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Abstract 

Background: Bulbus Fritillariae Cirrhosae (BFC) is an endangered high-altitude medicine and food homology plant 
with anti-tumor, anti-asthmatic, and antitussive activities as it contains a variety of active ingredients, especially 
steroidal alkaloids. Bulbus Fritillariae Thunbergia (BFT) is another species of Fritillaria that grows at lower altitude areas. 
Production of plant-derived active ingredients through a synthetic biology strategy is one of the current hot topics in 
biological research, which requires a complete understanding of the related molecular pathways. Our knowledge of 
the steroidal alkaloid biosynthesis in Fritillaria species is still very limited.

Results: To promote our understanding of these pathways, we performed non-target metabolomics and transcrip-
tome analysis of BFC and BFT. Metabolomics analysis identified 1288 metabolites in BFC and BFT in total. Steroidal 
alkaloids, including the proposed active ingredients of Fritillaria species peimine, peimisine, peiminine, etc., were 
the most abundant alkaloids detected. Our metabolomics data also showed that the contents of the majority of the 
steroidal alkaloids in BFC were higher than in BFT. Further, our comparative transcriptome analyses between BFC and 
BFT identified differentially expressed gene sets among these species, which are potentially involved in the alkaloids 
biosynthesis of BFC.

Conclusion: These findings promote our understanding of the mechanism of steroidal alkaloids biosynthesis in Fritil-
laria species.
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Background
Fritillaria (Liliaceae) is a perennial herb genus with more 
than 130 species found in North America, the Mediterra-
nean, and Asia [1]. Many species of Fritillaria have been 
used as herbal remedies in many countries’ folk medicines 
for a long history [2, 3]. Steroidal alkaloids are specialized 
metabolites found mainly in the families of Liliaceae [4]. 
In China, the dried bulbs derived from various Fritillaria 
species (called "Beimu" in Chinese) are exploited as medi-
cine and food homology plants because of their anti-tumor, 
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anti-asthmatic, and antitussive activities [5–7]. Among the 
different species of Fritillaria, Bulbus Fritillariae cirrhosae 
(BFC) and Fritillariae Thunbergia (BFT), which are called 
“Chuan-Bei-Mu” and “Zhe-Bei-Mu” in Chinese, and dis-
tributed at different altitudes, are considered as two most 
valuable species for their superior therapeutic effects on 
cough and asthma, compared with other Fritillaria spe-
cies [8] (More than 100 kinds of Chinese patented medi-
cines use BFC as the raw material [9]. BFC can be derived 
from six original plants, Fritillaria cirrhosa D.Don (Lili-
aceae), Fritillaria wabuensis (S.Y.Tang et S.C.Yue) Z.D.Liu, 
S.Wang et S. C. chen (Liliaceae), Fritillaria unibracte-
ata Hsiao et K.C.Hsia (Liliaceae), Fritillaria przewalskii 
Maxim (Liliaceae), Fritillaria delavayi Franch (Liliaceae), 
and Fritillaria taipaiensis P.Y.Li. (Liliaceae) [5, 10]. Wild 
BFC resources are endangered due to long-term excessive 
mining [11, 12]. The estimated annual market demand for 
BFC is about 2,000 tons, with a gap of 1,900 tons [3]. BFT 
is a member of the geo-authentic crude drugs in Zhejiang 
Province, its production ranks first in the commodity Bul-
bus Fritillaria and has been approved as a national health 
functional food for relieving cough and reducing sputum 
[13]. Steroidal alkaloids are reported to be the main parts 
of BFC that give it its health benefitsBFC [5, 14]. Dissect-
ing the pathways responsible for the BFC alkaloids syn-
thesis is conducive to producing these active ingredients 
in biotechnological manner, especially synthetic biology. 
Until now, many efforts have been made to identify each 
of the enzymes involved in synthesizing the steroidal alka-
loids [15]. However, our understanding of the whole pic-
ture of alkaloid synthesis pathways in BFC is still limited. 
Recently, a few studies have been carried out to investigate 
the molecular mechanisms that control the steroidal alka-
loid biosynthesis in Fritillaria species. For example, Zhao 
et  al. performed transcriptome analysis to map the gene 
expression profile of in vitro regenerated BFC [16]. Kumar 
et  al. identified the essential genes and regulatory tran-
scription factors (TFs) of imperialine biosynthesis in Fritil-
laria roylei Hook using comparative de novo transcriptome 
analysis [17]. The molecular basis of organ-specific expres-
sion of isosteroidal alkaloids biosynthesis in F. roylei Hook 
was investigated by transcriptome analysis [18]. In the 
current study, we conducted the first metabolomics and 
transcriptomics combined analysis to systematically inves-
tigate the characteristics of steroidal alkaloids synthesis in 
the five species of BFC and BFT, another Fritillaria species 

distributed in the lower altitude areas. Our findings from 
the current study promoted our understanding of the 
mechanism of steroidal alkaloids biosynthesis in Fritillaria 
species.

Results
Metabolome data quality analysis
As shown in Fig. 1A-B, while the biological replicates of 
each species clustered in different areas in the PCA anal-
ysis, there was an evident separation between BFC and 
BFT, indicating significant differences in terms of their 
metabolites. A higher PC1 value showed more genetic 
variation among varieties. PC1 and PC2, two principal 
components, were 16.77% and 12.42% in the positive ion 
mode and 17.69% and 11.23% in the negative ion mode, 
respectively.

Comparison of the metabolites between BFC and BFT
A total of 1288 metabolites were detected from BFC and 
BFT by conducting liquid chromatography-tandem mass 
spectrometry (LC − MS/MS) (File S1 and File S2). Alka-
loids, saponins, phenylpropanoids, carboxylic acids and 
their derivatives, flavonoids, and organic acids and their 
derivatives were the most common metabolites.

Differentially accumulated metabolites (DAMs) were 
screened based on fold-change (FC) ≥ 2 or ≤ 0.5 among 
the metabolites with a VIP value > 1 and a P-value < 0.05. 
The results were shown in File S3 and the Venn dia-
grams (Fig.  1C-D). A total of 443 DAMs, including 306 
upregulated and 137 downregulated, were identified 
between F. przewalskii (GS) and F. thunbergii (ZB). Simi-
larly, there were 427 DAMs (108 upregulated and 207 
downregulated) between F. cirrhosa D. Don (JY) and 
F.thunbergii (ZB). 451 DAMs (288 upregulated and 163 
downregulated) were identified between F. delavayi (SS) 
and F. thunbergii (ZB). 419 DAMs (230 upregulated and 
189 downregulated) were found between F. taipaien-
sis (TB) and F. thunbergii (ZB). We also identified 421 
DAMs, including 247 downregulated and 174 upregu-
lated, between F. unibracteata (WB) and F. thunbergii 
(ZB). KEGG enrichment analysis showed that these dif-
ferential metabolites between BFC and BFT were mainly 
enriched in “Metabolic pathways,” “Biosynthesis of spe-
cialized metabolites,” “Biosynthesis of amino acids,” 

(See figure on next page.)
Fig. 1 Principal component analysis of the metabolite quantification and heat map analysis of 11 differential steroidal alkaloid metabolites in BFC 
andBFT. A PCA derived from the LC–MS/MS (ESI-); B PCA derived from the LC–MS/MS (ESI +); C-D Venn diagram depicting the shared and unique 
differentially accumulated metabolites (DAMs) between pairs of BFC and BFT; E The values of differential metabolites were normalized and shown 
as a color scale. The high and low metabolite levels were represented as reddish and blueish scales. (Fritillaria przewalskii (GS), Fritillaria cirrhosa D. 
Don (JY), Fritillaria delavayi (SS), Fritillaria taipaiensis (TB), Fritillaria unibracteata (WB) and Fritillaria thunbergii (ZB))
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Fig. 1 (See legend on previous page.)
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“Aminoacyl-tRNA biosynthesis,” and “Pyrimidine metab-
olism,” etc. (Fig. S1).

Identification of differentially produced alkaloids in BFC 
compared to BFT
To find the significant differential metabolites, the top 
20 differentially (up and down) produced metabolites in 
BFC and BFT were analyzed. The results indicated that 
the primary differential metabolites in six species were 
steroidal alkaloids, tropine alkaloids, pyridines alka-
loids, indole alkaloids, isoquinoline alkaloids, organic 
amines alkaloids, etc. (Table S1). Steroidal alkaloids con-
tained peimine, peimisine, peiminine, jervine, tomati-
dine, solanine, solasonine, solamargine, solasodine, and 
veratramine, as well as two undescribed compounds, 
i.e.edpetiline, and khasianine. As shown in Fig.  1E, the 
content of solamargine, jervine, solanine, solasonine, 
solasodine, edpetiline, khasianine, veratramine, and 
tomatidine in BFC is significantly higher than that in 
BFT. Moreover, the highest contents of these compounds 
were observed in F. delavayi (SS). Nevertheless, peimine 
and peimisine were found to be higher in BFT. There was 
little difference in the content of peiminine between BFC 
and BFT (Table S2).

De novo assembly and functional annotation of BFC 
and BFT unigenes
Eighteen RNA-Seq libraries were constructed and 
sequenced for the six species, designated JY_S1-S3, GS_
S1-S3, SS_S1-S3, TB_S1-S3, WB_S1-S3, and ZB_S1-S3, 
respectively. Overall, each library had an average of 23.43 
million raw reads, ranging from 20.64 million to 26.25 
million (Table S3). Adapters, empty reads, and low-qual-
ity sequences were removed from the raw reads before 
being analyzed for their genetic content. Consequently, 
each library generated an average of 23.02 million clean 
reads, totaling 6.91 Gb in size and approximately 49.71% 
GC content. This study used NCBI-NR, NCBI-NT, 
PFAM, KOG/COG, GO, and KEGG to annotate gene 
function (Fig. S2A). A total of 31,342 genes were anno-
tated via GO clustering analysis. These genes were clus-
tered into three major categories and 43 subcategories, 
including 5 cellular components, 12 molecular functions, 
and 26 biological processes. In the biological process, 
"metabolic process," "biological regulation," and "cellular 
process" are the main functional categories (Fig. S2B and 
File S4).

Twenty-six thousand nine hundred seventy genes were 
annotated for 295 KEGG metabolic pathways in the 
five F. cirrhosa species and F.thunbergii. Among them, 
"Steroid biosynthesis" (55 unigenes), "Ubiquinone and 
other terpenoid-quinone biosynthesis" (102 unigenes), 

"Terpenoid backbone biosynthesis" (131 unigenes), "Dit-
erpenoid biosynthesis" (91 unigenes), and "Sesquiter-
penoid and triterpenoid biosynthesis" (13 unigenes) are 
related to the regulation of alkaloids biosynthesis (Fig. 
S2C and File S4).

Comparative analysis of DEGs between BFC and BFT
DEGs were further identified by comparing five species of 
BFC and BFT. Specifically, 11,577 DEGs, including 6304 
upregulated and 5273 downregulated genes, were identi-
fied between F. przewalskii (GS) and F. thunbergii (ZB). 
Similarly, there were 10,847 DEGs (5139 upregulated and 
5708 downregulated) between F. cirrhosa D. Don (JY) 
and F. thunbergii (ZB), 16,504 DEGs (9054 upregulated 
and 7446 downregulated) between F. delavayi (SS) and 
F. thunbergii (ZB), 19,951 DEGs (10,536 upregulated and 
9388 downregulated) between F. taipaiensis (TB) and F. 
thunbergii (ZB), and 18,018 DEGs (8214 downregulated 
and 9804 upregulated) between F. unibracteata (WB) and 
F. thunbergii (TB) (Fig. S3). The DEGs of BFC and BFT 
bulbs might indicate differences in specialized metabo-
lites accumulation in BFC and BFT.

Comparative functional annotation of identified DEGs 
in BFC and BFT
To further understand the biological activities of these 
genes involved in alkaloid biosynthesis, functional clas-
sifications of DEGs found among bulbs in BFC, and 
BFT were carried out. First, GO clustering analyses 
were adopted to annotate the DEGs function between 
the bulbs of BFC and BFT. We found 3597 GO terms 
enriched in at least one DEG group, and 3208 shared 
GO terms were enriched in all four DEG groups (File 
S5). We compared the enriched biological processes of 
these five DEG groups since we were primarily inter-
ested in producing and accumulating alkaloids. As 
shown in Fig. 2A, alkaloid biosynthetic process, special-
ized metabolite biosynthetic process, C21-steroid hor-
mone metabolic process, sterol biosynthetic process, 
seed development, and reproductive system develop-
ment were enriched in BFC and BFT. In addition, ster-
oid metabolic process, steroid biosynthetic process, 
photosynthesis, and isoprenoid metabolic process are 
also the significantly enriched biological processes with 
the most significant number of DEGs.

Next, KEGG enrichment analysis showed 6 shared 
pathways enriched in all five DEG groups in the top 
20 KEGG pathways (Fig.  2B, File S6). In addition, 
10 enriched KEGG pathways (Fig.  2C, and Fig. S4), 
such as ubiquinone and other terpenoid-quinone 
biosynthesis, terpenoid backbone biosynthesis, iso-
quinoline alkaloid biosynthesis, tyrosine metabo-
lism, and tropane, piperidine, and pyridine alkaloid 
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biosynthesis significantly enriched in BFC. In addi-
tion, steroid biosynthesis, diterpenoid biosynthesis, 
and brassinosteroid biosynthesis were also enriched 
in BFC. These pathways are involved in the biosyn-
thesis of the precursor substances of alkaloids. Fur-
thermore, photosynthesis is also mainly enriched 
in BFC. One of the most significant environmen-
tal elements in plant existence is photosynthesis. It 
is not only a source of energy for plant growth and 
development, but it also serves as a signal to control 
plant growth and development. In most plants, pho-
tosynthesis has an impact on specialized metabolite 

synthesis. The production of alkaloids is influenced 
by photosynthesis [19, 20].

Analysis and identification of candidate genes possibly 
involved in the steroidal alkaloids biosynthesis of BFC
To identify the candidate genes that are possibly involved 
in the steroidal alkaloids biosynthesis pathway in Fritil-
laria species, we built a pathway diagram that included 
the expression heat maps for the structural gene in the 
six Fritillaria species that are predicted to be involved 
in the steroidal alkaloids biosynthesis pathways (Fig.  3). 
Methyl erythritol phosphate (MEP) and mevalonic 

Fig. 2 Comparative analysis of significantly enriched GO and KEGG pathways. A Go Term (BP) (A alkaloid biosynthetic process; B specialized 
metabolite biosynthetic process; C. Steroid metabolic process; D. steroid biosynthetic process; E. C21-steroid hormone metabolic process; F. sterol 
biosynthetic process; G. seed development; H. reproductive system development; I. photosynthesis; J. isoprenoid metabolic process; GS-blue; 
JY-pink; SS-green; TB-yellow; WB-gray); B KEGG enrichment analysis [21, 22]; C 10 enriched KEGG pathways enriched in BFC compared with BFT [23]
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acid (MVA) signaling pathways are essential routes 
involved in the biosynthesis of dimethylallyl diphosphate 
(DMAPP) and isopentenyl diphosphate (IPP), which 
are precursors of steroidal alkaloids [24]. We found that 
Cluster-1034.25709 (predicted to be acetyl-CoA C-acetyl-
transferase, AACT), Cluster-1034.19505 (predicted to 
be 3-hydroxy-3-methylglutaryl-CoA synthase, HMGS), 
Cluster-1034.25580 (predicted to be 3-hydroxy-3-meth-
ylglutaryl-CoA reductase, HMGR), Cluster-1034.9280 
(predicted to be mevalonate kinase, MK), Clus-
ter-1034.31238 (predicted to be 5-phosphomevalonate 
kinase, PMK), and Cluster-1034.34747(predicted to be 
mevalonate 5-diphosphate decarboxylase, MVD), which 
have been reported to participate in the DMAPP/IPP 
synthesis through the MVA pathway in other plants [25], 
were expressed higher in BFC than that in BFT (Fig.  3 
and Table S4). On the other hand, the genes reported 
to be involved in the MEP pathway in other plants [20], 
including Cluster-47351.0 (predicted to be 1-deoxy-D-
xylulose-5- phosphate synthase, DXS), Cluster-47351.0 

(predicted to be 1-deoxy-D-xylulose-5- phosphatere-
ducto-isomerase, DXR), Cluster-1034.20772 (predicted 
to be 2-C-methyl-D- erythritol-4-phosphate cytidylyl-
transferase, MCT), Cluster-1034.34336 (predicted to 
be 4-(cytidine 5-diphospho) -2-C-methyl- Derythri-
tolkinase, CMK), Cluster-1034.12325(predicted to be 
2-C-methyl- erythritol 2,4-cyclodiphosphatesynthase, 
MCS), Cluster-1034.9543 (predicted to be 1-hydroxy-2- 
methyl-2-(E)- butenyl-4-diphosphate synthase, HDS), 
and Cluster-1034.31766 (predicted to be 1-hydroxy-
2-methyl-2-(E)- butenyl-4- diphosphate reductase, HDR) 
were found to be expressed higher in BFT than that of 
in BFC. These findings suggested that the MVA pathway 
and MEP pathway are likely to be responsible for the bio-
synthesis of the key intermediate of steroidal alkaloids in 
BFC and BFT, respectively.

DMAPP/IPP serves as the substrates that undergo a 
cascade of chemical conversions along with the forma-
tion of metabolite intermediates, such as geranyl pyroph-
osphate (GPP), farnesyl pyrophosphate (FPP), squalene, 

Fig. 3 Schematic diagram of fold change in expression level of predicted structural genes in steroidal alkaloids in Fritillaria bulbs between six 
species
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2,3-oxides squalene, and cycloartenol, through terpe-
noid backbone biosynthesis [26]. Farnesyl pyrophosphate 
synthase (FPPS), squalene synthase (SQS), squalene 
monooxygenase (SQE), cycloartenol synthase (CAS), and 
sterol side chain reductase (SSR2) participated in this 
process. By screening the DEGs among the six species, 
we found that the expression level of the candidate genes 
for these enzymes (Cluster-1034.11583, predicted to be 
FPPS; Cluster-1034.11567, predicted to be SQS; Clus-
ter-1034.20716, predicted to be SQE; Cluster-1034.12361, 
predicted to be CAS; Cluster-1034.26653, predicted to be 
SSR2) was higher in BFC, compared with BFT.

Cycloartenol serves as an important substrate for 
cholesterol formation, which is the precursor of ste-
roidal alkaloids. Our analysis found that the candidate 
genes related to the conversion of cycloartenol to cho-
lesterol, including Cluster-1034.5059 (predicted to be 
3-beta-hydroxysteroid-dehydrogenase/decarboxylase, 
3βHSD), Cluster-1034.28671 (predicted to be Cyclopro-
pyl isomerase, CPI), Cluster-1034.18398  (predicted to 
be sterol 14-demethylase, CYP51), Cluster-1034.10024 
(predicted to be sterol C-5 desaturase, C5-SD), and Clus-
ter-1034.21535 (predicted to be 7-dehydrocholesterol 
reductase, 7-DR) gene (Table S4), were expressed higher 
in the BFC than in BFT.

Additional reactions, including hydroxylation, oxida-
tion, transamination, and glycosylation, are involved 
in the downstream steps from cholesterol to different 
types of steroidal alkaloids. The candidate genes, i.e. 
(Cluster-1034.31647, predicted to be steroid 22-alpha-
hydroxylase, CYP90B1), Cluster-1034.23901, pre-
dicted to be Steroid 23-alpha-hydroxylase, CYP90A4), 

(Cluster-1034.31945, predicted to be steroid 26-alpha-
hydroxylase, CYP734A6), (Cluster-1034.19824, predicted 
to be steroid 22,26-alpha-hydroxylase, CYP94N2), (Clus-
ter-21667.1, predicted to be 2-oxoglutarate-dependent 
dioxygenase, AOP2), (Cluster-1034.21424, predicted 
to be UDP-glucose glucosyltransferase, GAME17), and 
(Cluster-50842.0, predicted to be Gamma-aminobutyrate 
aminotransferase, GAME12) were identified in the six 
species. The expression level of these genes was higher in 
BFC than in BFT.

Identification of transcription factors (TFs) possibly 
involved in the biosynthesis of steroidal alkaloids by BFC
We further screened for the transcription factors that 
might be associated with the synthesis of steroid alka-
loids in Fritillaria. In total, 1957 transcripts from RNA-
seq were identified with transcription factor domains, 
which were further categorized into 75 transcription 
factor families, including MYB families (151), AP2/ERF 
(125), C2H2 (117), C3H (97), WRKY (72) and NAC fami-
lies (72), etc. (Fig. 4A). A comparative analysis of the five 
paired transcriptome profiles, JY vs. ZB, GS vs. ZB, SS 
vs. ZB, TB vs. ZB, WB vs. ZB, was conducted to iden-
tify the specific transcriptional factors possibly involved 
in the synthesis of steroidal alkaloids in Fritillaria. We 
found that 9 families of transcription factors, includ-
ing AP2, MYB, NF, C2H2, GARP, NAC, SET, BHLH, and 
C3H, were expressed higher in BFC than in BFT. Among 
these 9 families, AP2, MYB, C2H2, NAC, BHLH, and 
C3H participated in regulating the synthesis of steroidal 
alkaloids reported in other plants. As shown in Fig.  4B, 
11 candidate regulatory genes, including APETALA2 

Fig. 4 Differential expression analysis of predicted transcription factors in BFC and BFT. A Type and number of major differential transcription 
factors; B Heat map analysis of 10 differential regulatory genes between five varieties of BFC and BFT. The values of differential genes were 
normalized and shown as a color scale. The high and low transcription factor expression levels were represented as reddish and blueish scales. 
(Fritillaria przewalskii (GS), Fritillaria cirrhosa (JY), Fritillaria delavayi (SS), Fritillaria taipaiensis (TB), Fritillaria unibracteata (WB) and Fritillaria thunbergii 
(ZB))
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(Cluster-1034.7349), ERF4 (Cluster-1034.15804), DREB1A 
(Cluster-1034.19105), MYBS3 (Cluster-49397.0), MYB44 
(Cluster-1034.20903), MYB-related (Cluster-1034.20351), 
C2H2 (Cluster-1034.36166), STOP1 (Cluster-1034.9437), 
NAC2 (Cluster-1034.25153), PIF4 (Cluster-1034.38121), 
C3HZF (Cluster-1034.17783), were significantly enriched 
in the five species of BFC than in BFT.

qRT-PCR analysis of gene expression
To validate the transcriptome data, we performed qRT-
PCR to analyze the expression of 9 structural genes and 
3 regulatory genes involved in the steroidal alkaloid syn-
thesis pathway in BFC. The results indicated that the 
expression patterns of 12 genes were consistent with 
their transcriptome expression profiles (Fig. S5).

Discussion
Because of its antitussive, anti-inflammatory, and anti-
tumor properties, BFC has long been used as a medicine 
and food homology plant [27, 28]. Its health benefits have 
been attributed to the active ingredients, especially ste-
roidal alkaloids [10, 29]. The resources of wild BFC are 
becoming scarce. Bioengineering might be a feasible way 
to solve this problem [30–32]. However, we must first 
clarify the biosynthetic pathways and genes involved in 
BFC steroidal alkaloids biosynthesis.

Our results from the metabolome analysis showed that 
alkaloid and saponin were the two primary metabolites in 
BFC and BFT. Alkaloids contain steroidal alkaloids, tro-
pine alkaloids, pyridine alkaloids, indoles alkaloids, iso-
quinoline alkaloids, organic amine alkaloids, etc. Apart 
from the previously reported steroidal alkaloids, such as 
peimine, peimisine, peiminine [10, 13, 28], we identified 
two steroidal alkaloids, edpetiline, and khasianine with 
potential therapeutic effects. Zhang et  al. reported that 
edpetiline could alleviate lipopolysaccharide-induced 
inflammation and oxidative stress in RAW264.7 mac-
rophages [33].

Other alkaloids, such as indoles, isoquinoline, tropine, 
and pyridine alkaloids, have been shown to have anti-
inflammatory properties [34–38]. In this study, we also 
found indoles alkaloids (Tryptamine, Tryptophan, Taber-
sonine, and Vindoline), isoquinoline alkaloids (3,4-Dihy-
droxybenzaldehyde, Berbamine, Berberrubine, Lupinine, 
Palmatine, Emetine, and Tetrandrine), as well as tropine 
alkaloids and pyridines alkaloids (pipecolic acid, Nico-
tinic acid, Stachydrine, Ecgonine, Oxysophocarpine, 
Securinine, Pilocarpine, lupinine, and Tropine), in Fritil-
laria species analyzed. The content of these alkaloids is 
higher in BFC than in BFT. These compounds contribute 
to the anti-inflammatory activities of BFC.

Saponins are less studied metabolites of BFC. A 
recent report suggested that saponins contribute to the 

pharmacological activities of BFC [13]. This study found 
that BFC and BFT contained abundant steroid saponins 
and triterpenoid saponins, including timosaponin BII, 
protoClusterscin, astragaloside IV, chikusetsusponin 
Iva, polyphyllin II, polyphyllin VI, timosaponin A-III, 
timosaponin A1, trillin, and liriopemuscaribaily sapo-
nins. Moreover, their contents in BFC were significantly 
higher in F. thunbergii. The discovery of new metabolites 
is helpful to elucidate further the material basis of the 
effect of BFC and BFT. Our data provided new insights 
into understanding the active substances of BFC.

Further differential metabolite analysis showed that 
steroidal alkaloids were the major differentially produced 
alkaloids between and BFC and BFT. We found that 
imperialine, peimine, and edpetiline were rich in BFC [39, 
40]. In contrast, peimisine and peiminine were higher in 
F. thunbergii than in BFC, consistent with the previously 
reported data [41]. According to our data, most of the ste-
roidal alkaloid content in BFC was higher than in F. thun-
bergii, which might be why BFC is more effective than 
BFT. In plants, the terpenoid skeletons are synthesized 
by DMAPP/IPP via the MVA/MEP pathway [42]. In this 
study, six genes predicted to be involved in DMAPP/IPP 
synthesis via the MVA pathway were found to be highly 
expressed in BFC, while another set of genes predicted to 
be involved in the MEP pathway was expressed higher in 
F. thunbergii. Thus, we inferred that the MVA pathway is 
the primary route responsible for DMAPP/IPP synthesis 
in BFC, which is consistent with the results from another 
recent study [17]. On the other hand, the enzymes in the 
MEP pathway are more likely to control how DMAPP/
IPP is synthesized in BFT. We don’t know much about 
the genes involved in the steps after cholesterol that lead 
to the production of steroidal alkaloids in BFC. Steroi-
dal alkaloids can be biosynthesized from cholesterol via 
a series of hydroxylation or oxidation reactions of cho-
lesterol at C-22 and C-26, hydroxylation at C-23, and 
transamination at C-26 [43]. CYP90B1 from Arabidopsis 
thaliana has been reported to catalyze steroid hydroxy-
lation at the C-22 position [44]. CYP90A4 can catalyze 
hydroxylation at C-23 in Oryza sativa L. [45]. CYP734A6 
was reported to mediate a C-26 hydroxylation reaction in 
Solanum lycopersicum and A. thaliana [46]. The steroid 
C-26 hydroxylase/oxidase (CYP94N1) activity was previ-
ously confirmed in Veratrum californicum  [15]. AOP2, 
GAME12, and GAME 17 have been shown to introduce 
the amine group at C-26 of cholesterol, participate in the 
biosynthesis of steroidal glycoalkaloids (SGA) [44]. In the 
present study, we identified three candidate genes (Clus-
ter-1034.31647, Cluster-1034.23901, Cluster-1034.31945) 
with C-22, C23, and C-24 hydroxylase activity. The can-
didate with C-26 hydroxylase/oxidase activity pointed 
to one contig (Cluster-1034.19824). These genes were 
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significantly upregulated in BFC. Thus, we hypothesized 
that the higher expression of CYP90B1, CYP734A6, 
CYP94N2, and CYP90A4 contributes to the accumula-
tion of steroid alkaloids in BFC.

AP2/ERF superfamily has been shown to regulate the 
transcription of genes involved in alkaloid synthesis by 
recognizing various GC-rich boxes in their promoters 
in tobacco and Catharanthus roseus [4]. In this study, 
we identified a couple of candidate transcription factors, 
belonging to AP2/ERF, MYB, C2H2, and bHLH families, 
that were highly expressed in BFC. These transcription 
factors have been shown to directly or indirectly regu-
late the biosynthesis of alkaloids in Fritillaria roylei Hook 
[17, 18, 47, 48].

Conclusion
In summary, we systematically analyzed the primary 
specialized metabolites and the metabolic pathways of 
steroidal alkaloids biosynthesis in BFC by comparing 
them with BFT. Our metabolomics data also showed 
that the contents of the majority of the steroidal alka-
loids in BFC were higher than in BFT. Our comparative 
transcriptome analyses between BFC and BFT identified 
differentially expressed gene sets among these species. 
We identified a series of genes that might be associated 
with alkaloids biosynthesis regulation in Fritillaria spe-
cies. The results from this study would be valuable to 
promote our understanding of the steroidal alkaloids 
biosynthesis pathways.

Materials and methods
Plant materials
The bulbs of the five species of BFC were collected in 
the alpine regions of northwestern China: Fritillaria cir-
rhosa D. Don (Liliaceae) in the city of Kangding (located 
at 30°3′44.9″N, 101°58′3.81″E, altitude 4300  m); Fritil-
laria przewalskii Maxim (Liliaceae) and Fritillaria uni-
bracteata Hsiao et K.C.Hsia (Liliaceae) in Aba Tibetan 
Autonomous Prefecture (located at 31°17′5.53″N, 
102°35′28.99″E, altitude 4200  m); Fritillaria delavayi 
Franch (Liliaceae) in Ganzi Tibetan Autonomous Pre-
fecture (located at 29°35′38.40″N, 101°52′48.30″E, 
altitude 4400  m); Fritillaria taipaiensis P.Y.Li. 

(Liliaceae) in Chongqing, southwestern China (located 
at 31°46′26.61″N, 109°5′58.92″E, altitude 2400 m). Fritil-
laria thunbergii Miq. (Liliaceae) was collected in the city 
of Jinhua (located at 29°9′56.56″N, 120°43′32.27″E, alti-
tude 770 m). The voucher specimens of F. cirrhosa (No. 
F-200725–1), F. przewalskii (No. F-200725–2), F. unibrac-
teata (No. F-200725–3), F. delavayi (No. F-200725–4), 
F. taipaiensis (No. F-200725–5), and F. thunbergii (No. 
F-200725–6) were authenticated by Dr. Qi Zhao (College 
of Food and Biological Engineering, Chengdu Univer-
sity) and deposited in the Engineering Research Center 
of Sichuan-Tibet Traditional Medicinal Plant, Chengdu, 
China. We declare that the research programme com-
plies with relevant institutional, national and interna-
tional guidelines and legislation, and we have permission 
to collect BFC and BFT.

The morphology of bulbs from six varieties is shown 
in Fig.  5. For each species, the bulbs of six individu-
als were randomly collected for metabolic profil-
ing. Three biological replicates of bulb samples from 
each species were frozen in liquid nitrogen and stored 
at − 80℃ for transcriptome sequencing and reverse 
transcription-quantitative polymerase chain reaction 
(RT-qPCR) analyses. Metabolic and transcriptional 
profiling analyses were performed by Novogene Co., 
LTD. (Beijing, China).

Metabolite extraction
Bulb homogenate was reconstituted from 100 mg of each 
sample with prechilled 80% methanol and 0.1% formic 
acid by vortexing after being ground in liquid nitrogen. 
Incubation of the samples on ice for five minutes fol-
lowed by centrifugation for 20  min at 15,000  g (4℃). 
53% methanol was used to dilute the supernatant, and 
the supernatant was centrifuged once more for 20  min 
at 15000 g (4 °C). Analyses with the LC–MS/MS system 
were performed on the resultant supernatant.

UHPLC-MS/MS analysis
Novogene Co., Ltd. (Beijing, China) performed the 
UHPLC-MS/MS analyses with a Vanquish UHPLC sys-
tem and an Orbitrap Q Exactive TM HF mass spectrom-
eter (Germany, Thermo Fisher). A 17-min linear gradient 

Fig.5 Morphological observation of the bulbs of Fritillaria cirrhosa and Fritillaria thunbergii. (From left to right are: Fritillaria cirrhosa D.Don (JY), 
Fritillaria przewalskii (GS), Fritillaria delavayi (SS), Fritillaria taipaiensis (TB), Fritillaria unibracteata (WB) and Fritillaria thunbergii (ZB))
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was used with a flow rate of 0.2 mL/min to inject samples 
onto a 100 × 2.1 mm Hypesil Goldcolumn (1.9 μm). Elu-
ent A (0.1% formic acid in Water) and Eluent B (Meth-
anol) were used in the positive polarity mode. Eluent 
A with 5  mM ammonium acetate (pH 9.0) and B with 
methanol was used in the negative polarity mode. It was 
decided that the following gradient of solvent concentra-
tions would be used: 2% B, 1.5 min; 2% -100%B, 12.0 min; 
100% B, 14.0  min; 100–2% B, 14.1  min; 2% B, 17  min. 
We used the Q Exactive TM HF mass spectrometer for 
this experiment, set it to spray voltage mode, and ran at 
a capillary temperature of 320 °C with a sheath gas flow 
rate of 40 arb. We also used an aux gas flow rate of 10 arb.

Metabolome analysis
To evaluate and validate the differences and reliability of 
metabolites in the samples, principal component analysis 
(PCA) was used. To search for differential metabolites, 
significant difference criteria [variable importance in 
projection (VIP) ≥ 1 and t-test p < 0.05] were employed. 
The Kyoto Encyclopedia of Genes and Genomes (KEGG) 
database was used to investigate the function of the dif-
ferential metabolites and metabolic pathways. Differen-
tially accumulated metabolites (DAMs) were screened 
based on fold-change (FC) ≥ 2 or ≤ 0.5 among the metab-
olites with a VIP value > 1 and a P-value < 0.05. The top 
20 differentially (up and down) produced metabolites in 
BFC and BFT were analyzed to find the major differential 
metabolites and steroidal alkaloids. Heat maps were used 
to figure out how the main steroid alkaloids in BFC and 
BFT were different.

RNA Sequencing
Six species’ bulbs were used to extract the total mRNA. 
Each sample’s mRNA library was constructed. The 
index-coded samples were clustered using the TruSeq 
PE Cluster Kit v3-cBot-HS (Illumia) on a cBot Cluster 
Generation System. Each sample had six biological rep-
licates. Raw fastq data (raw reads) was first processed by 
in-house Perl scripts. This step removed adapter, ploy-
N, and low-quality reads from raw data. Simultaneously, 
Q20, Q30, and GC content were calculated. All down-
stream analyses used clean, high-quality data.

Functional annotation and screening of differentially 
expressed genes (DEGs)
These databases used to annotate the gene func-
tion included the Nr (NCBI non-redundant pro-
tein sequences), Nt (NCBI non-redundant nucleotide 
sequences), Pfam (Protein Family), KO (KEGG Ortholog 
database), and GO (Gene Ontology). The DESeq2R 
package was used to compare differential expression 
between two conditions/groups (two biological replicates 

each) (1.20.0). DESeq2 classified genes as differentially 
expressed if their adjusted P-value was less than 0.05. In 
the cluster Profiler R package, gene length bias was cor-
rected before performing GO enrichment analysis on 
differentially expressed genes. Derived from the GO 
database, differentially expressed genes were considered 
to be significant. We used the R package cluster Profiler 
to perform KEGG pathway enrichment of differentially 
expressed genes. We found the GO terms or KEGG path-
ways involved alkaloids biosynthesis that was significantly 
enriched in DEGs compared to BFC and BFT. The biosyn-
thetic route for BFC steroidal alkaloids was hypothesized 
based on an analysis of the chemical structures of several 
kinds of steroid alkaloids and the role of their biocatalytic 
enzymes in functionalizing the steroid skeleton. Struc-
tural genes associated with alkaloid synthesis were identi-
fied by comparing significantly different genes. TFs genes 
upregulated in two or more of the five BFC species were 
selected to regulate the alkaloid synthesis.

Quantitative Reverse Transcription Polymerase Chain 
Reaction (qRT-PCR) for Verification of the RNA-Seq Data
qRT-PCR was used to validate the expression levels 
of the candidate genes in the proposed biosynthetic 
pathway of steroidal alkaloids. The primer sequences 
were shown in Supplemental Table S5. Ct values were 
calculated from 3 biological replicates and 3 technical 
replicates. The Ct value determined the expression 
level of the reference genes, and the expression level 
of the reference gene was calculated by 2 − △△Ct.
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