, with approximately 30-mm
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uniform spacing. Similar to the number of cubic spline knots
used for lung CT DIR,30 this procedure results in approxi-
mately 250–300 knots. An additional point cloud is similarly
acquired with approximately 7-mm uniform spacing to serve
as the subdomain locations for Eq. (9). This results in approx-
imately 20 000 to 30 000 subdomain measurement points.
Each initial Ωk subdomain was defined as a single voxel and
then morphologically dilated with a 7 × 7 × 3 voxel structur-
ing element until the desired Eq. (7) tolerance criteria was
satisfied. In addition, the MATLAB soutlier function was
applied to provide further robustness to any potential DIR
inaccuracies when computing Ph iΩk

. Equation (13) is solved
using the interior point method implemented in the
MATLAB optimization routine lsqlin. For all experiments,
CT-P is computed on the exhale phase. Thus for Eq. (4), the
exhale phase is the reference image and inhale phase is the
target image.

2.E. DIR and Jacobian estimation

The sample mean estimates defined by Eq. (5) require
both the DIR transformation ϕ and the volume change it
induces, which is given by J (the Jacobian factor of ϕ). The
Jacobian factor is computed using the parameterized Inte-
grated Jacobian Formulation (IJF) method described in Ref.
[27], which determined that the uncertainty parameter
τIJF ¼ 0:07 generates an optimal spatial correlation between
SPECT-ventilation and 4DCT-derived ventilaiton.

The Quadratic Penalty DIR (QPDIR) algorithm was used
to compute to ϕ for the CT-P method and ϕ�1 for the IJF
method (see Refs. [11,27] for more details on IJF). Briefly,
QPDIR is an intensity-based algorithm designed around a
gradient-free block coordinate descent strategy that iterates
between block matching operations and linear least squares
solves to minimize the structural similarity index between an
image pair. The implementation follows the description in
Ref. [31], with the exception that an additional sum-of-
squared difference term was included in the QPDIR objective
function to ensure lung mask alignment (as done in Ref.
[32]).

2.F. Image data

Analysis of the proposed CT-P method was conducted
using the 4DCT and Single Photon Emission Computed
Tomography perfusion (SPECT-P) images from two patient
cohorts. The first cohort is comprised of 15 patients with
pulmonary embolism treated at our institution. Data were
acquired as part of a prospective imaging trial and evalu-
ated according to an IRB approved study (IRB 2017-018,
clinicaltrials.gov #NCT03183063). Patients diagnosed with
pulmonary emboli on CTA were recruited to the study.
The 4DCT and SPECT-P images were acquired within
48 h of the PE diagnosis in order to ensure any clinical
lung function changes occurring due to treatment would
be minimal.

The second patient cohort is comprised of 15 NSCLC
patients who received radiotherapy at our institution. Data
were retrospectively evaluated according to an IRB approved
study (IRB 2016-037, clinicalTrials.gov #NCT02528942).
Patients received definitive radiotherapy (defined as prescrip-
tion doses of 45 to 75 Gy) and a planned concurrent
chemotherapy regimen. The majority of enrolled patients had
stage III disease. SPECT-P imaging was acquired prior to
delivery of the first radiotherapy fraction, ensuring no clinical
lung function changes occurred due to treatment between the
simulation 4DCT and SPECT-P acquisitions.

2.F.1. Pulmonary embolism Cohort 4DCT
acquisition

Four-dimensional CT images were acquired in supine
position on a General Electric Revolution Evo 64-slice scan-
ner operating in sequential cine mode. Patients with BMI <
30 were scanned with 100 kVp, 27.5 mAs, and a CTDI
32.7 mGy. Patients with BMI > 30 were scanned with
120 kVp, 17.5 mAs, and a CTDI 33.6 mGy. Both patient
groups shared the common 40 mm beam collimator
(64 × 0.625 mm configuration), 500 ms tube rotation speed,
22 consecutive acquisitions per beam width, digitally recon-
structed to 16 slices with a 2.5-mm slice thickness, 2.5-mm
slice increment, and with a 7.5-mm overlap to the previous
beam setting. Patients were coached by support staff to main-
tain a constant breathing rate, prior to imaging. Images were
reconstructed trans-axially (512 × 512 pixels per 2D slice
image, voxel dimensions of 0.97 mm × 0.97 mm × 2.5 mm)
and exported into DICOM format. The full inhale and exhale
phases were reconstructed from the cine images using a quan-
titative image correlation-based sorting method.33

2.F.2. Lung cancer cohort 4DCT acquisition

A Philips Brilliance Big Bore CT (version 3.6.7) with a
bellows system was used for respiratory correlated imaging.
The 4DCT images were acquired with x-ray tube settings of
120 kVp and 599 mAs, and reconstructed using phase bin-
ning to produce an average CT image and 10 phase indexed
CT images. The phase images were indexed from 0% to 90%
in steps of 10% where 0% indicates full inhalation and 50%
indicates full exhalation on the breathing curve. Final images
were then exported into the DICOM standard (512 × 512 pix-
els per 2D slice image, voxel dimensions of 1.27 mm × 1.27
mm × 3 mm).

2.F.3. SPECT perfusion acquisition

SPECT-P images were acquired on a dual head Siemens
Symbia SPECT/CT scanner (Siemens Medical Solutions,
USA), using a parallel hole, high-resolution collimator and
an energy window of 15% at a centerline of 140 keV. Perfu-
sion (99mTc-MAA SPECT/CT) imaging was conducted fol-
lowing IV administration of 4.0 mCi of 99mTc-MAA
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(Lantheus Medical Imaging, Billerica, MA) with the patient
lying supine during tidal respiration. Ventilation imaging was
not acquired for the PE cohort. SPECT acquisition was per-
formed in steps of 6° for the entire 360° of rotation, with a
25 s collection time for each step. Total scan acquisition time
for most patients was under 30 min. Free breathing, attenua-
tion corrected CT images were subsequently recorded with
130 kVp, and 75–100 mAs (weight dependent) during con-
tinuous tidal respiration. The final reconstructed SPECT
images were then exported into DICOM (64 x 64 pixel per
2D slice image, voxel dimensions 6.00 mm × 6.00 mm ×
2.00 mm).

2.G. CT-perfusion and SPECT perfusion spatial
correlation assessment

A parameter sweep was conducted in order to assess the
effect of the uncertainty tolerance τ on the spatial correlation
between SPECT-P and the resulting CT-P images. For each
of the 30 test cases (15 from each of the two patient cohorts),
a series of 30 CT-P images were computed using a uniformly
sampled set of uncertainty tolerances ranging between
τ∈ ½0:01, 0:125�. Each resulting CT-P image was spatially
aligned with the SPECT-P image by first using affine regis-
tration to align the exhale 4DCT phase (on which the CT-P is
computed) and the SPECT attenuation correction CT. The
resulting affine transformation was then applied to the CT-P

image and the voxel-wise Spearman correlation was com-
puted at the resolution of the SPECT-P after applying a med-
ian filter with 3�3 structuring element to the SPECT image
(as done in Ref. [34]).

3. RESULTS

The median Spearman correlations between SPECT-P and
CT-P taken across all 30 test cases for each uncertainty
parameter value included in the sweep are presented in Fig. 1.
The median correlation values were relatively consistent
across the parameter sweep, ranging between 0.49 and 0.57
with the highest values being achieved for
τ∈ ½0:0285, 0:0385�: The median correlation within each
cohort are plotted separately in Fig. 2.

As summarized in Table I, for an optimal τ¼ 0:0385 (cho-
sen within the optimal range τ∈ ½0:0285, 0:0385�) the CT-P
and SPECT-P Spearman correlations across the 15 test cases
in the PE cohort ranged between 0.02 and 0.77. Similarly,
across the 15 cases in the lung cancer cohort, the correlations
ranged between 0.10 and 0.82. A Shapiro–Wilk normality test
was significant for PE indicating data skewness. As such, all
comparisons were conducted with respect to median values.

A one-sample sign test was applied separately to the PE
and lung cancer cohorts. A low Spearmen correlation of 0.15
was set as the null median value in order account for any pos-
sible inherent correlation between CT-P and SPECT-P

FIG. 1. The maximum, 75th percentile, median, 25th percentile, and minimum CT-P and SPECT-P Spearman correlations, rs across all 30 test cases (PE and
Lung Cancer cohorts combined) as a function of the uncertainty parameter τ are plotted. The median correlation values remain relatively constant across the
parameter sweep. [Color figure can be viewed at wileyonlinelibrary.com]
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stemming from the fact that the images were acquired for the
same patient. A two-sided alternative was tested. The PE
patients showed a median correlation of 0.57 (IQR = 0.305).
The one-sample sign test was statistically significant with
96.5% confidence interval: 0.20–0.63, P < 0.00001. Lung
cancer patients had a median correlation of 0.57 (IQR =
0.230). Again, the one-sample sign test for median was sta-
tistically significant with 96.5% confidence interval:
0.45–0.71, P < 0.00001. Moreover, a two-sided Wilcoxon
signed-rank test indicated that the difference between the
median correlations observed in the two cohorts was not sig-
nificant (P = 0.49). Figure 3 illustrates the CT-P and
SPECT-P images for representative PE case 5 and Fig. 4
illustrates the images for representative Lung Cancer case 8.

4. DISCUSSION

In previous work, we described a robust HU-based
CT-ventilation approach, referred to as the Mass Conserving
Volume Change (MCVC) estimation method,12 which was
premised on the assumption that mass within the lung vol-
ume remains constant throughout the breath-cycle. This
assumption, which implies that any HU variations are caused
strictly by changes in air content, is in fact the foundation of
all HU-based CT-ventilation methods.2 However, the

FIG. 2. The median CT-P and SPECT-P Spearman correlations, rs across the 15 patients in the PE cohort (PE, blue) and Lung Cancer cohort (LC, green) as a
function of the uncertainty parameter τ are plotted. The median across all 30 test cases (PE and Lung Cancer cohorts combined) is also provided (All, red). The
median correlation curve for each cohort shows that for smaller τ (high certainty, low resolution) correlation with SPECT-P is lower, indicating insufficient reso-
lution in the subregional measurements to accurately describe spatial variations in pulmonary function. A similar, though not as pronounced, drop in correlation
is also seen for τ>0:095 (low certainty, higher resolution), indicating the effects of uncertainty and more erroneous subregional mass change measurements.

TABLE I. CT-perfusion and SPECT-P Spearman correlations for optimal
τ¼ 0:385.

Case # Pulmonary embolism cohort Lung cancer cohort

1 0.55 0.10

2 0.61 0.57

3 0.65 0.65

4 0.02 0.72

5 0.70 0.50

6 0.44 0.45

7 0.57 0.73

8 0.62 0.82

9 0.51 0.53

10 0.17 0.71

11 0.11 0.70

12 0.20 0.43

13 0.63 0.50

14 0.61 0.37

15 0.77 0.61

Median 0.57 0.57

The Spearman correlations between SPECT-Perfusion and CT-Perfusion (CT-P)
for the pulmonary embolism patient cohort and lung cancer cohort, using the opti-
mal uncertainty tolerance τ¼ 0:0385. Wilcoxon signed-rank test applied to the
correlations from the two cohorts reveals no significant difference, indicating that
the CT-P method’s performance is consistent between the two patient cohorts.
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assumption is known to be invalid due to variations in the
spatial distribution of blood mass that occur within the lungs
during breathing.19 In this study, we introduce the novel CT-
Perfusion numerical method for quantifying these blood mass
variations as a surrogate for pulmonary perfusion. The CT-P
formulation builds upon the MCVC formulation and recovers
magnitude mass change at the voxel resolution using HU-de-
fined material density estimates and the DIR spatial mapping
between the inhale and exhale geometries. Analyzing mapped
CT HU values is certainly not a novel concept, beginning
with the initial idea for estimating lung compliance13 and
including, for example, quantitative methods for identifying
disease with parametric response mapping.35 However, the
CT-Perfusion derivation is the first theoretical treatment that
explicitly defines the relationship between mapped HU val-
ues and pulmonary function in terms of ventilation and

perfusion surrogates, namely, magnitude mass change and
volume change. In fact, the presented Eq. (4) CT-P formula-
tion is defined with respect to the Jacobian of the DIR trans-
formation which itself is a widely accepted surrogate for
ventilation.10

Recently, we demonstrated that voxel volume changes
computed with the robust Integrated Jacobian Formulation
(IJF) method generate CT-ventilation images that have high
spatial correlation with SPECT-ventilation (15 cases, median
Spearman correlation 0.82).27 Given recovered IJF volume
changes, the numerical implementation of CT-P is based on
making a series of subregional magnitude mass change esti-
mates [Eq. (5)]. Similar to robust CT-ventilation methods,
uncertainties introduced by DIR errors and image noise into
the subregional measurements are characterized with an
uncertainty tolerance parameter τ. As described in Eq. (7),

FIG. 3. Axial (Left), sagittal (middle), and coronal (right) slices from the CT-Perfusion (CTP) (top row) and SPECT Perfusion (bottom row) images for test case
5 in the PE cohort (Table I). The Spearman correlation between the spatially aligned CTP and SPECT-Perfusion values is 0.70. For visualization, the intensity
values within each image were converted to percentile values (color scale). Visually, there is good correlation between CT-P and SPECT-P.

FIG. 4. Axial (Left), sagittal (middle), and coronal (right) slices from the CT-Perfusion (CTP) (top row) and SPECT Perfusion (bottom row) images for test case
11 in the Lung Cancer cohort (Table I). The Spearman correlation between the spatially aligned CTP and SPECT-Perfusion values is 0.70. For visualization, the
intensity values within each image were converted to percentile values (color scale). Both CTP and SPECT-P show decreased perfusion in the patient’s left lower
lobe.
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the parameter reflects the fact that robustness is gained at the
expense of measurement resolution. Therefore, we character-
ize the spatial correlation between novel CT-P and SPECT-P
using a systematic parameter sweep of τ and imaging data
from two patient cohorts (lung cancer and pulmonary embo-
lism) each with 15 patients.

As illustrated by Fig. 1, the median correlation across all
30 test cases was relatively consistent throughout the parame-
ter sweep τ∈ ½0:010 0:125�, with the highest median value of
0.57 being achieved for τ∈ ½0:0290 0:0385�: However, for
τ<0:015, which corresponds to low resolution and low
uncertainty Eq. (5) subregional measurements, there is a drop
off in median correlation. This implies that the low measure-
ment resolution was insufficient for detecting spatial varia-
tions in pulmonary perfusion present in the test cases. This
effect is more pronounced in the lung cancer cohort than in
the PE cohort, as illustrated in Fig. 2, and is consistent with
the robust measurement framework. Specifically, the millime-
ter voxel resolution of the 4DCT imaging acquired for the
lung cancer cohort (1.25 mm) is less than that of the 4DCTs
acquired for the PE cohort (0.97 mm). The Eq. (6) uncer-
tainty estimate is defined with respect to voxels, not millime-
ter resolution. As such, a fixed τ corresponds to the number
of individual voxel measurements needed to satisfy Eq. (7).
This set number of voxels will correspond to a higher resolu-
tion in physical space when applied to a CT image with high
millimeter resolution, and a lower resolution in physical
space when applied to a lower millimeter resolution CT.
Thus, the smaller τ values have a larger impact on the lung
cohort correlations than on the PE cohort.

Despite the fact that the 4DCTs were acquired with differ-
ent scanners and different reconstruction parameters, the CT-
P and SPECT-P Spearman correlations were relatively consis-
tent between the PE and lung cancer cohorts. Table I details
the case-by-case correlations in each cohort for an optimal
uncertainty tolerance τ¼ 0:0385: The median Spearman cor-
relation within each cohort was 0.57 and Wilcoxon rank sum
test indicated no statistical difference between them. More-
over, one-sample sign test indicated that the median correla-
tion within each cohort was significantly higher than the null
assumption (a low 0.15 correlation). Considering that CT-P is
the first method for estimating magnitude mass change as a

surrogate for perfusion, the presented results represent an ini-
tial benchmark for this novel class of methods. While direct
comparisons are limited, the 0.57 median Spearman correla-
tion between CT-P and SPECT-P compares favorably with
previous CT-ventilation validations studies, such as the Venti-
lation and Medical Pulmonary Image Registration Evaluation
(VAMPIRE) study, where the highest performing CT-ventila-
tion methods achieved a median correlation of 0.49 with
nuclear medicine imaging.34

The techniques first introduced for robust CT-ventilation
and employed within the CT-P numerical method are
designed to mitigate the effects of image noise and small
errors in the DIR solution.11,12 However, these techniques do
not account for gross acquisition errors, such as the phase
binning artifacts common to 4DCT.24 Artifacts corrupt the
geometric and intensity value information needed to estimate
both mass change and volume change, thereby reducing over-
all CT-P efficacy. For example, Fig. 5 shows that case 1 of
the lung cancer cohort possesses a phase bin artifact. The
artifact causes erroneous high-density diaphragm data to be
mapped onto low-density lung parenchyma, which in turn
causes an erroneous high magnitude mass change signal in
the resulting CT-P image and a lower 0.10 Spearman correla-
tion with the corresponding SPECT-P image. Therefore,
breathhold CT acquisitions which avoid binning artifacts may
yield more consistent CT-P imaging. Moreover, as described
earlier, high-resolution breathhold acquisitions would allow
for higher spatial resolution in the subregional measurements
acquired for the CT-P numerical method that could translate
into higher fidelity imaging. Characterizing the effect of
breathhold acquisitions on CT-P performance warrants fur-
ther study and is an area of our future research.

Taken together with IJF-ventilation, which was previously
shown to have high correlation with SPECT-ventilation in
lung cancer patients,27 the 0.57 median correlation between
CT-P and SPECT-P suggest that CT-P and CT-ventilation
have potential utility as diagnostic tools. For instance, while
the impacts of PE on lung function are complex, in general,
PE results in lung regions with reduced blood flow and pre-
served ventilation.9,36 Figure 6 illustrates a “wedge” perfu-
sion artifact that is common in PE patients.37 Though the
wedge is apparent on both the SPECT-P and CT-P images,

FIG. 5. Corresponding coronal slices from the 4DCT maximum inhale phase (left), CT-Perfusion image superimposed on the maximum exhale phase (middle),
and the SPECT-perfusion (right) images for case 1 in the lung cancer cohort from Table I. For visualization, the intensity values within each image were con-
verted to percentile values (color scale). The inhale image possesses a phase-bin artifact (blue arrow), which erroneously elevates the estimated magnitude mass
change.
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there is no corresponding wedge defect on the CT-ventilation
image, illustrating the potential of CT-P and CT-ventilation to
capture this phenomenon on noncontrast CT imaging. How-
ever, the current CT-P numerical method smooths the sharp
geometric boundaries of the wedge defect. This result is not
surprising considering that the MLS parameterization [Eq.
(11)] inherently describes a spatially smooth image. Thus,
while the Table I correlation results demonstrate proof of
principle for the CT-P formulation, additional research is still
required to improve the numerical method. Our future work
includes exploring different basis functions and numerical
approaches, such as finite elements and total variation regu-
larization models that are designed to accommodate spatial
discontinuities within the solution image. Moreover, a sepa-
rate investigation focused on PE diagnosis that involves direct
comparison between CT-P, SPECT-P, and CTA would be
required to determine the diagnostic utility of CT-P.

This study describes the first mechanistic model designed
to compute surrogate perfusion images from noncontrast CT.
Though the reported correlations between CT-P and SPECT-
P are promising, more research is required to determine the
CT acquisition protocol and numerical method implementa-
tion that yield the highest physiological fidelity. With further
study, the CT-P concept has potential for many clinical appli-
cations, including the evaluation of patients with suspected
PE. Moreover, generating both perfusion and ventilation
information from 4DCT in patients undergoing lung cancer
radiotherapy would allow for a complete picture of lung func-
tion to be incorporated into functional avoidance radiother-
apy. In addition to further imaging validation and optimal
implementation studies, our future work will evaluate CT-P
in oncologic applications, with particular emphasis on inves-
tigating the potential improvements in patient outcomes that
might result from integrating CT-Ventilation and CT-perfu-
sion methods into functional avoidance planning.

5. CONCLUSION

In this study, we present the CT-Perfusion numerical
method for quantifying pulmonary perfusion from dynamic
noncontrast CT imaging. The CT-P formulation computes the
magnitude mass changes apparent between inhale and exhale
CT images using a series of subregional measurements. The

spatial correlation between CT-P and SPECT-perfusion, as
well as its sensitivity to the parameter, τ, which describes the
amount of uncertainty associated with the subregional mea-
surements, was assessed in 15 patients with pulmonary
embolism and 15 patients with nonsmall cell lung cancer. A
parameter sweep revealed that the median CT-P and SPECT-
P Spearman correlation was relatively stable with respect to τ
in both the PE and lung cancer cohorts. τ∈ ½0:010 0:125�
yielded the highest overall median Spearman correlation of
0.57. For τ¼ 0:0385, the median correlation in both cohorts
was 0.57, indicating consistent CT-P performance on two
imaging datasets acquired for different diseases and on differ-
ent scanners. Our immediate future work includes determin-
ing the CT acquisition protocol and numerical method
implementation that yield the highest physiological fidelity
for CT-P imaging, as well as exploring potential clinical
applications of CT-P.
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