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Abstract 

The major causes of failure of drug discovery compounds in clinics are the lack of efficacy and toxicity. To 
reduce late-stage failures in the drug discovery process, it is essential to estimate early the probability of 
adverse effects and potential toxicity. Cardiotoxicity is one of the most often observed problems related to 
a compound's inhibition of the hERG channel responsible for the potassium cation flux. Biomimetic HPLC 
methods can be used for the early screening of a compound's lipophilicity, protein binding and 
phospholipid partition. Based on the published hERG pIC50 data of 90 marketed drugs and their measured 
biomimetic properties, a model has been developed to predict the hERG inhibition using the measured 
binding of compounds to alpha-1-acid-glycoprotein (AGP) and immobilised artificial membrane (IAM). A 
representative test set of 16 compounds was carefully selected. The training set, involving the remaining 
compounds, served to establish the linear model. The mechanistic model supports the hypothesis that 
compounds have to traverse the cell membrane and bind to the hERG ion channel to cause the inhibition. 
The AGP and the hERG ion channel show structural similarity, as both bind positively charged compounds 
with strong shape selectivity. In contrast, a good IAM partition is a prerequisite for cell membrane 
traversal. For reasons of comparison, a corresponding model was derived by replacing the measured 
biomimetic properties with calculated physicochemical properties. The model established with the 
measured biomimetic binding properties proved to be superior and can explain over 70% of the variance of 
the hERG pIC50 values. 

©2021 by the authors. This article is an open-access article distributed under the terms and conditions of the Creative Commons 
Attribution license (http://creativecommons.org/licenses/by/4.0/). 
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Introduction 

It has been recognised that the physicochemical properties of drug candidates can be related to the late-

stage attrition of compounds in the drug development process. The early problems with bioavailability and 

absorption have been successfully improved by optimising solubility and permeability [1]. Recently, toxicity 

and the lack of efficacy have been identified as the major cause of compound attrition in clinics. Together, 

preclinical toxicity and adverse events account for approximately one-third of all attrition cases [2]. 

http://dx.doi.org/10.5599/admet.995
https://doi.org/10.5599/admet.995
http://www.pub.iapchem.org/ojs/index.php/admet/index
mailto:chrisxp3@hotmail.com
http://creativecommons.org/licenses/by/4.0/


Stergiopoulos, Tsopelas and Valko  ADMET & DMPK 9(3) (2021) 191-207 

192  

Cardiotoxicity is one of the major causes of concern during clinical trials together with liver and central 

nervous system (CNS) toxicity [3].  It accounts for approximately 27 % of drug development failures, and it 

does not seem to be restricted to specific high-risk therapeutic areas [4]. One particular focus of 

cardiovascular adverse effects has been drug-induced arrhythmia or "proarrhythmia" as a consequence of 

an increased recognition of a relationship between drug-induced QT interval prolongation and Torsades de 

Pointes (TdP) [5]. TdP is a dangerous type of proarrhythmia, described as a rare ventricular tachycardia 

with potential sudden cardiac death, which has led to approximately one-third of all drug withdrawals 

between 1990 and 2006 [4]. Furthermore, 15 % of drugs still on the market can cause QT prolongation, and 

4 % are associated with TdP arrhythmia risk. Therefore, it is important to recognize a compound’s 

cardiotoxicity potential early in the drug discovery process, not only because of the associated loss of 

human life or health, but also because of the enormous financial loss in investment and future revenue 

potential [6]. 

The cardiac action potential is regulated by the electrical current flows of ions across cardiomyocyte 

membranes. Many drugs can bind to ion channels, block ionic flow and disrupt the regulation of the action 

potential [7]. Upon blockade, the action potential will rest longer, which results in an increased duration of 

the relative QT interval that can be observed in electrocardiograph (ECG) traces. Disturbing the QT interval 

may lead to instability in the heart rhythm [8]. Patients with long QT syndrome (LQTS) exhibit a significant 

predisposition for the TdP type's cardiac arrhythmia [9]. A prolongation of the cardiac action potential and 

the QT interval has been associated with loss of function or drug-trapping inside the central cavity of the 

Kv11.1 [10] potassium channel, which is encoded by hERG (human Ether-a-go-go Related Gene) and carries 

the rapid delayed rectifier potassium current (IKr) [7,11]. This channel has a tetrameric structure formed by 

co-assembly of four identical subunits, each composed of six helical transmembrane domains (denoted S1–

S6). The S4 domain contains six positive charges, typical for voltage-gated K
+
 channels [12]. The channel 

pore is asymmetrical, and its dimensions change depending on its state (open-closed-inactivated). The 

hERG channel has been shown to interact with a wide range of drugs owing to the unique shape of the 

ligand-binding site, its hydrophobic character and the large vestibule of the channel [13,14]. The risk 

tolerance for QT prolongation may vary significantly depending on the dose and indication of the drug. 

Documented hERG-blocking activity reduces the value of a molecule, as it increases the risk of clinical 

failure. It has also been estimated that about 60 % of drugs in development exhibit hERG block [11]. 

Various attempts have been made to predict the hERG inhibition potential of drugs in silico to avoid the 

synthesis of risky molecules [15]. When studying therapeutic areas and the safety margins regarding the 

free therapeutic plasma concentration of drugs [16], it was found that a wide variety of drugs, including 

antiarrhythmic, antibacterial, antipsychotic and pain-killer drugs showed potential risk. As toxicity, just like 

potency, is dose-dependent, it is essential to relate the hERG inhibitory concentration to the drugs' free 

therapeutic plasma concentration. It was found that a less than 30-fold difference between the therapeutic 

and inhibitory concentration indicates a high risk. Redfern et al. [16] also investigated the relative value of 

preclinical cardiac electrophysiology data (in vitro and in vivo) for predicting the risk of TdP in drug clinical 

use. In vivo, telemetry experiments in non-rodents (typically dogs) are the ultimate preclinical test for 

cardiotoxicity. However, its high cost severely limits its use at the earlier discovery stage [17]. In vitro 

voltage-clamp techniques are widely used to provide real-time mechanistic information on ion channels 

[18]. The experiments are performed in mammalian cells transfected with the gene for hERG. The 

overwhelming majority of predictive hERG models have been built using mammalian patch clamp data. 

Techniques such as fluorescence-based assays with cells transfected with hERG and radioligand (typically 

dofetilide or MK-499) displacement assays [17] have also been successfully used. Since the success of any 
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model building depends on the quality of the biological data, it was important to carefully select reliable 

and informative cardiotoxicity data for a wide variety of drugs in order to develop a continuous model. As 

the determination of the half-maximal inhibitory concentration (IC50) value requires measurements of 

inhibitory activities at multiple concentrations, the IC50 information was considered more reliable, and was 

selected over the inhibition type entries for positive/negative classification. Therefore, IC50 of drugs and 

their log unit values (pIC50) in response to hERG were collected from the literature. 

Certain physicochemical properties of molecules have been recognized as early indicators of potential 

problems with early drug discovery compounds [19]. Besides lipophilicity [20], solubility [21] and 

permeability, biomimetic properties such as protein [22] and phospholipid binding [23] can be measured at 

the early stages of the drug discovery process [24]. The chromatographic technique provides an 

automated, high throughput and reliable measurement of important properties of the drug discovery 

compounds [25] that can be used to estimate later stage in vivo properties of compounds such as the 

volume of distribution, the unbound volume of distribution [26] and the drug efficiency [27]. 

Measurements can also estimate cell membrane partition and skin penetration of compounds based on 

chromatographic principles [28,29]. Various toxicity indicators have already been related to a compound’s 

physicochemical properties, including hERG inhibition and hepatotoxicity [30]. The toxicity potential of 

compounds has been studied using the immobilised artificial membrane (IAM) chromatography [31]. In this 

work, several chromatography-based techniques were investigated to search for the properties of the 

compounds that could be used to predict their toxicity, with special emphasis on cardiotoxicity. 

In this study, hERG pIC50 data from a set of 90 diverse marketed drugs from a wide range of therapeutic 

areas and with different physicochemical properties were correlated with their measured biomimetic 

properties. The measurement of the biomimetic properties of the available drugs was conducted in our 

laboratories. Generic gradient HPLC methods were used to determine the chromatographic hydrophobicity 

Index (CHI) [32,33] using mobile phases at three different pH values. The protein binding of the compounds 

was measured using immobilised human serum albumin (HSA) [22], and alpha-1-acid-glycoprotein (AGP) 

stationary phases [34]. The phospholipid-binding was measured using the immobilised artificial membrane 

(IAM) stationary phase [23]. The aim was to establish relationships between the cardiotoxicity potential 

and the biomimetic binding properties of the drugs and to evaluate their predictive performance. 

Experimental  

The drugs were obtained from Sigma-Aldrich (Merck) and dissolved in dimethylsulfoxide (DMSO) at 10 

mM concentration. The 10 µL stock solutions were diluted down to 100 µL before injecting them onto an 

Agilent 1100 HPLC system. 

CHI lipophilicity measurements 

The Chromatographic Hydrophobicity Index (CHI) was measured using the compounds' calibrated 

gradient retention times obtained from an Agilent 1100 HPLC fitted with a Gemini NX-C-18 column 

(Phenomenex Ltd Macclesfield, UK) with dimensions of 50 x 3 mm and 5 µm particle size. The mobile phase 

A was either 0.01 M formic acid (pH 2.6), a 50 mM ammonium acetate buffer with an adjusted pH of 7.4 or 

a 50 mM ammonium acetate buffer with an adjusted pH of 10.5. The mobile phase B was 100 % 

acetonitrile. The flow rate was 1.0 mL/min, with starting mobile phases of 0.01M formic acid (pH 2.6), 50 

mM ammonium acetate adjusted to pH 7.4, and 50 mM ammonium acetate adjusted to pH 10.5 to 

determine the lipophilicity of the compounds at acidic, neutral and alkaline pHs, respectively. An 
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acetonitrile linear gradient was used from 0 to 100 %. The acetonitrile concentration reached 100 % in 3.5 

min. The 100 % acetonitrile mobile phase was maintained for an additional 1 min before it was returned to 

0 % at 4.7 min. The gradient run cycle time was 6 min, with an additional equilibration time of 1 min before 

the next injection. The standard deviation in the retention time measurements is ±0.005 min from 

repeated injections. The retention time values for a standard set of compounds listed in Table1 were used 

to convert the drug retention times to CHI values. 

Table 1. The CHI values of the calibration set of compounds at three pHs [33]. These values were obtained by 
fitting the isocratically determined CHI values and the gradient retention time values. The standard error 
ranged from 0.1 to 0.8 CHI values. CHI approximates to the acetonitrile concentration when the compound 
elutes and can be converted to the octanol/water log D scale using CHI log D = 0.0525*CHI -1.467 [35]. 

Compound CHI at pH 2.6 CHI at pH 7.4 CHI at pH 10.5 

Theophylline 17.9 18.4 5.0 

Phenyl tetrazole 42.2 23.6 16.0 

Benzimidazole 6.3 34.3 30.6 

Colchicine 43.9 45.0 43.9 

Phenyl theophylline 51.7 51.2 51.3 

Acetophenone 64.1 65.1 64.1 

Indole 72.1 71.5 72.1 

Propiophenone 77.4 77.4 77.4 

Butyrophenone 87.3 87.5 87.3 

Valerophenone 96.4 96.2 96.4 

Measurements of plasma protein binding using Chiralpak HSA and AGP columns 

The protein binding measurements were carried out on Chiralpak HSA and Chiralpak AGP columns with 

dimensions of 3 x 50 mm and 5 μm particle size (Chiral Technologies Europe, France). The mobile phase 

was 50 mM ammonium acetate adjusted to pH 7.4, with a 1.2 mL/min flow rate. The standard isopropanol 

(IPA) gradient reached 35 % in 3.5 min, which was maintained for 1 min, before returning to 0 % at 4.7 min. 

The cycle time was 6 min with an additional 1 min re-equilibration time. The racemic warfarin showed 

separation of its enantiomers at retention times of 3.58 and 3.77 min. The precision of the retention time 

measurements was within ±0.01 min. The calibration set of compounds and their literature % binding data 

which were also converted to log k data are shown in Table 2.  

Table 2. The protein binding data of the marketed drug molecules that were used to calibrate 
the retention times obtained on the chiral protein columns (Chiralpak HSA and Chiralpak 
AGP). The % binding data obtained by equilibrium dialysis were converted to log k data using 
log k = log (%binding/(101-%binding)). 

Compound name %HSA log k HSA % AGP log k AGP 

Warfarin  97.9 1.5 83.2 0.7 

Paracetamol 14.0 -0.8 3.2 -1.5 

Nizatidine 20.4 -0.6 37.1 -0.2 

Trimethoprim 37.6 -0.2 46.2 -0.1 

Propranolol 66.6 0.3 86.0 0.8 

Carbamazepine 75.0 0.5 65.0 0.3 

Nicardipine 95.0 1.2 87.0 0.8 

Indomethacin 99.5 1.8 56.0 0.1 

Diclofenac 99.8 1.9 60.0 0.2 
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Measurements of phospholipid-binding at pH 7.4 using an IAM column 

The phospholipid-binding was measured using an IAM PC.DD2 column with dimensions of 100 x 4.6 mm 

(Regis Technologies Inc., Morton Grove, IL, USA). The gradient retention times were measured using a 50 

mM ammonium acetate mobile phase with the pH adjusted to 7.4. The mobile phase flow rate was 1.5 

mL/min. The acetonitrile gradient was applied to reach 90 % in 4.75 min. The 90 % acetonitrile 

concentration was maintained for an additional 0.5 min (to 5.25 min) and returned to 0 % by 5.5 min. The 

cycle time was 6 min, plus an additional 1 min equilibration time was applied while the injector prepared 

for the next injection. The gradient retention times were calibrated with the acetophenone homologues 

for which the CHI IAM values have been established using isocratic measurements [34]. Table 3 shows the 

calibration set of compounds and their predetermined CHI IAM values. The CHI Index on the IAM column 

(CHI IAM) approximates the acetonitrile concentration in the mobile phase when the compound elutes. CHI 

IAM values above 45 indicate strong phospholipid binding. The CHI IAM values have been converted to 

log k IAM values derived from the CHI IAM values using equation 1. It represents the equivalent value 

derived from several isocratic measurements with extrapolated log retention factors to 100 % aqueous 

mobile phase [23]. The log k IAM values can be converted to log K (IAM) values and show linear 

relationships with the octanol/water partition coefficients [26]. Equation 2 shows the conversion: 

log k IAM = 0.045* CHI IAM + 0.42  (1) 

log K IAM = 0.29 e(0.045CHI IAM +0.42) +0.7 (2) 

Repeating the retention time measurements provided a standard deviation of ±0.005 min.  

Table 3. The calibration set of compounds 
used on the IAM.PC.DD2 HPLC column and 
their predetermined CHI IAM values. 

  

Database search for pIC50 values 

Assessing the risk of a blockade of the human ether à-go-go 

related gene potassium channels could greatly facilitate the 

development of therapeutic compounds and the withdrawal of 

hazardous marketed drugs. The development of high-

throughput automated patch clamp assays has increased the 

amount of hERG-associated data available in public databases 

[17]. Integrated databases are now available using the ChEMBL 

and PubChem public databases. A large integrated database 

created by Sato et al. [36] has been used in this study. This database curates hERG-related data from in 

vitro assays, such as binding assays (radioligand replacement assay) and electrostatic assays (automated 

patch-clamp assays), in ChEMBL, PubChem, GOSTAR, NIH Chemical Genomics Center (NCGC) and 

hERGCentral and integrates them into the largest database about hERG inhibition. IC50 values of the 

compounds and their pIC50 values expressed in molar concentrations were carefully searched and collected 

from this database, which is freely available at https://drugdesign.riken.jp/hERGdb/. Data entries using 

inequality signs, NULL values and value ranges were excluded. In cases of differences in the reported data 

for the same compound, mean values were calculated and considered for the model building while outlier 

values were omitted when the deviation in the results was significant (data points not falling within three 

standard deviations of the mean). 

Compound CHI IAM 

Octanophenone 49.4 

Heptanophenone 45.7 

Hexanophenone 41.8 

Valerophenone 37.3 

Butyrophenone 32.0 

Propiophenone 25.9 

Acetophenone 17.2 

Acetanilide 11.5 

Paracetamol 2.9 
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Calculated physicochemical properties 

ADME Boxes v.3.0 software (Pharma Algorithm) was used to calculate various physicochemical 

parameters of the investigated compounds such as octanol-water partition (log P) and distribution (log D) 

coefficients at the pH values of 7.4, hydrogen bond donor (HBD) and acceptor (HBA) groups, Abraham's 

hydrogen bond acidity (A) and basicity (B), total polar surface area (TPSA), molecular weight (MW), as well 

as the molecular fractions of positively charged (F+), negatively charged (F-) and zwitterionic species (Fz) at 

pH =7.4. 

Statistical and visualisation software 

JMP v13.0 (SAS Institute Inc) and SPSS 23.0 (IBM SPSS Statistics) were used for the statistical 

calculations and the stepwise regression analysis. For visualisation, Stardrop (Optibrium Ltd) chemically 

aware visualisation tools were used to create the plots. 

Results and Discussion 

Table 4 contains the collected and quality checked pIC50 data of the investigated 90 drug molecules with 

their generic names and the measured biomimetic HPLC data. The drugs used in the training set and test 

set are listed separately in alphabetical order.  

Table 4. The investigated marketed drugs, their hERG pIC50 values and the measured biomimetic lipophilicity CHI 
log D at pH 7.4, CHI log P, protein binding (log k HSA and log k AGP) and phospholipid partition (log k IAM). The test 
set of compounds are listed in the second part of the table in bold. 

Drug pIC50 
CHI 

 log D7.4 
CHI  

log P 
log k 
HSA 

log k 
AGP 

CHI 
IAM 

log k 
IAM 

Charge 

Amitriptyline 5.10 2.65 5.21 0.91 1.05 55.27 2.96 Basic 

Apomorphine 5.59 1.17 2.66 1.04 0.83 39.67 2.24 Weak Base 

Astemizole 6.69 2.68 3.52 1.17 1.12 51.07 2.77 Basic 

Atenolol 3.00 -0.40 0.64 -1.08 -1.83 15.75 1.14 Basic 

Bepridil 6.42 4.40 6.62 1.27 1.14 57.73 3.08 Basic 

Brompheniramine 5.61 1.74 4.27 0.68 0.68 51.69 2.8 Basic 

Bupivacaine 5.51 3.06 3.97 -0.10 1.35 41.66 2.34 Weak Base 

Carbamazepine 3.98 1.22 1.33 0.07 -0.85 23.98 1.53 Neutral 

Cetirizine 4.65 1.63 2.04 0.85 0.23 40.56 2.29 Zwitterionic 

Chloroquine 5.03 1.18 2.68 0.70 1.12 43.99 2.40 Basic 

Chlorpromazine 5.65 -0.58 0.97 1.35 1.79 48.16 2.64 Basic 

Ciprofloxacin 3.02 -0.09 0.05 -0.54 -1.19 25.39 1.59 Zwitterionic 

Cisapride 6.88 2.65 3.17 1.11 0.84 41.85 2.35 Basic 

Citalopram 5.27 1.59 4.32 0.40 0.44 48.80 2.66 Basic 

Clarithromycin 4.32 1.9 4.55 -0.24 0.20 49.68 2.70 Basic 

Clemastine 6.69 3.18 3.18 1.25 1.18 60.12 3.19 Basic 

Clozapine 6.5 2.6 3.05 1.04 0.99 52.42 2.83 Weak Base 

Desipramine 5.36 1.84 3.49 0.76 0.94 53.10 2.86 Basic 

Diltiazem 4.81 2.76 3.12 0.36 0.41 41.95 2.35 Basic 

Dolasetron 4.65 1.46 1.46 0.60 0.69 33.20 1.95 Weak Base 

Domperidone 6.79 1.37 2.13 1.02 0.92 43.47 2.42  Weak Base 

Doxazosin 6.03 2.09 2.24 1.04 0.72 37.80 2.16 Weak Base 

Droperidol 6.89 2.26 2.68 0.98 1.69 39.31 2.23 Weak Base 
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Table 4. Cont’d 

Ebastine 6.27 4.96 6.54 1.62 1.34 58.65 3.12 Basic 

Erythromycin 4.43 1.31 2.60 -0.22 0.32 38.79 2.20 Basic 

Fexofenadine 4.61 1.28 1.91 0.45 0.02 32.24 1.90 Zwitterionic 

Fluvoxamine 5.2 2.01 3.34 0.4 0.59 50.22 2.73 Basic 

Glibenclamide 4.29 2.07 3.17 1.52 0.39 32.63 1.93 Acidic 

Glimepiride 4.13 2.42 3.25 1.50 0.40 30.76 1.83 Basic 

Granisetron 4.65 0.79 2.50 0.34 0.52 45.95 2.53 Basic 

Imipramine 5.40 2.05 4.60 0.95 0.96 39.44 2.23 Basic 

Isradipine 5.71 3.25 3.29 1.19 1.32 38.76 2.21 Neutral 

Ketoconazole 5.49 2.66 2.84 1.18 0.75 37.86 2.16 Weak Base 

Levobupivacaine 5.48 3.25 4.20 0.13 1.25 41.83 2.34 Weak Base 

Levofloxacin 2.93 0.54 0.54 -0.34 -0.74 28.55 1.73 Zwitterionic 

Lidocaine 3.58 2.65 3.01 -0.71 0.17 32.38 1.91 Weak Base 

Lomefloxacin 3.93 -0.14 -0.14 -0.10 -1.01 37.89 2.16 Zwitterionic 

Loratadine 4.90 3.86 4.25 1.38 1.34 44.30 2.46 Weak Base 

Lovastatin 5.16 4.09 4.24 1.24 0.87 44.38 2.46 Neutral 

Maprotiline 5.17 2.03 4.79 0.77 0.99 56.73 3.03 Basic 

Mefloquine 5.45 2.18 4.22 1.38 1.11 41.65 2.29 Basic 

Metoclopramide 5.27 0.5 1.91 0.15 0.23 40.38 2.28 Basic 

Mibefradil 5.88 2.96 3.99 1.10 1.11 55.18 2.96 Basic 

Miconazole 5.68 4.64 4.70 1.54 1.26 53.72 2.89 Weak Base 

Moxifloxacin 3.83 0.69 0.81 0.54 -0.46 31.61 1.84 Zwitterionic 

Nicotine 3.61 0.12 1.20 -0.03 -0.98 13.79 1.05 Weak Base 

Nifedipine 3.96 2.59 2.71 0.67 0.27 25.12 1.58 Basic 

Nitrendipine 5.10 3.15 3.19 1.17 0.69 39.36 2.23 Neutral 

Ofloxacin 2.93 0.53 0.53 -0.40 -0.81 26.17 1.62 Zwitterionic 

Olanzapine 5.06 1.96 2.76 0.76 0.72 49.74 2.71 Weak Base 

Ondansetron 5.73 1.33 1.66 0.54 1.30 39.01 2.22 Weak Base 

Pergolide 6.52 2.47 3.81 0.73 1.04 52.73 2.85 Basic 

Perphenazine 5.88 2.92 3.50 1.39 1.13 47.64 2.61 Weak Base 

Phenytoin 3.71 1.73 1.85 0.69 0.15 29.66 1.78 Weak Acid 

Pimozide 6.43 3.03 3.89 1.41 1.47 52.31 2.83 Weak Base 

Prazosin 5.22 1.09 1.29 0.81 0.53 26.32 1.63 Weak Base 

Procainamide 3.86 -0.59 0.95 -0.71 -0.54 19.30 1.29 Basic 

Propafenone 5.96 2.07 3.47 0.84 0.92 46.04 2.54 Basic 

Propiverine 5.22 3.84 5.05 1.01 0.94 58.60 3.12 Basic 

Propranolol 5.03 1.63 3.03 0.47 0.84 42.08 2.36 Basic 

Pyrilamine 5.18 1.72 3.32 0.44 0.49 46.62 2.56 Basic 

Quetiapine 5.21 2.55 2.69 0.92 0.97 39.38 2.23 Weak Base 

Quinidine 5.51 1.25 2.38 0.54 0.68 49.78 2.71 Basic 

Risperidone 6.00 1.46 2.18 0.55 0.63 36.31 2.09 Weak Base 

Ritonavir 5.09 3.25 3.41 1.22 0.64 38.64 2.2 Neutral 

Roxithromycin 4.44 1.95 3.70 -0.07 0.60 51.33 2.78 Basic 

Saquinavir 5.82 3.31 3.39 1.22 1.59 42.17 2.36 Weak Base 

Sotalol 3.57 -0.39 -0.35 -0.75 -1.41 21.90 1.43 Basic 
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Table 4. Cont’d 

Sulfamethoxazole 2.66 -0.42 1.03 0.4 -1.57 13.19 1.01 Acidic 

Tamsulosin 4.89 1.43 2.01 0.36 0.60 34.32 2.00 Basic 

Thioridazine 6.30 3.02 5.46 1.33 1.30 70.24 3.65 Basic 

Tolterodine 6.23 2.00 4.95 0.55 0.79 52.45 2.83 Basic 

Trifluoperazine 5.72 3.8 5.14 1.52 1.19 68.00 3.55 Basic 

Verapamil 5.95 2.66 3.82 1.00 0.58 44.82 2.48 Basic 

Alfuzosin 4.28 0.79 1.31 0.08 0.32 34.60 1.98 Weak Base 

Desloratadine  5.75 1.32 4.03 0.85 1.05 54.56 2.93 Basic 

Diphenhydramine 4.94 1.59 3.61 0.33 0.60 35.63 2.06 Basic 

Dofetilide 5.72 1.18 1.12 -0.05 0.59 33.10 1.94 Weak Base 

Flecainide 5.25 1.68 3.01 -0.05 0.16 41.51 2.33 Basic 

Fluoxetine 5.73 2.15 3.80 0.99 0.99 54.86 2.94 Basic 

Indomethacin 3.72 1.47 3.31 1.69 0.18 30.11 1.81 Acidic 

Irbesartan 4.71 1.39 2.00 1.30 1.10 26.14 1.62 Zwitterionic 

Lamotrigine 3.55 0.86 0.81 0.16 -0.33 23.25 1.49 Weak Base 

Metoprolol 3.84 0.77 1.86 -0.72 -0.27 35.38 2.05 Basic 

Protriptyline 5.30 1.72 4.70 0.69 1.03 51.59 2.79 Weak Base 

Sildenafil 4.61 2.59 2.62 0.87 0.42 35.00 2.03 Weak Base 

Spironolactone 4.64 2.76 2.97 0.78 0.50 36.93 2.12 Neutral 

Trazodone 5.30 2.51 2.59 1.09 0.46 32.7 1.93 Weak Base 

Trimethoprim 3.62 -1.60 0.42 -0.05 -0.07 12.83 1.01 Basic 

Ziprasidone 6.44 2.98 2.96 1.42 1.09 47.92 2.62 Weak Base 

 

Table 5 contains the calculated physicochemical properties of the investigated compounds. The test set 

listed separately in alphabetical order in the last part of the table. 

Table 5. The calculated physicochemical properties of the compounds. MW is the molecular weight, HBD and HBA 
are the numbers of H-bond donor and acceptor groups, respectively, TPSA is the topological polar surface area, 
log P and log D are the logarithm of the calculated octanol/water partition coefficient of the neutral form and the 
combined ionised form of the molecules at pH 7.4, F+, F- and Fz are the calculated fractions of the positive, 
negative and zwitterionic charges at physiological pH (pH 7.4), A and B are the Abraham H-bond acidity and B-
bond basicity parameters. 

Drug MW HBD HBA TPSA log P log D F+ F- Fz A B 

Amitriptyline 277.41 0 1 3.2 5.04 3.70 0.98 0.00 0.00 0.00 1.00 

Apomorphine 267.32 2 3 43.7 2.49 2.16 0.62 0.00 0.02 0.77 1.10 

Astemizole 458.57 1 5 42.3 5.70 4.54 0.98 0.00 0.00 0.13 1.64 

Atenolol 266.34 4 5 84.6 0.16 -1.89 0.99 0.00 0.00 0.69 2.00 

Bepridil 366.54 0 3 15.7 6.31 4.9 0.97 0.00 0.00 0.00 1.32 

Brompheniramine 319.24 0 2 16.1 2.88 1.64 0.99 0.00 0.00 0.00 1.02 

Bupivacaine 288.43 1 3 32.3 3.41 3.73 0.78 0.00 0.00 0.26 1.19 

Carbamazepine 236.27 2 3 46.3 2.30 2.58 0.00 0.00 0.00 0.53 1.10 

Cetirizine 388.89 1 5 53.0 1.70 0.34 0.00 0.22 0.78 0.57 1.76 

Chloroquine 319.87 1 3 28.2 4.63 2.60 1.00 0.00 0.00 0.13 1.29 

Chlorpromazine 318.86 0 2 31.8 5.35 3.34 0.99 0.00 0.00 0.00 0.94 

Ciprofloxacin 331.34 2 6 72.9 -1.08 -3.03 0.05 0.03 0.91 0.73 1.85 

Cisapride 465.94 3 7 86.1 4.20 2.49 0.98 0.00 0.00 0.50 2.17 
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Citalopram 324.39 0 3 36.3 3.76 0.99 0.99 0.00 0.00 0.00 1.08 

Clarithromycin 747.95 4 14 182.9 3.16 1.16 0.95 0.00 0.00 0.80 4.49 

Clemastine 343.89 0 2 12.5 5.79 3.63 0.99 0.00 0.00 0.00 0.97 

Clozapine 326.82 1 4 30.9 3.32 4.68 0.58 0.00 0.00 0.18 1.44 

Desipramine 266.38 1 2 15.3 4.90 1.57 1.00 0.00 0.00 0.09 0.91 

Diltiazem 414.52 0 6 84.4 2.70 1.97 1.00 0.00 0.00 0.00 2.12 

Dolasetron 324.37 1 5 62.4 2.70 2.66 0.10 0.00 0.00 0.31 1.52 

Domperidone 425.92 2 7 67.9 4.05 3.49 0.85 0.00 0.00 0.72 1.83 

Doxazosin 451.47 2 10 112.3 2.07 1.97 0.22 0.00 0.00 0.23 2.60 

Droperidol 379.43 1 5 52.7 3.50 2.61 0.85 0.00 0.00 0.33 1.67 

Ebastine 469.66 0 3 29.5 7.55 6.14 0.97 0.00 0.00 0.00 1.41 

Erythromycin 733.92 5 14 193.9 2.54 0.65 0.95 0.00 0.00 1.05 4.63 

Fexofenadine 501.65 3 5 81.0 4.35 1.83 0.00 0.04 0.97 1.20 2.12 

Fluvoxamine 318.33 2 4 56.8 3.63 2.32 0.96 0.00 0.00 0.23 1.14 

Glibenclamide 494.00 3 8 122.0 4.02 1.83 0.00 0.99 0.00 0.85 2.01 

Glimepiride 490.62 3 9 133.1 4.25 2.05 0.99 0.00 0.00 0.75 2.15 

Granisetron 312.41 1 5 50.2 0.79 -1.31 0.99 0.00 0.00 0.26 1.56 

Imipramine 280.41 0 2 4.8 4.28 2.61 0.99 0.00 0.00 0.00 1.15 

Isradipine 371.39 1 8 103.6 4.18 1.48 0.00 0.00 0.00 0.13 1.79 

Ketoconazole 531.43 0 8 69.1 4.34 3.98 0.15 0.00 0.00 0.00 2.22 

Levobupivacaine 288.43 1 3 32.3 4.35 3.73 0.78 0.00 0.00 0.26 1.19 

Levofloxacin 361.37 1 7 73.3 -0.24 -2.34 0.05 0.10 0.85 0.57 2.05 

Lidocaine 234.34 1 3 32.3 2.26 2.44 0.78 0.00 0.00 0.12 1.21 

Lomefloxacin 351.35 2 6 72.9 -0.80 -3.43 0.05 0.03 0.91 0.73 1.81 

Loratadine 382.88 0 4 42.4 5.20 4.94 0.00 0.00 0.00 0.00 1.14 

Lovastatin 404.54 1 5 72.8 4.26 4.40 0.00 0.00 0.00 0.31 1.44 

Maprotiline 277.41 1 1 12.0 4.85 1.48 1.00 0.00 0.00 0.13 0.68 

Mefloquine 378.31 2 3 45.2 3.28 1.50 0.99 0.00 0.00 0.38 1.22 

Metoclopramide 299.80 3 5 67.6 1.40 0.36 0.99 0.00 0.00 0.50 1.63 

Mibefradil 495.63 1 6 67.5 4.97 2.37 1.00 0.00 0.00 0.35 1.80 

Miconazole 416.13 0 3 27.1 5.34 5.45 0.15 0.00 0.00 0.00 0.79 

Moxifloxacin 401.43 2 7 82.1 -0.08 -2.87 0.05 0.01 0.94 0.72 2.04 

Nicotine 162.23 0 2 16.1 0.75 -0.12 0.88 0.00 0.00 0.00 0.91 

Nifedipine 346.33 1 8 113.4 3.27 1.12 1.00 0.00 0.00 0.23 1.45 

Nitrendipine 360.36 1 8 113.5 4.15 1.60 0.00 0.00 0.00 0.13 1.54 

Ofloxacin 361.37 1 7 73.3 -0.39 -2.34 0.05 0.10 0.85 0.57 2.05 

Olanzapine 312.44 1 4 59.1 3.00 4.05 0.58 0.00 0.00 0.13 1.45 

Ondansetron 293.36 0 4 39.8 1.96 1.09 0.88 0.00 0.00 0.00 1.53 

Pergolide 314.49 1 2 44.3 4.01 2.97 0.92 0.00 0.00 0.31 1.01 

Perphenazine 403.97 1 4 55.3 3.69 3.86 0.74 0.00 0.00 0.23 1.84 

Phenytoin 252.27 2 4 58.2 2.15 1.90 0.00 0.10 0.00 0.85 1.00 

Pimozide 461.54 1 4 35.6 6.30 5.49 0.85 0.00 0.00 0.33 1.44 

Prazosin 383.40 2 9 107.0 0.45 0.35 0.22 0.00 0.00 0.23 2.17 

Procainamide 235.32 2 4 58.4 0.88 -0.83 0.99 0.00 0.00 0.50 1.45 

Propafenone 341.44 2 4 58.6 3.41 1.26 0.99 0.00 0.00 0.29 1.67 
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Propiverine 367.48 0 4 38.8 4.01 1.53 1.00 0.00 0.00 0.00 1.31 

Propranolol 259.34 2 3 41.5 3.09 0.89 0.99 0.00 0.00 0.17 1.42 

Pyrilamine 285.38 0 4 28.6 3.27 1.63 0.97 0.00 0.00 0.00 1.59 

Quetiapine 383.51 1 5 73.6 2.27 1.91 0.58 0.00 0.00 0.23 2.01 

Quinidine 324.42 1 4 45.6 2.64 1.06 0.95 0.00 0.00 0.23 1.81 

Risperidone 410.48 0 6 61.9 3.04 1.09 0.88 0.00 0.00 0.00 1.70 

Ritonavir 720.94 4 11 202.3 5.64 5.64 0.00 0.00 0.00 0.88 3.14 

Roxithromycin 837.04 5 17 216.9 3.79 1.00 0.95 0.00 0.00 1.05 5.12 

Saquinavir 670.84 6 11 166.8 3.77 3.67 0.22 0.00 0.00 1.46 3.89 

Sotalol 272.36 3 5 86.8 0.24 -1.35 0.91 0.00 0.08 0.74 1.75 

Sulfamethoxazole 253.28 3 6 106.6 0.89 -0.85 0.00 0.98 0.00 0.59 1.21 

Tamsulosin 408.51 2 7 119.3 2.38 1.07 0.95 0.00 0.00 0.59 2.11 

Thioridazine 370.58 0 2 57.1 5.90 4.17 0.99 0.00 0.00 0.00 1.13 

Tolterodine 339.51 1 2 23.5 5.98 3.49 1.00 0.00 0.00 0.50 1.08 

Trifluoperazine 407.50 0 3 35.0 5.03 4.37 0.85 0.00 0.00 0.00 1.50 

Verapamil 454.60 0 6 64.0 3.83 3.17 0.98 0.00 0.00 0.00 1.89 

Alfuzosin 389.45 3 9 111.8 -0.23 -0.85 0.78 0.00 0.00 0.84 2.24 

Desloratadine  310.83 1 2 24.9 4.13 2.42 0.98 0.00 0.00 0.13 0.99 

Diphenhydramine 255.35 0 2 12.5 3.40 1.82 0.97 0.00 0.00 0.00 0.95 

Dofetilide 441.57 2 8 121.6 2.41 1.06 0.88 0.00 0.08 0.72 2.16 

Flecainide 414.34 2 5 59.6 3.78 0.32 0.99 0.00 0.00 0.41 1.32 

Fluoxetine 309.33 1 2 21.3 4.50 2.44 1.00 0.00 0.00 0.13 0.78 

Indomethacin 357.79 1 5 68.5 4.27 0.71 0.00 1.00 0.00 0.57 1.57 

Irbesartan 428.53 1 7 87.1 4.72 2.22 0.00 0.00 1.00 0.56 1.78 

Lamotrigine 256.09 4 5 90.7 2.63 2.62 0.01 0.00 0.00 0.35 0.96 

Metoprolol 267.36 2 4 50.7 1.88 -0.43 0.99 0.00 0.00 0.17 1.76 

Protriptyline 263.38 1 1 12.0 4.91 4.04 0.88 0.00 0.00 0.13 0.73 

Sildenafil 474.58 1 10 117.5 2.73 2.47 0.37 0.06 0.04 0.26 2.68 

Spironolactone 416.57 0 4 85.7 2.52 2.52 0.00 0.00 0.00 0.00 1.63 

Trazodone 371.86 0 6 42.4 3.80 4.60 0.22 0.00 0.00 0.00 1.92 

Trimethoprim 290.32 4 7 105.5 1.28 0.71 0.47 0.00 0.00 0.28 1.62 

Ziprasidone 412.94 1 5 46.7 4.6 4.14 0.64 0.00 0.00 0.48 1.65 

 

Selection of the test set of compounds 

Constructed toxicity models require external validation to prove their predictive ability. Hence, a test 

set, usually consisting of about 20 % of the entire set, is necessary to evaluate the established models in 

terms of their predictive performance [37]. For that reason, a principal component analysis using the 

calculated physicochemical properties of the compounds was performed. By plotting the first two principal 

components (Figure 1), four compounds from each quadrant were selected by taking into account the 

compounds' therapeutic areas to ensure the test set's diversity. The remaining compounds were used for 

modelling as the training set. Table 6 shows the therapeutic areas of the compounds selected as the test 

set. 
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Figure 1 The score plot from the principal component analysis on the calculated properties. Compounds 
served as the test set are marked in red, as follows: (1) dofetilide, (2) sildenafil, (3) irbesartan, (4) flecainide, 
(5) ziprasidone, (6) trazodone, (7) fluoxetine, (8) protryptiline, (9) diphenhydramine, (10) desloratanide, (11) 

spironolactone, (12) metoprolol, (13) lamotrigine, (14) indomethacin, (15) trimethoprim, (16) alfuzosin. 

Table 6. Compounds selected for the test set and their indications. 

Pharmaceutical Drug class 

Alfuzosin alpha blocker 

Desloratadine tricyclic antihistamine 

Diphenhydramine antihistamine 

Dofetilide class III antiarrhythmic agent 

Flecainide class I antiarrhythmic agent 

Fluoxetine selective serotonin reuptake inhibitor (SSRI) antidepressant 

Indomethacin non-steroidal anti-inflammatory (NSAID) 

Irbesartan angiotensin receptor blocker (ARB) 

Lamotrigine antiepileptic/anticonvulsant 

Metoprolol class II antiarrhythmic agent 

Protriptyline tricyclic antidepressant 

Sildenafil phosphodiesterase (PDE) inhibitor 

Spironolactone aldosterone antagonist 

Trazodone serotonin antagonist and reuptake inhibitor (SARI) antidepressant 

Trimethoprim antibacterial 

Ziprasidone atypical antipsychotic 

 

Using stepwise regression analysis on the training set, a model was built using only the measured 

properties listed in Table 4. The best model can be described by equation 3: 
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pIC
50

= 3.63(±0.37) + 0.88(±0.12)*log k AGP + 0.42(±0.18)*log k IAM (3) 

(R=0.850, R
2
=0.722, R

2
adj=0.714, N=74, s=0.553, F=92.1) 

R is the correlation coefficient, N is the number of compounds, s is the standard error of the estimate, F 

is the Fisher test value. The IAM binding and AGP binding variables are highly significant and showed a 

week intercorrelation (R
2
=0.42). Therefore, the equation was recalculated using Partial Least Squares 

regression (PLS) and the same coefficients and intercept were obtained. 

The best model using only in silico calculated properties, the molecular weight (MW), the number of H-

bond donors (HBD) and acceptor groups (HBA), the polar surface (TPSA), the logarithm of the calculated 

octanol/water partition coefficient of the neutral form and the combined ionised form of the molecules at 

pH 7.4 (log P and log D), calculated fractions of the positive, negative and zwitterionic charges at 

physiological pH (F+, F-, Fz), and the Abraham H-bond acidity and B-bond basicity parameters (A, B) can be 

described by equation 4. 

pIC50 = 3.94(±0.17) + 0.38(±0.05)*log P - 1.49(±0.51)*F- (4) 

(R = 0.740, R2 = 0.547, R2
ad j= 0.534, N = 74, s = 0.706, F = 42.9) 

It was found that log P is correlated better than log D with pIC50 and only negatively charged molecular 

fraction F- stands as statistically significant additional physicochemical parameter next to log P. The 

statistical insignificance of F+ may be attributed to the fact that its positive sign due to ionization 

counterbalanced with its positive influence to pIC50. The models' statistical parameters are much worse 

when compared to the model using measured AGP binding (log k AGP) data and membrane partition (log k 

IAM) data. 

The estimated pIC50 values of the test set have been calculated using equation 3 and plotted in Figure 2. 

The test set compounds are marked with larger circles. 

 
Figure 2 shows the literature hERG pIC50 data and the back-calculated pIC50 data using equation 3. Blue circles 
mark positively charged compounds at pH 7.4; red circles mark negatively charged compounds at pH7.4. The 

green circles mark neutral compounds at pH 7.4; green circle's shade reflects the presence of weak acidic 
(lighter green) or weak basic (darker green) groups in the molecules; purple circles indicate compounds with 

zwitterionic character at pH 7.4 
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It can be seen in Figure 2 that the majority of the positively charged compounds show a pIC50 value 

greater than 5 log units in the in vitro hERG experiments. Acidic and zwitterionic compounds show only 

weak hERG inhibition. It is also interesting to note that the AGP binding data showed a strong correlation 

with the compounds binding to hERG channel receptors. The explanation for this may lie in the similarity of 

the two proteins. It was found [38] that the AGP binding site can be featured as a funnel-like structure. The 

side of the funnel represents a lipophilic region. The funnel's top width provides a steric hindrance for 

molecules wider than the funnel, while at the narrow end of the funnel are the negatively charged sialic 

acid residues that bind the positive charges if they fit into the deep end of the funnel. The structure is 

illustrated in Figure 3. The IAM binding, which shows the compound's membrane partition, was also 

significant in the model, which is not surprising as the ion channel receptor is in the membrane. The 

compound needs to have high membrane affinity to be able to approach the channel. The positive charge 

also promotes the binding to the negatively charged surface. Both the AGP and IAM stationary phases 

show strong shape selectivity, which is also essential to hERG inhibition. Although a wide variety of 

molecules show high pIC50 values the shape of the molecule is very important because of the channel 

opening's well-defined size. This fact reduces the power of the in silico models if only 2D descriptors are 

used in the model building. As a result, the 3D description of the molecules would probably enhance the 

success of in silico models. 

AGP binding hERG K
+ 

ion-channel blockage 

  

Figure 3. The similarity of the binding region of AGP and hERG potassium ion channels. 

The steric structure and the negatively charged surface of AGP and the hERG ion channel suggest strong 

similarities. Compounds that block the channel have to penetrate the cell and have a relatively high 

concentration in the cell membrane where the potassium ion channel can be found [39]. This explains the 

importance of the membrane-binding properties in the model, as shown in Figure 4. 

Validation of both models was performed by predictions of the 16 compounds included in the test set. 

The results are presented in Table 7. It can be seen that the prediction of the test set was superior in the 

case of the model derived with the measured properties, and the residuals did not exceed double the 

model error (0.693). On the other hand, predictions from the model derived with the calculated properties 

exhibited much worse residuals in most cases, with the pIC50 predictions of irbesartan and lamotrigine 

exceeding 1 log unit. 
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Figure 4. Drug trapping within the 
K1 channel vestibule. 

 

 

Table 7. The experimental and the predicted pIC50 values of the test set of compounds using the model 
described by equation 3. The residuals show the difference between the measured and predicted 
values. 

Drug 
 

Model derived with 
measured properties 

 (log k AGP and log k IAM) 

Model derived with 
calculated properties 

(log P and F-) 

Experimental 
pIC50 

Predicted 
pIC50 

Residual 
Predicted 

pIC50 
Residual 

Alfuzosin 4.28 4.74 0.46 3.85 0.42 

Desloratadine  5.75 5.78 0.04 5.51 0.24 

Diphenhydramine 4.94 5.02 0.08 5.23 0.29 

Dofetilide 5.72 4.96 0.76 4.85 0.87 

Flecainide 5.25 4.75 0.50 5.38 0.13 

Fluoxetine 5.73 5.74 0.01 5.65 0.08 

Indomethacin 3.72 4.55 0.83 4.08 0.36 

Irbesartan 4.71 5.28 0.57 5.73 1.02 

Lamotrigine 3.55 3.97 0.42 4.94 1.39 

Metoprolol 3.84 4.25 0.41 4.65 0.82 

Protriptyline 5.30 5.71 0.40 5.81 0.50 

Sildenafil 4.61 4.85 0.24 4.89 0.28 

Spironolactone 4.64 4.96 0.32 4.90 0.26 

Trazodone 5.30 4.84 0.46 5.38 0.08 

Trimethoprim 3.62 3.99 0.37 4.43 0.81 

Ziprasidone 6.44 5.69 0.75 5.69 0.75 
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Conclusions 

The hERG channel inhibition properties of drugs and drug discovery compounds are an important 

attribute as compounds with strong binding can cause cardiotoxic side effects during clinical trials. Early 

recognition of a compound’s hERG inhibition potential is important to avoid the progression of compounds 

that fail later because of cardiotoxicity. 

It has been demonstrated that two biomimetic HPLC property measurements can be used for screening 

molecules for hERG inhibition potential at an early stage of the drug discovery process. The model is based 

on the strong similarity between the AGP and hERG channel structures. Both attract positively charged 

compounds with a significant degree of lipophilicity. Both exhibit steric hindrance depending on the size 

and shape of the molecule being investigated. The membrane partition is also an important parameter as it 

reveals the membrane affinity of the compounds where the ion channel receptor is located. It has also 

been shown that two-dimensional physicochemical descriptors cannot provide an acceptable model for 

estimating the hERG pIC50 of molecules. 

Conflict of interest: Klara Valko is the founder of Biomimetic chromatography Ltd. 
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