
Submitted 24 November 2020
Accepted 11 March 2021
Published 7 April 2021

Corresponding author
Ruiwen Zong,
zongruiwen@cug.edu.cn

Academic editor
Mathew Wedel

Additional Information and
Declarations can be found on
page 7

DOI 10.7717/peerj.11201

Copyright
2021 Zong

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

Injuries and molting interference in a
trilobite from the Cambrian (Furongian)
of South China
Ruiwen Zong
State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan,
China

ABSTRACT
An injured Shergoldia laevigata Zhu, Hughes & Peng, 2007 (Trilobita, Asaphida) was
collected from the Furongian of Guangxi, South China. The injuries occurred in
the left thoracic pleurae possessing two marked V-shaped gaps. It led to substantial
transverse shortening of the left pleural segments, with barely perceptible traces of
healing. This malformation is interpreted as a sub-lethal attack from an unknown
predator. The morphology of injuries and the spatial and temporal distribution of
predators indicated that the predatory structure might have been the spines on the
ganathobase or ganathobase-like structure of a larger arthropod. There were overlapped
segments located in the front of the injuries, and slightly dislocated thoracic segments
on the left part of the thorax, suggesting that the trilobite had experienced difficulties
duringmolting. The freshlymolted trilobite had dragged forward the old exuvia causing
the irregular arrangement of segments. This unusual trilobite specimen indicates that
the injuries interfered with molting.

Subjects Animal Behavior, Evolutionary Studies, Paleontology
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INTRODUCTION
Numerous trilobite exoskeleton deformities have been documented, including abnormal
healing, hyperplasia, deformation, and missing or fractured segments. The causes of these
deformities are usually thought to be injuries, developmental disorders, and diseases
(Owen, 1985; Babcock, 1993; Pates et al., 2017; Bicknell & Pates, 2020). The evaluation
of injuries caused by predator attack is useful for presenting the interactions between
predators and trilobites, and for reconstructing the food web and ecological structure in
deep time (Klompmaker et al., 2019). Furthermore, such predatorial injuries are used to
uncover behavioral information (Babcock & Robison, 1989; Babcock, 1993; Pates et al., 2017;
Bicknell, Paterson & Hopkins, 2019). The injuries caused by predators have mainly been
detected on the edges of trilobites, especially in the thoraces and pygidia, and are generally
considered to have been non-lethal (Babcock, 2003; Babcock, 2007), while cephalic attacks
are more often fatal (Pates & Bicknell, 2019). Although numerous studies have evaluated
injured trilobites (e.g., Owen, 1985; Rudkin, 1985; Babcock, 1993; Babcock, 2003; Babcock,
2007; Zhu et al., 2007; Schoenemann, Clarkson & Høyberget, 2017; Bicknell & Paterson,
2018; Bicknell & Pates, 2020; Bicknell & Holland, 2020; Zong, 2020), most predators remain

How to cite this article Zong R. 2021. Injuries and molting interference in a trilobite from the Cambrian (Furongian) of South China.
PeerJ 9:e11201 http://doi.org/10.7717/peerj.11201

https://peerj.com
mailto:zongruiwen@cug.edu.cn
mailto:zongruiwen@cug.edu.cn
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj.11201
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://doi.org/10.7717/peerj.11201


unidentified, except some carnivores with trilobite fragments in their guts or coprolites
(Vannier & Chen, 2005; Vannier, 2012; Zacaï, Vannier & Lerosey-Aubril, 2016; Bicknell
& Paterson, 2018; Kimmig & Pratt, 2018). The shapes of the Cambrian trilobite injuries
suggest that some predators may have been radiodonts (Babcock & Robison, 1989; Babcock,
1993;Nedin, 1999). Other predator candidates include cephalopods, echinoderms, fish, and
other larger arthropods (Bruton, 1981; Briggs & Collins, 1988; Babcock, 1993; Fatka, Budil
& Grigar, 2015; Jago, García-Bellido & Gehling, 2016; Bicknell & Paterson, 2018; Bicknell et
al., 2018a; Zhai et al., 2019).

Moreover, although it has been inferred that injuries did interfere with daily activities
of trilobites, there are rare direct fossil records (Šnajdr, 1985). Herein, I discuss an injured
Shergoldia laevigata Zhu, Hughes & Peng, 2007 from the Cambrian (Furongian) of Jingxi,
Guangxi, South China. The exoskeletal injuries suggest that the predatory structure might
have been the spines on the gnathobase or gnathobase-like structure of a larger arthropod.
In addition, the findings indicate that these injuries would have caused difficulties for
trilobite during molting, but did not cause molting failure.

MATERIALS & METHODS
The described Shergoldia laevigata specimen, housed in the State Key Laboratory of
Biogeology and Environmental Geology, China University of Geoscience (Wuhan), was
discovered from the Cambrian (Furongian)-aged Sandu Formation of Guole Town, Jingxi
County, Guangxi Zhuang Autonomous Region, South China (Fig. 1) (Zhu, Hughes &
Peng, 2007). The Sandu Formation is represented by calcareous mudstones, siltstones,
and argillaceous banded limestones, which formed most probably in the uppermost part
of the continental slope (Lerosey-Aubril, Zhu & Ortega-Hernández, 2017). The Sandu
Formation is richly fossiliferous, containing abundant, well-preserved articulated trilobites
(Han et al., 2000; Zhu, 2005; Zhu, Hughes & Peng, 2007; Zhu, Hughes & Peng, 2010), non-
trilobite arthropods (Lerosey-Aubril, Ortega-Hernández & Zhu, 2013; Lerosey-Aubril, Zhu
& Ortega-Hernández, 2017), echinoderms (Han & Chen, 2008; Chen & Han, 2013; Zamora
et al., 2017; Zamora, Zhu & Lefebvre, 2013; Zhu, Zamora & Lefebvre, 2014), brachiopods,
graptolites (Zhan et al., 2010), hyolithids, cnidarians, algae, and some exceptionally
preserved soft-bodied fossils (Zhu et al., 2016).
Trilobites from the Sandu Formation have been classified into at least 25 genera (Zhu,

2005; Zhu, Hughes & Peng, 2007; Zhu, Hughes & Peng, 2010); however, only six abnormal
specimens have been documented from this formation (five Tamdaspis jingxiensis Zhu et
al., 2007 and one Guangxiaspis guangxiensis Zhou in Zhou et al., 1977; Zhu, 2005; Zhu et
al., 2007; Zong, 2020). The injured Shergoldia laevigata was collected from the grey-yellow
calcareous mudstones. The specimen is from the Probinacunaspis nasalis–Peichiashania
hunanensis Zone of the Furongian, Jiangshanian (Peng, 2009; Zhu et al., 2016).

The fossil in Fig. 2C was whitened with magnesium oxide powder, and all photographs
were captured using a Nikon D5100 camera with a Micro-Nikkor 55 mm F3.5 lens.

Zong (2021), PeerJ, DOI 10.7717/peerj.11201 2/13

https://peerj.com
http://dx.doi.org/10.7717/peerj.11201


Figure 1 (A) Map of fossil locality at Guole Town, Jingxi County, Guangxi, South China; (B) strati-
graphic sketch showing relative position and age of the Sandu Formation.

Full-size DOI: 10.7717/peerj.11201/fig-1

RESULTS
The injured Shergoldia laevigata is preserved as a nearly complete dorsal exoskeleton (30.5
mm long) without librigena, suggesting an exuvia (Daley & Drage, 2016; Drage, 2019). The
posterior of the cranidium overlies the first two thoracic segments, this is most pronounced
on the left side (Fig. 2). In addition, the first thoracic segment covered most of the left
pleural segment of the second thoracic segment, as well as the anterior margin of the right
pleural segment. Similarly, most of the first thoracic segment was covered by the posterior
area of the fixigena, particularly on its left side. Moreover, the left pleural segments of the
fourth to eighth thoracic segments presented an interlaced arrangement, i.e., the anterior
margin of the fourth thoracic segment extended upon the third thoracic segment, and the
seventh extended upon the sixth (Fig. 2), while there was a typical imbricated arrangement
in the right pleural region.

The malformation is on the left part of the exoskeleton, while the medial (axial) and
right sections are undamaged. The left thoracic segments are shorter than those on the
right side and show limited healing. There are two injuries: one on the third to fourth
thoracic segments, and one on the seventh thoracic segment. Two pleural segments are
truncated by 3.3 mm because of the first asymmetric V-shaped injury; the most seriously
damaged part is the contact site of the two thoracic segments, where there is a V-shaped
injury. The second injury truncates the left pleural section of the seventh thoracic segment
by 3.5 mm.

DISCUSSION
Possible origin of the injuries and potential predatory structure
Trilobites that are malformed due to predatory attacks have typically V-, U-, or W-shaped
injuries (Owen, 1985; Babcock, 1993; Pratt, 1998; Jago & Haines, 2002; Zamora et al., 2011;
Pates et al., 2017; Bicknell & Paterson, 2018; Bicknell & Pates, 2020), with a few showing in
bay-shaped injuries (Fatka, Budil & Grigar, 2015). Furthermore, there is occasionally signs

Zong (2021), PeerJ, DOI 10.7717/peerj.11201 3/13

https://peerj.com
https://doi.org/10.7717/peerj.11201/fig-1
http://dx.doi.org/10.7717/peerj.11201


Figure 2 Malformed trilobite Shergoldia laevigata from the Cambrian Furongian of Jingxi, Guangxi
(Specimen No. CUG-GJ-2015-01). (A) Uncoated specimen; (B) close-up of abnormality in box in (A);
(C) specimen whitened by the magnesium oxide powder; (D) sketch of the (A); (E) picture after recovery
of the cranidium and the first three thoracic segments, showing the superposed relationship between the
posterior area of the fixigena and thoracic segments.

Full-size DOI: 10.7717/peerj.11201/fig-2

of healing or regeneration (Rudkin, 1979; McNamara & Tuura, 2011; Pates et al., 2017).
In the present specimen, the injuries have traces of healing and are therefore considered
evidence of a predatory attack. The two injuries have a similar degree of healing without any
regeneration, suggesting that these injuries may have been incurred in the same inter-molt
stage.

In the past, the most commonly suggested Cambrian predators are considered to have
been the radiodonts, especially anomalocaridids and amplectobeluids, as their frontal
appendages and oral cone were extremely effective predatory structures (Whittington &
Briggs, 1985; Babcock, 1993; Zamora et al., 2011). Cambrian arthropods or arthropod-like
organisms with gnathobases are also considered possible predators, similar to the modern
horseshoe crab (Bicknell et al., 2018a; Bicknell et al., 2021). Some amplectobeluid genera
have been documented with gnathobase-like structures (Cong et al., 2017; Cong et al.,
2018), suggesting that amplectobeluid radiodonts may have been predators of Cambrian
trilobites (Bicknell & Pates, 2020). In addition, some trilobites and predatory arthropods
with reinforced gnathobasic spines on the protopodal sections of their walking legs are
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also considered as potential predators (Bruton, 1981, Conway Morris & Jenkins, 1985;
Zacaï, Vannier & Lerosey-Aubril, 2016; Bicknell et al., 2018a; Bicknell et al., 2018b; Bicknell,
Paterson & Hopkins, 2019; Bicknell & Holland, 2020).

However, so far, the youngest amplectobeluid and anomalocaridid are from theDrumian
and Guzhangian, respectively (Lerosey-Aubril et al., 2014; Lerosey-Aubril et al., 2020). Most
Furongian and Ordovician radiodonts belong to the family Hurdiidae, which do not
have endites of alternating size, and all members of this family are considered to be
sediment sifters or suspension feeders (Daley, Budd & Caron, 2013; Daley et al., 2013;
Lerosey-Aubril & Pates, 2018; Van Roy, Daley & Briggs, 2015; Pates et al., 2020). Moreover,
no radiodonts were discovered in the Sandu Formation. So, the radiodonts are unlikely
to have caused the injuries in the Shergoldia laevigata specimen. Gnathobases have a slight
size gradation of spines along the gnathal edge (Stein, 2013), or a saw-toothed pattern
with spines of alternating sizes (Bicknell et al., 2018a). These spines may caused smaller
injuries, that is missing one or two separate thoracic segments, on the edges of trilobites.
The arthropods Aglaspella sanduensis (Lerosey-Aubril, Ortega-Hernández & Zhu, 2013)
and Glypharthrus trispinicaudatus, Mollisonia-like arthropods, unnamed aglaspidid-like
arthropods, Perspicaris-like bivalve arthropods (Zhu et al., 2016; Lerosey-Aubril, Zhu &
Ortega-Hernández, 2017), and some larger trilobites (Zhu, 2005) were discovered in the
Sandu Formation at the same site. Therefore, the predator who attacked the studied
Shergoldia laevigata specimen may be one of these arthropods.

Interference with the molting of trilobite
Previous studies have reported abundant injured trilobites and presented the possible
identity of the predators, including information about their behavior (Babcock, 1993;
Babcock, 2007; Pates et al., 2017; Bicknell & Paterson, 2018; Bicknell, Paterson & Hopkins,
2019; Pates & Bicknell, 2019). However, there are few direct fossil records showing that
injury has disturbed the molting of trilobites (Šnajdr, 1985). The studied specimen has an
apparent overlap of segments along with the injuries that aremainly present in the posterior
of the cranidium and the front of the thorax, especially in the left part of the exoskeleton.
The anterior margin of the injuried third thoracic segment was covered by the unbroken
second thoracic segment (Figs. 2A–2D), indicating that the injury formed before the overlap
of the segments. Bottom currents can also cause the overlap and even disruption of trilobite
segments, the Sandu Formation formed in a relatively calm environment (Lerosey-Aubril,
Zhu & Ortega-Hernández, 2017), although there are overlapping segments on the exuvia
and carcass of Shergoldia laevigata in the same horizon, their thoracic segments still
maintain imbricated arrangement (Zhu, Hughes & Peng, 2007). There is also overlap of
thoracic segments on the exuvia of uninjured trilobites (Daley & Drage, 2016), but it is
difficult to determine whether it was caused by molting or other abiotic factors. In contrast
to the above two cases, in addition to the overlap of segments in the studied specimen,
the left thoracic segments are presented an interlaced arrangement rather than imbricated
(Fig. 2), which seems not to be caused by bottom currents and is rather likely caused by
the active behavior of trilobite. Moreover, all abnormal arrangements of the segments
appeared near the injury, and the overlapped part of the segments was only located before
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Figure 3 Reconstruction of injury of studied Shergoldia laevigata specimen from the Cambrian
Furongian of Jingxi, Guangxi. (A–B) Predator attack on Shergoldia laevigata, and leading to damage
in the exoskeleton. (C) Shergoldia laevigata drag forward the old shell during molting, because of
the deformation of the exoskeleton. Such condition leads to the overlap of segments and dislocated
arrangement of thoracic segments.

Full-size DOI: 10.7717/peerj.11201/fig-3

the most serious injury (on the third to fourth thoracic segments). It is speculated that
all of the irregular patterns were caused by post-injury molting of Shergoldia laevigata.
Namely, the new exoskeleton could not be smoothly separated from the old one due to
the unbalanced body with injuries (Drage, 2019; Drage et al., 2019). The trilobite dragged
forward the old shell to get rid of the exuvia, which led to the overlap of segments and the
dislocated arrangement of thoracic segments, especially near the injuries (Fig. 3). Some
previous studies have reported cases of failed molting of a trilobite (McNamara & Rudkin,
1984) and other ecdysozoans García-Bellido & Collins, 2004; Drage & Daley, 2016; Yang
et al., 2019), in which the new exoskeletons were preserved under the old exuvia. However,
none of the fragments of the new exoskeleton were found under or near the exuvia of
Shergoldia laevigata, which implies that the molting might not have failed. Although the
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injuries complicated the molting process, it was successful and the molted trilobite moved
away.

CONCLUSIONS
The Shergoldia laevigata specimen has substantially shorter pleural segments of the third
to fourth and seventh thoracic segments, with signs of lightly healing in the injuries
incurred during a sub-lethal predator attack. The degree of healing in both injuries and the
distribution of the injuries show that they may have been caused in the same inter-molt
stage. Based on the morphology of the injuries and the spatial and temporal distribution
of predators, the predatory structure may have been the spines on the gnathobase or
gnathobase-like structure of a larger arthropod. The conspicuous overlapping of the
segments and dislocated arrangement of the thoracic segments, especially in the left
pleural region and near the injuries, shows that the injured S. laevigata encountered
certain obstacles during molting. The trilobite dragged the old exuvia forward, which led
to the irregular arrangement of the segments. Such configuration can demonstrate that
even provisionally healed injury can cause certain complication of the molting process in
trilobites.
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