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Metabolic reprogramming is a common cancer cell phenotype as it sustains growth and

proliferation. Targeting metabolic activities offers a wide range of therapeutic possibilities

which are applicable to acute myeloid leukemia (AML). Indeed, in addition to the

IDH1/2-mutated AML model which established the proof-of-concept for specifically

targeting metabolic adaptations in AML, several recent reports have expanded the scope

of such strategies in these diseases. This review highlights recent findings on metabolic

deregulation in AML and summarizes their implications in leukemogenesis.
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Acute myeloid leukemias (AMLs) are characterized by abnormal proliferation/survival of
hematopoietic progenitors blocked in their differentiation. Recent advances in AML biology,
especially in the field of their mutational landscape led to the development of targeted therapies
(1). It was unexpected however that the targeting of metabolic pathways could become a potent
therapeutic strategy for AML, since such deregulations are highly common in various cancer
cells (2–4). However, an improved understanding of the implication of metabolism deregulation
in leukemogenesis has led to this renewed interest. The identification of IDH1/2 mutations in
AML cells represented the proof-of-concept that deciphering metabolic abnormalities could lead
to therapeutic applications in AML. These mutations lead to the abnormal conversion of α-
ketoglutarate (α-KG) to (R)-2-hydroxyglutarate [(R)-2HG] which acts as an oncometabolite by
inhibiting functions of α-KG-dependent enzymes such as TET family (5). These mutations induce
therefore alterations in the pattern of histone modifications and aberrant DNAmethylation (6) but
have also significant impact on cellular metabolism such as inhibition of the activity of cytochrome
c oxidase (COX) in the mitochondrial electron transport chain (ETC) (7) or increased glutamine
dependency of AML cells for survival (8). Targeting IDH1/2 mutations in AML is a promising
metabolic targeted therapy since inhibitors of mutant-IDH1/2 enzymes induce hematological
responses in patients with relapsed/refractory AML by promoting the differentiation of leukemic
cells (9, 10). As finding a good therapeutic window between cancer cells and normal cells for the
safe administration of new compounds remains a major challenge in the development of therapies,
targeting metabolic addictions which are specific of leukemic cells or mechanisms underlying
these processes clearly represent a feasible option that may work as an AML therapy. However,
metabolism also regulates key processes in normal cells, including hematopoiesis.
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This review will therefore highlight the implication of
metabolism in normal hematopoiesis and then will focus
on the pathways recently reported to be deregulated and
potentially targetable in AML.

METABOLIC REGULATION OF
NORMAL HEMATOPOIESIS

Metabolism supports a set of flexible processes that allow
energy production in cells according to their needs which are
highly dependent on their state of proliferation, differentiation
or quiescence. Hematopoietic stem cells (HSCs) are totipotent
cells which ensure the maintenance of the blood system. The
balance between HSC self-renewal and lineage differentiation
is mainly regulated by transcription factors and cytokines but
cell metabolism is also a key player of these processes. In
order to maintain their survival and their quiescent state in
the hypoxic niche, HSCs adapt their metabolism (11). This low
oxygen microenvironment stabilizes hypoxia inducible factors
(HIF-1s) and promotes utilization of glycolysis rather than
oxidative phosphorylation (OXPHOS) through transcriptional
activation of genes that regulate glucose uptake (Glut1) and
pyruvate disposal (LDHA and Pdk1). This glycolytic phenotype
of HSCs appears to be dependent upon transcriptional activation
of HIF-1α through the HSC transcription factor MEIS1 (12).
Although ATP generation derived from glycolysis is limited
compared to OXPHOS, this metabolism is sufficient to meet
the low energy demand of HSCs and is also crucial for
their maintenance in a quiescent and functional state. Indeed,
given that mitochondrial OXPHOS is a high source of free
radical production, relying mostly on glycolysis also prevents
HSCs from cellular damage mediated by mitochondria derived
ROS. This preferential utilization of glycolysis toward OXPHOS
is also mediated by HIF-1. Indeed, HIF-1 stimulates the
expression of pyruvate dehydrogenase kinase (PDK) 2 and
4 which actively prevent pyruvate from entering the TCA
cycle and engaging mitochondrial OXPHOS through inhibition
of pyruvate dehydrogenase (PDH) (13). It has also been
reported a crucial role of PTPMT1, a PTEN-like mitochondrial
phosphatase, in the metabolic regulation of HSCs function
as its inhibition enhances glycolysis, attenuates OXPHOS and
significantly increases HSCs number (14). In this way, blocking
glycolysis by deleting enzymes such as PKM2 and LDHA
induced a consequent elevated mitochondrial respiration and
efficiently abolished HSCs maintenance (15). Others recent
findings which revealed that steroid receptor coactivator-3
(SRC-3) is essential for maintenance of HSCs homeostasis via
repression of mitochondrial biogenesis also corroborated the
need for HSCs to suppress mitochondrial OXPHOS for the
maintenance of their quiescence and self-renewal capacities
(16). However, although decreased mitochondrial activity in
HSCs is clearly associated to preservation of HSCs functions
(17–19), functional mitochondria are also required for HSCs
maintenance. Indeed, HSCs survival in a mouse mutant with
inducible deletion of the mitochondrial protein-encoding SdhD
gene which encodes one of the subunits of the mitochondrial

complex II (MCII) is impaired (20). Similarly, fumarate hydratase
(Fh1), a key component of the mitochondrial tricarboxylic
acid (TCAA) cycle and cytosolic fumarate metabolism is also
essential for HSCs maintenance (21). Interestingly, fatty acid
oxidation (FAO) seems to be a key metabolic process which
determines cell fates of HSCs and regulates the balance between
maintenance and commitment in dividing cells. FAO is regulated
inHSCs by the promyelocytic leukemia (PML) tumor suppressor,
protein which activates a family of nuclear receptors called
peroxisome proliferator-activated receptors (PPAR). Inhibition
of FAO induces HSCs loss and accumulation of committed
progenitors (22). This FAO inhibition-mediated differentiation
of HSCs is linked to a decrease of asymmetric division in favor
of symmetric divisions producing two committed progenitors
instead one committed daughter cell and one daughter cell
with self-renewal potential, leading therefore to HSC exhaustion.
These metabolic processes implicated in cell fate decisions of
HSCs are also under the control of bioenergetics sensors which
activate signaling pathways according to nutrient availability.
For instance, LKB1 and its downstream target AMPK maintains
HSCs potential by inducing the transcription of genes encoding
FAO enzymes (23).

Consistently with the important role of the balance
between different metabolic pathways in the regulation of
HSC maintenance or differentiation, metabolic dysfunctions
are also involved in leukemogenesis (Figure 1). Metabolomics
and transcriptomics analysis identified significant differences
in the serum metabolic phenotypes and in the metabolic
gene expression profile between AML and normal cells,
implicating glycolysis/gluconeogenesis, TCA cycle, biosynthesis
of proteins and lipoproteins or metabolism of fatty
acids (24–31).

DEREGULATION OF THE GLYCOLYTIC
PATHWAY IN AML

Glycolysis is known to be increased in a high range of tumors
cells since Otto Warburg observed the capacity of these cells
to favoring production of lactate rather than allowing pyruvate
entry into the TCA cycle for producing high rate of ATP
(3, 4). Accordingly, glycolysis is increased in most cases of
AML (27, 32). High glycolytic activity is implicated in the
leukemogenesis driven by BCR-ABL and MLL-AF9 oncogenes
since leukemia initiation is inhibited by deleting genes encoding
either PKM2 or LDHA (15). Interestingly, leukemia-initiating
cells are dependent on a high glycolytic flux mediated by AMPK
activation and AMPK deletion suppresses leukemic cells by
compromising the glucose flux through a reduced expression
of the GLUT1 transporter, and by increasing oxidative stress
and DNA damage (33). A high glycolysis flux also correlates
with a decreased level of autophagy leading to a more aggressive
leukemias in vivo (34). Increased glycolysis is also associated with
drug resistance (27, 35), notably through the cytosolic export of
PCNA (proliferating cell nuclear antigen) which interacts with
nicotinamide phosphoribosyltransferase (NAMPT), a protein
involved in NAD biosynthesis and coordinates glycolysis and
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FIGURE 1 | Schematic representation of the deregulated metabolic pathways in AML. Metabolic pathways are indicated in red and the cellular processes regulated

by metabolic pathways are denoted in blue. α-KG, α-ketoglutarate; ASS1, argininosuccinate synthetase-1; Arg, arginine; CAT-1, cationic amino acid transporter-1;

CS, citrate synthase; CT2, carnitine transporter 2; CTP1, carnitine palmitoyl transferase 1A; DNMT1, DNA methyltransferase 1; FABP4, fatty acid binding protein-4;

FAs, fatty acids; FLT3-ITD, FLT3 receptor with internal tandem duplication mutation; FRU, fructose; GAC, glutaminase C; G6PD, glucose-6-phosphate

dehydrogenase; Gln, glutamine; GLU, glucose; GLUT1, glucose transporter 1; GLUT5, glucose transporter 5; HK, hexokinase; IDH, isocitrate dehydrogenase; LDHA,

lactate dehydrogenase A; Leu, leucine; PDH, pyruvate dehydrogenase; PFK, phosphofructokinase; PK, pyruvate kinase; PPP, pentose phosphate pathway; Ru-5P,

Ribulose-5-Phosphate; TET, ten–eleven translocation 2; 2- HG, 2-hydroxyglutarate.

survival in chemo-resistant cells (36). Targeting glycolysis may
be therefore a viable strategy for modulating chemo-resistance.

High mTORC1 activity and FLT3-ITD-mediated signaling
sustain glycolysis and render AML cells dependent on this
pathway for survival and sensitive to its inhibition (37, 38).
We described that AML survival relies on glycolysis mainly for
sustaining a high flux of glucose through the pentose phosphate
pathway, making glucose-6-phosphate dehydrogenase (G6PD)
a promising therapeutic target (37). G6PD overexpression
correlates with an adverse prognosis in AML and anti-leukemic
activity has been observed with the G6PD inhibitor 6-AN
(37, 39). The inactivation of G6PD was also identified as a
potent therapeutic strategy for FLT3-ITD-mutated AML, due to
a synthetic lethality with FLT3 inhibitors (40).

Moreover, the capacity of AML cells to adapt their metabolism
to an environment that they modify itself through their
high rate of glucose consumption is important. Glucose
insufficiency mediated by AML proliferation in the bone
marrow micro-environment (BMME) forces AML cells to up-
regulate GLUT5 transporter expression, allowing them to use
fructose as alternative substrate for glycolysis. A blockage of

fructose uptake reduces leukemogenesis and potentiates the
cytotoxicity of cytarabine (41). Finally, leukemic cells also
manage their increased need for glucose independently of
intrinsic mechanisms. By inducing a “diabetic state” in the
host through regulation of different mechanisms converging
to the suppression of insulin secretion, they allow an increase
availability of glucose to drive their own growth. The restoration
of normal glucose regulation is a suggested strategy to suppress
the systemic growth of leukemic cells (42).

Glycolysis is thus a frequently upregulated metabolic pathway
to which AML cells become dependent for their growth,
creating therefore a metabolic vulnerability which can be
therapeutically exploited.

DEREGULATION OF OXIDATIVE
PHOSPHORYLATION AND FATTY ACID
OXIDATION METABOLISM IN AML CELLS

Although oxidative phosphorylation (OXPHOS) is the most
efficient mechanism for energy generation, its relative slowness
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and propensity to induce a high level of ROS production
during mitochondrial ATP production leads cancer cells to
mainly rely on aerobic glycolysis. Notably however, cancer
cell subsets with different dependencies in terms of energy-
generating pathways can coexist within tumors. Accordingly,
leukemic stem cells (LSCs), in contrast to normal hematopoietic
stem cells (HSCs), are deficient in glycolysis use and depend
upon BCL2-mediated oxidative respiration for maintenance,
suggesting that a selective eradication of these cells may be
possible by targeting OXPHOS with BCL2 inhibitors (43).
Direct targeting of OXPHOS with metformin also induces
AMPK-independent apoptosis by decreasing electron transport
chain complex I activity (44). IACS-010759, a small-molecule
inhibitor of complex I of the mitochondrial ETC was shown
to inhibit AML cells growth in vivo and is currently evaluated
in relapsed/refractory AML (NCT02882321) (45). Furthermore,
AML cells have a lower spare reserve capacity in the respiratory
chain and are more susceptible to oxidative stress compared with
normal hematopoietic cells. This vulnerability could be therefore
therapeutically exploited by compounds such as the fatty acid
palmitate which induce oxidative stress and selective AML cell
death (46).

Plasticity of cancer cells allowing metabolic adaptations
to balance between glycolysis and oxidative metabolism is
frequently observed. In AML, mTORC1 inhibition induces
metabolic reprograming from a glycolytic to an oxidative process
by promoting the TCA cycle through an increase of acetyl-
CoA (instead of lactate) production from pyruvate. This leads
to a switch of AML cells sensitivity from glycolysis to OXPHOS
inhibition, which was therapeutically exploited by concomitant
mTORC1 and OXPHOS inhibition (37). Metabolic adaptations
likely differ between AML sub-types and also within leukemic
cells from the same patient, and could be at the origin of chemo-
resistance. Indeed, under cytarabine treatment, drug-resistant
AML cells are characterized by a high OXPHOS status and
targeting their mitochondrial functions induces an energetic shift
toward low OXPHOS and markedly enhances the anti-leukemic
effects of cytarabine (47). High OXPHOS activity in AML cells
exposed to chemotherapy is supported by an increase of FAO (47)
but also depends on PDH activity (48).

The FAO pathway contributes to the plasticity of cancer cell
metabolism by allowing ATP production through OXPHOS,
the de novo synthesis of lipid membrane components and the
elimination of potentially toxic lipids (49). In AML, carnitine
palmitoyl transferase 1A (CPT1A), which catalyzes the rate-
limiting step of FAO, and carnitine transporter CT2 (SLC22A16)
are overexpressed and constitute novels targets for a subset
of AML (50, 51). Furthermore, AML cells harbor low levels
of prolyl-hydroxylase 3 (PHD3) which represses FAO by
activating ACC2 during nutrient abundance. Hence, low PHD3
levels in AML cells maintain a high FAO levels regardless of
external nutrient availability to drive AML cell proliferation
(52). Blocking FAO with ST1326, a specific CPT1A inhibitor,
or with avocatin B reduces cell growth and induces AML
cells apoptosis without affecting normal CD34+ hematopoietic
cells (53, 54). Furthermore, as FAO promotes AML survival
by negatively regulating the activity of the Bak-dependent

mitochondrial permeability transition, combination with BCL2
inhibitors may improve the susceptibility of AML cells to FAO
inhibition (55).

Another possible mechanism for targeting lipid metabolism in
AML is to restore the level of Dendrogenin A (DDA), a dropped
mammalian cholesterol metabolite. DDA is a partial agonist
on liver-X-receptor (LXR) which induces lethal autophagy in
vitro and in vivo in AML independently of their molecular
and cytogenetic characteristics (56). Sphingolipids play a critical
role in AML in the regulation of the signal balance between
cell proliferation/survival and death. Sphingosine 1-phosphate
(S1P) and ceramide, two different central bioactive lipids, have
opposite roles in regulating cancer cell death and survival.
The overexpression of acid ceramidase (AC) which catalyzes
the breakdown of ceramide to sphingosine, the precursor for
S1P, contributes to AML cell proliferation via the regulation
of sphingolipid levels and MCL-1. Targeting AC with the
LCL204 compound induces AML cell apoptosis and reduces
leukemogenesis in vivo (57). AML cells are also sensitive
to sphingosine kinase 1 (SPHK1) inhibition, a constitutively
activated enzyme which generates S1P (58–60). Interestingly,
as a decrease in MCL1 levels is implicated in the SPHK1
inhibition mediated-apoptosis of AML cells, combination of
sphingolipids targeted therapy with BH3 mimetics could be
beneficial (58). Finally, ceramide generation is inhibited in
AML cells harboring FLT3-ITD. The restoration of ceramide
generation via ceramide synthase 1 (CerS1) is a key mechanism
implicated in AML cell death induced by FLT3 TKI, and also
provides an opportunity to overcome resistance to such targeted
therapy (61).

Altogether, OXPHOS and mitochondrial ATP production are
keymetabolic processes to which different frequently deregulated
metabolic pathways such as FAO converge. Directly targeting
OXPHOS or through indirect means by blocking upstream
metabolic pathways constitute therefore an attractive therapeutic
strategy whose efficiency could be increased by the concomitant
use of BH3 mimetics.

TARGETING THE MICROENVIRONMENT
SUPPORTING AML METABOLISM

Special attention has recently been paid to the metabolic
interactions of AML cells with the BM ME. In a murine
model of blast crisis of chronic myeloid leukemia (CML),
Ye et al. identified a subpopulation of LSCs that expressed
the fatty acid transporter CD36, which is enriched in the
adipocyte tissue, allowing these cells to become chemo-resistant.
Mechanistically, LSCs induce lipolysis in adipocytes which,
in turn, creates a ME that supports LSCs maintenance by
fueling their FAO (62). Notably, AML cells enhance lipolysis
of adipocytes by upregulating the levels of fatty acid binding
protein-4 (FABP4). Hence, fatty acids released by adipocytes
drive FAO in AML cells in a CPT1a-dependent manner which
facilitates their survival (63, 64). The FABP4 mRNA level is
also increased in AML blasts and a knockdown of FABP4 in a
Hoxa9/Meis1-driven murine leukemia model prolongs survival
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(63). Furthermore, FABP4 up-regulation induces IL-6/STAT3-
mediated DNMT1 overexpression and the silencing of the
p15INK4B tumor-suppressor gene in AML cells, thus confirming
that FABP4 disruption may be a viable therapeutic strategy
(65). For unknown reasons, this interplay with adipocytes is
specific to AML cells. The BMME also supports AML cell
metabolism through the transfer of mitochondria, which rescue
respiration and cell survival after exposure to chemotherapy
(66). AML cells, through the NADPH oxidase-2 (NOX2)-
dependent generation of ROS, stimulate the formation by
BM stromal cells of tunneling nanotubes with the membrane
of AML cells. The inhibition of NOX2, by preventing
mitochondrial transfer, increases AML apoptosis and improves
AML survival in vivo whilst sparing non-malignant CD34+ cell
survival (67).

TARGETING THE AMINO-ACID ADDICTION
OF AML CELLS

With glucose, glutamine is the main nutrient source for the
growth/survival of cancer cells. Glutamine supports tumor
growth through its transformation to α-KG, which feeds the
TCA cycle, and by contributing to leucine import into the cells,
which activates the amino-acid/Rag/Rac/mTORC1 signaling
pathway (68). L-asparaginase (L-ase), in addition to its ability
to reduce asparagine plasma levels via deamination, also has
glutaminase activity which is required for its anti-leukemic
activity in AML (69). Glutamine removal or knockdown
of its high-affinity transporter SLC1A5 inhibits mTORC1
signaling and induces apoptosis (69). Glutamine also controls
mitochondrial OXPHOS and blocking its conversion to
glutamate by specific inhibition of Glutaminase C with the
CB-839 compound shows anti-leukemic activity (70–72). This
strategy is currently being tested in AML in a clinical trial
(NCT02071927). Furthermore, as glutaminolysis inhibition
activates mitochondrial apoptosis, a synergetic effect is observed
with BCL2 inhibitors (71). A previous CRISPR/Cas9 lethality
screen of MOLM-13 AML cells treated with an FLT3 TKI also
revealed that increased glutaminolysis mediates TKI resistance
(73). This relevant metabolic dependency of FLT3-ITD+ AML
cells on glutaminolysis is targetable with cooperation of FLT3-
ITD and glutaminase inhibitors to prolong survival in mice with
AML (74).

AML cells are also dependent on exogenous arginine due
to their deficiency in the argininosuccinate synthetase-1 (ASS1)
enzyme, which allows cells to synthesize arginine from citrulline.
This deficiency confers a proliferative advantage to cancer cells
but also a selective addiction of these cells to the extracellular
availability of this amino acid which can be exploited by arginine-
depleting agents such as pegylated arginine deiminase (ADI-
PEG20) (75). Clinical trials are ongoing (NCT01910012 and
NCT02875093) in this regard but have thus far demonstrated
the capacity of ADI-PEG20 to induce complete remissions or
the control of the disease in only some patients suggesting that
ASS deficiency is not a sufficient condition for response to ADI-
PEG20 monotherapy in AML (76).

ERADICATION OF LSCS BY TARGETING
THEIR METABOLIC DEPENDENCIES

A crucial field of research is to find how to eradicate LSCs
by targeting metabolic deregulations. As mentioned earlier,
LSCs harbor a selective dependence on OXPHOS which makes
them sensitive to BCL2 inhibition (43) whereas HSCs mainly
rely on glycolysis (12–15). This greater reliance of LSCs on
OXPHOS can be exploited by targeting ClpP, a mitochondrial
protease overexpressed in a subset of AML and stem cells
that interacts with mitochondrial respiratory chain proteins
and metabolic enzymes (77). A proteomic analysis of LSCs
has also revealed a high level of branched-chain amino acid
transaminase 1 (BCAT1), a critical negative regulator of the
intracellular α-KG level, which leads to a DNA hypermethylated
state through altered TET activity, therefore mimicking the
effects of IDH1/2 mutations (78). Finally, metabolomic studies
have revealed a mandatory increase in amino acid metabolism
in LSCs. In contrast to non-LSCs and normal HSCs, LSCs
are unable to use another metabolic process such as FAO
to maintain a sufficient level of OXPHOS for survival in a
context of amino acid starvation (79). This lack of metabolic
flexibility is therefore an attractive target for developing specific
therapies against LSCs. This concept was confirmed in older
patients with AML, in which the combination of venetoclax
with azacitidine eradicated LSCs by decreasing amino acid
uptake, which explains the clinical benefit observed with this
strategy (80).

CONCLUSION

Metabolic pathways are deregulated in AML cells and play a
critical role in leukemogenesis, contributing to chemoresistance
and disease relapse. These mechanisms constitute therefore
potent targets for AML treatment. However, metabolic
abnormalities are multiple and heterogeneous among AML
patients. Furthermore, the high plasticity of AML cells that
enables them to adapt their metabolism and ensure their survival
under selective inhibition of some pathways, and interactions
of these cells with the BMME supporting their metabolic
pathways, must be taken into account in the development of
therapeutic strategies. Targeting specific metabolic addictions
of leukemic cells must be privileged. In this regard, a very
promising strategy is the synergistic effect observed with BCL2
inhibitors and hypomethylating agents (80, 81). Given that
the anti-leukemic activity of these compounds has already
been demonstrated, a combination of these agents with the
inhibition of specific metabolic pathways converging at the
mitochondria is likely to be actually the most potent strategy
for AML.
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