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Abstract

Genetic interaction mapping is useful for understanding the molecular basis of cellular deci-

sion making, but elucidating interactions genome-wide is challenging due to the massive

number of gene combinations that must be tested. Here, we demonstrate a simple approach

to thoroughly map genetic interactions in bacteria using microfluidic-based single cell

sequencing. Using single cell PCR in droplets, we link distinct genetic information into single

DNA sequences that can be decoded by next generation sequencing. Our approach is scal-

able and theoretically enables the pooling of entire interaction libraries to interrogate multiple

pairwise genetic interactions in a single culture. The speed, ease, and low-cost of our

approach makes genetic interaction mapping viable for routine characterization, allowing

the interaction network to be used as a universal read out for a variety of biology experi-

ments, and for the elucidation of interaction networks in non-model organisms.

Introduction

Cells rely on interactions between biomolecules to achieve complex and dynamic capabilities

[1]. For example, cells use genetically encoded signaling proteins to interrogate environmental

conditions necessary for adaptation and survival, such as by detecting competitors and

responding by secreting an antibiotic. The complete set of biomolecular interactions that a cell

uses is often depicted as a connected network known as a genetic interaction diagram[2–4].

With complete knowledge of the interaction network of a cell it is possible, in theory, to predict

how the cell will respond to any given stimulus. While achieving such predictive power in

practice is not currently possible, even partial understanding of the interaction network is

valuable and is a core concept in systems biology[5, 6]. For example, in the study of human

health genetic networks are useful for understanding how pathways are dysregulated in disease

or drug metabolism. Additionally there is interest in using genetic interactions to better under-

stand novel and synthetic properties of microorganisms, such as the ability to digest environ-

mental contaminants or produce biofuels from cellulosic biomass. Consequently, there is

immense interest in novel methods to systematically map genetic interaction networks [7–11].
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One way to infer the genetic interaction diagram of a cell is to apply genetic perturbations

and observe the impact on a phenotype. By performing two such perturbations simulta-

neously, it is possible to infer an interaction between a pair of genes [12–14]. For example, if

two genes do not interact, the removal of both genes should have a multiplicative effect on phe-

notype, whereas genes that do interact will produce more complex phenotypes that include

suppression or synthetic lethality[15]. The utility and power of a genetic interaction network

grows as an increasing number of pairwise interactions are characterized, and is greatest and

most detailed by an exhaustive mapping of all possible pairwise interactions[16].

Model systems, like the budding yeast Saccharomyces cerevisiae and the bacterium Escheri-
chia coli, were some of the first used for systematic genetic interaction mapping, due to the

ease with which they can be manipulated[10, 14, 17–21]. This facilitated the development of

the single- and double-knockout libraries needed for these studies[22, 23]. However, while

generating massive libraries of double knockouts is technically feasible in these microorgan-

isms, screening their phenotypes is far more difficult. For example, screening every pairwise

genetic knockout in the S. cerevisiae genome, comprising ~6,000 genes, requires screening of

~20 million strains. Even with recently-developed high-throughput colony methods, only

thousands of combinations can be measured simultaneously, a minute subset of the space of

possible combinations[18]. Consequently, to make best use of these screens, much care must

be taken in selecting which genes to test as queries; this is not always possible and, even when

it is, represents a biased means of mapping the interaction network, since it is only possible to

detect interactions that are tested[24].

In this paper, we describe a method for comprehensively mapping genetic interactions. The

key to the method is the use of microfluidics to isolate single cells in picoliter droplets at

extremely high-throughput. Once confined in the droplets, single-cell linkage PCR physically

links the genetic perturbations into a single DNA sequence for analysis by next-generation

sequencing (NGS) [24, 25]. This, in essence, converts a library of living cells into a library of

DNA molecules, wherein each molecule contains sufficient information to determine geno-

type of the cell from which it originated. Moreover, since the sequencing depth of a specific

sequence is proportional to the relative abundance of the corresponding strain in the culture,

the fitness of each strain can be estimated by comparing its membership in the population[26,

27]. This makes our approach supremely scalable: Whereas comprehensive screening of dou-

ble knockout libraries of yeast or E. coli would require >10,000 high-density plates, our

method can theoretically perform the same screen in a single culture. The speed and ease of

our approach will enable the generation of genetic interaction networks in a variety of experi-

mental conditions in diverse microorganisms. For example, rather than just screening a double

mutant library in a single conditions (such as rich media), our approach can be adapted to

screening multiple conditions, including temperature changes, altering the starting composi-

tion of the population, or including chemical perturbations. The availability of conditional

genetic interaction networks will be useful for elucidating the cellular logic that underlies envi-

ronmental sensing and adaptation, and may enable the identification of new drug targets.

Methods and results

Mapping genetic interactions requires comparing the phenotypes of single gene perturbations

to the phenotypes of double gene perturbations. Making libraries of single genetic knockouts

is straightforward, but producing libraries of double mutants is supremely challenging. A com-

mon way to produce this library is to cross libraries of single knockouts to generate strains

containing defined double-knockout combinations. Alternatively, the single-knockout library

can be complemented with a library of additional genes of complementary function (Fig 1a).
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Genetic interactions within the libraries are scored by measuring the fitness (or growth) of

each double mutant strain. Moreover, the culture conditions can be varied, such as by depriv-

ing the cells of an important nutrient or adding a drug, to study how genetic interactions

change under these conditions. This can be used, for instance, to elucidate the targets of a drug

or to deduce key proteins important for signal processing.

A challenge in performing the mapping is tabulating all double knockouts with their fitness

under the screening conditions. One way to accomplish this is to isolate each strain at a known

location on a plate, and to measure colony growth at that spot. Since the knockout combina-

tion at each spot is known, it is straightforward to assign a fitness value to the perturbations. A

limitation of this method, however, is that it is onerous to scale at the level needed to

completely map genetic interactions in even the simplest cells, due to the need isolate each

combination at a spot; this necessitates expensive robotics in addition to immense amounts of

reagents and person-hours. Consequently, in most genetic interaction screens, only a small

subset of possible interactions is tested. However, deciding which genes to test is not always

straightforward and, even when it can be done, the screen will be biased, capable of discovering

only interactions that are tested.

An alternative would be to combine all library members into a single, pooled culture, and

to quantify population abundance afterwards without having to position each knockout com-

bination on an array. While this is possible with single knockout libraries by “barcoding”

strains prior to screening[28], it is not with double knockouts. To barcode strains, a unique

identification sequence is associated with each knockout. To quantify population abundance,

the barcodes can be amplified with PCR and counted by sequencing[26, 29]. While it is possi-

ble to barcode each perturbation separately in a double mutant, it is not currently possible to

determine which combination of barcodes exists within each cell in a random, high-

Fig 1. Screening genetic interaction libraries by single-cell sequencing with droplet microfluidics. (a)

Genetic libraries can be genomically encoded or introduced through episomal DNA like plasmids. Interaction

libraries are created by combining two genetic libraries. Some of the most common types of interaction

libraries are noted. (b)Libraries are screen by microfluidic encapsulation and single-cell linkage PCR

(scLPCR) inside picoliter droplets. Confining cells inside of droplets allows PCR to link cellular DNA without

crossover contamination of DNA from other cells. The PCR products are sequenced using paired-end

chemistry on an Illumina platform to decode linkage products.

doi:10.1371/journal.pone.0171302.g001
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throughput manner. For example, if a population of double-knockout strains is subjected to

PCR to amplify the barcodes, the resultant amplicons for all cells would mix in solution, abol-

ishing information about which pairs existed within the original cells. Retaining this informa-

tion requires a means for associating together barcode pairs within single cells. Such a method

would be very powerful because it would allow a large number of genetic interactions to be

screened and retroactively scored in a single, pooled culture.

Our strategy to enable this optimally scalable approach to genetic interaction mapping is to

use single cell droplet PCR to fuse barcode combinations into single molecules; these chimeric

molecules can be sequenced in massively parallel fashion using NGS (Fig 1b). Moreover, since

the sequencing depth of a particular barcode (or barcode pair) is proportional to its abundance

in the culture, the fitness of each strain can be estimated by relative membership of its barcode

in the sequence data. The key enabling feature of our approach is the ability to perform PCR

on millions of single cells using microfluidics, an approach we term single cell linkage PCR

(scL-PCR). The principle of scL-PCR is predicated on the ability to rapidly encapsulate single

cells inside of microdroplets, where PCR can be used to link cellular DNA without contamina-

tion from the DNA of other cells (Fig 1b).

To investigate if scL-PCR faithfully enables the accurate identification of heterogeneous

strain combinations in a mixed culture, we prepared two E. coli strains (Fig 2a, left). Strain

ECK1365 contains a knockout at the ynaA locus with the 1365 barcode and strain ECK0679

contains a knockout at the ybfH locus with the 0679 barcode. The unique barcodes comprise

known sequences of 20 bases embedded in a chloramphenicol selection marker. We perform

linkage PCR using primers that will link the barcode sequences with each genetic locus. Per-

forming linkage PCR in bulk, as expected, yields chimeric products comprising all four ran-

dom combinations (two barcodes, two open reading frames); this is because bulk PCR allows

the amplicons of both cells to mix in solution, generating chimeric products that consist of

sequences from both cells, and which do not represent the genotypes of either cell. By contrast,

if the linkage PCR is performed on single cells the only fusions that are generated correspond

to the true genotypes of the cells (Fig 2b).

Our method confines this single cell reaction in picoliter droplets using a microfluidic

dropmaker (S1 Fig). Because these droplets can be generated at>1 kHz, our approach can

process millions of cells per hour; using higher throughput droplet generation techniques,

throughputs of billions of cells are achievable. To demonstrate this, we grew the two E. coli KO

strains described above separately and pooled them before encapsulation. The cells are individ-

ually encapsulated in droplets using microfluidic flow focusing at a concentration limiting

dilution such that only 1 in 10 drops contains a cell. For comparison, we also aliquot a portion

of the mixed cell population into a PCR tube and perform the LPCR in bulk. The products of

the droplet and bulk reactions were prepared for NGS and sequenced using a paired end for-

mat, where the sequence from each read reports on a single genetic locus. The droplet work-

flow yields products accurately reflecting the genotypes of the original populations (Fig 2c,

left), whereas the bulk reaction shows the expected mixed products (Fig 2c, right). This dem-

onstrates that scLPCR in droplets preserves the genotypes of the strains.

In addition to determining the genotype of each double mutant strain as described above,

genetic interaction mapping also requires that we assign a fitness value to each double mutant

combination. This can be accomplished by counting the number of instances of each barcode

fusion in the sequencing data. As an illustration, prior to encapsulation in droplets we mix the

strains at different ratios from 1:1 to 1:10,000 cells. We find that sequencing depth accurately

reflects membership library over the four order-of-magnitude range (Fig 2d) that we tested.

This demonstrates that read counting is an accurate means by which to quantify strain fitness.

Genetic interaction mapping with microfluidic-based single cell sequencing
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Genetic interaction mapping can be accomplished by performing gene perturbation combi-

nations that are genome-to-genome or genome-to-plasmid. Alternatively, they can also be per-

formed via plasmid-to-plasmid interactions (for example, with two CRISPR-Cas9 constructs).

To conceptually illustrate this, we created a library of 64 E. coli strains containing unique bar-

codes encoded on two separate plasmids (Fig 3a). These plasmids were adapted from a two-

hybrid strategy for detecting protein-protein interactions in bacteria. The 64 individual strains

were grown from frozen glycerol stocks and combined into a single, pooled population. The

pool was subjected to the droplet workflow and the resulting scLPCR products were

sequenced. As a control, we grew and performed the linkage PCR for the 64 strains individu-

ally. The percentage of reads that match the known barcode combinations are the same for the

droplet scLPCR method and the individual mapping method, demonstrating that the droplet

method performs optimally. In contrast, a bulk reaction control again yields mostly mixed

products (Fig 3b). Interestingly, only ~94% of reads for either droplet or isolated strain experi-

ments match the known strain genotypes. We believe this to be due to spurious gene fusions

(chimeras) generated during NGS library preparation, which requires a bulk PCR on the

Fig 2. Droplet based single-cell sequencing preserves genomic structure and population membership. (a) KEIO collection

strains of E. coli used to test linkage PCR: a barcode has been inserted into the genome at defined loci, creating gene knockouts of

ynaA and ybfH in strains ECK1365 and ECK0679, respectively. (b) Linkage PCR to fuse the sequence from both genomic loci in the

two strains yields a mixture of four products in bulk (left), two of which reflect the true genomic organization and two that reflect

spurious mixed cell products. However, single-cell linkage PCR (scLPCR) only yields the two products that reflect true genomic

organization. (c) Deep sequencing of products from bulk linkage PCR or scLPCR showing percent of reads that reflect true genomic

organization (in black) or spurious mixed cell products (in red), indicating the scLPCR on a culture of mixed cell types recovers

reports on the genomic variation within the population. (d) The fraction of the population determined by sequencing depth (red dots)

when one KEIO strain is spiked into a culture of the other strain at defined dilutions shown on the x-axis. The expected results are

shown as a dashed line.

doi:10.1371/journal.pone.0171302.g002
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mixed products, which may lead to additional fusions. The frequency of these fusions may be

reduced by optimizing sequencing preparation and by employing compartmentalized amplifi-

cation methods, such as emulsion PCR. See the supplementary methods for a more in-depth

discussion of noise and experiment design (S1 File).

A valuable means by which to estimate the effectiveness of our method is to plot the mutual

information (MI) between the known and measured pairwise gene interactions (Fig 3c).

Mutual information is a measure of the confidence with which the presence of one barcode

can be associated with that of another. The barcode identities are plotted along the axes and

ordered such that correct fusions fall along the diagonal, where the color of the bin is propor-

tion to the MI between the barcodes. For the droplet scLPCR, there is substantial MI between

the barcodes on the diagonal, which represent the true sequences of strains in the library. In

contrast, the bulk PCR shows little MI for all combinations, which indicates that pairing is ran-

dom. Peculiarly, there are gaps where known barcode pairs should be present (Fig 3c, left).
This is likely due to the level of that strain in the population being too low to detect with the

Fig 3. Screening complex libraries with droplet sc-Seq. (a) Library of E. coli containing 64 strains, each

containing a pair of known barcodes (denoted X and Y) located on separate plasmids. (b) The accuracy of

barcode X and Y pairing from NGS (as percent of sequencing reads that report a correct X/Y pair) is the same

when using linkage PCR on isolated strains (well plate LPCR) or when using single cell linkage PCR in

droplets (Droplet scLPCR), while linkage PCR from all strains in bulk (Bulk LPCR) yields mostly random X/Y

pairs. (d) The amount of mutual information between specific X/Y barcode pairs in the NGS data shows strong

correlations along the diagonal, representing true X/Y pairs. In the same data for libraries from linkage PCR in

bulk there is no correlation between represented barcodes.

doi:10.1371/journal.pone.0171302.g003

Genetic interaction mapping with microfluidic-based single cell sequencing

PLOS ONE | DOI:10.1371/journal.pone.0171302 February 7, 2017 6 / 11



sequencing depth that we used. Likely, deeper sequencing would pull out these less-abundant

strains.

The speed, ease, and low cost of scLPCR make it valuable for screening the conditions under

which the cells are cultured, which is useful for investigating how genetic interactions mediate

responses to environmental conditions. To illustrate how this can be used to answer a biologi-

cal question, we generated a new genetic interaction library for amino acid auxotrophy. The

library contains 6 strains of E. coli with single gene deletions, wherein a unique DNA barcode

has been inserted into the genome of each strain at that locus. In five of the strains, the deleted

gene is essential for amino acid biosynthesis, such that these strains are unable to grow in

media not supplemented with the essential amino acid. We also construct four barcoded

Fig 4. Screening a combinatorial library of amino acid auxotrophy with sc-Seq. (a) The membership (by strain) of heterogeneous cultures is tracked by

droplet scLPCR for cultures grown in rich media (RM) or minimal media (MM) at 0,4,8, or 16 doublings after inoculation. (b) The fractional fold change in

minimal media vs. rich media over 16 doublings shows that auxotrophic strains with no complement drop out of the population (ΔtyrA, black line) while

prototrophic experience no selection and take over (ΔynaA, red line). (c) Droplet scLPCR shows the culture composition by strain and plasmid and unmasks

the mechanism of complementation, whereby auxotrophic strains persist in the culture through selective outgrowth of only those strains that harbor the

corresponding complementary gene (color corresponds to fraction of sequencing reads within each strain that are specific for the corresponding complement

gene).

doi:10.1371/journal.pone.0171302.g004
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complementation plasmids that express one of the amino acid biosynthesis genes. If the strain

with the deleted gene is complemented with a plasmid encoding that gene, it can synthesize

the needed amino acid and, thus, should go in the deficient media. We transformed the set of

six strains with the library of four complementation plasmids (24 total strains). The trans-

formed library was recovered for a short time in rich media, washed 3 times in minimal

media, and split into two new cultures. One culture was grown in rich media and the other

was grown in minimal media. The cultures were grown for 16 generations with periodic dilu-

tion to keep them in exponential phase. The cultures were sampled periodically and analyzed

by the droplet scLPCR workflow to measure culture membership. We kept the optical density

of the cultures low to minimize crosstalk between cells in the culture and to ensure that other

media nutrients do not become limiting.

Using scLPCR, we tracked the culture membership over the 16 generations (S2 Fig), finding

that culture composition changes in rich and minimal media (Fig 4a). The proportional differ-

ence in composition between rich and minimal media at each time point reflects the biological

impact of amino acid auxotrophy (Fig 4b). The ynaA knockout, which contains no amino acid

auxotrophy, should grow equally well in rich or minimal media. As expected this strain is sig-

nificantly enriched in the minimal media culture. Conversely, the tyrA knockout cannot grow

in minimal media and cannot be complemented by any of the plasmids in our library; there-

fore this strain drops out of the culture grown in minimal media. In addition to tracking the

membership of the culture by strain, we can track the membership of plasmids within each

strain. We find that there is no enrichment for the knockouts of hisB, leuB, metA, and proA at

the strain level (Fig 4b), but within each strain there is enrichment for cells harboring the

needed complementation plasmid (Fig 4c) across the 16 generations of growth. Peculiarly, we

also found that cells with the metA complementation plasmid persisted in the culture. This

observation turns out to be consistent with recent findings suggesting that overexpression of

the MetA protein can drive cells towards a persistor phenotype.[30]

Conclusions

We have demonstrated a method to rapidly screen genetic interactions in a single culture. We

produced genetic interaction libraries comprising two genetic perturbations and used single

cell linkage PCR and NGS to reliably quantify the levels of every member in the library. This

should make our approach useful for non-model bacterial systems, wherein genomic modifi-

cation (by transposons, CRISPR-Cas9, or targeted modification) is the only requirement. In

addition, the massive scalability afforded by droplet microfluidics should enable higher order

interactions, such as 3-gene interactions, to be tested.

A key advantage of our approach is the speed and ease with which libraries can be screened

across multiple conditions. This allows our approach to be adapted to multiple library types,

including genetic knockouts, the addition of biosynthetic pathways and non-native genes, and

protein interactions like the classic two-hybrid screen. We envision that this method can be

extended to eukaryotic systems for use in medical research and drug development. The eluci-

dation of genetic interaction networks in model systems like S. cerevisiae and E. coli capitalized

on decades of development in microbiology and precise molecular tools. Though library crea-

tion is time consuming, the pictures that emerge are rich in information and provide key

insights into genomic design principles, and these libraries continue to be screened and mined

for information. The arrival of new molecular tools like the Cas9 system allow these same con-

cepts to be extended to new organisms with ease and it is expected that the library creation

process will no longer be rate limiting. The use of droplet microfluidics to deconvolute com-

plex cell libraries is a powerful tool that can be combined with next-generation methods of

Genetic interaction mapping with microfluidic-based single cell sequencing
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library creation to allow for truly rapid interaction profiling in a multitude of conditions, time

points, and formats.

Supporting information

S1 File. Supporting information.

(PDF)

S1 Fig. Microfluidic device for sc-LPCR. The microfluidic droplet maker is a co-flow device

consisting of a single outlet 3 inlets, one for oil and one each for cells and PCR mix. Aqueous

mixes are flowed into a single channel that intersects a perpendicular channel of oil. Drops are

made the junction and their size is function of the device geometry at the junction. This device

has a width of 25 microns at the dropmaking junction and a height of 25um, which produces

drops of approximately 30 microns in diameter.

(TIF)

S2 Fig. Growth of strains in auxotrophy experiment. (a) Library of complementation strains

grown in EZ-Rich media for 16 generation. Each time the culture reaches O.D. ~0.32 (4 gener-

ations) it diluted back to O.D. 0.02. There is an initial lag of culture growth as the strains

recover from transformation (Plus 1), but the culture quickly achieves uniform growth rate.

(b) Library of complementation strains grown in EX-Min media for 16 generations. For this

culture condition the lag phase is very long (Min 1), and each successive culture grows slightly

faster.

(TIF)
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