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Abstract

Studies of human trisomies indicate a remarkable relationship between abnormal meiotic recombination and subsequent
nondisjunction at maternal meiosis I or II. Specifically, failure to recombine or recombination events located either too near
to or too far from the centromere have been linked to the origin of human trisomies. It should be possible to identify these
abnormal crossover configurations by using immunofluorescence methodology to directly examine the meiotic
recombination process in the human female. Accordingly, we initiated studies of crossover-associated proteins (e.g.,
MLH1) in human fetal oocytes to analyze their number and distribution on nondisjunction-prone human chromosomes and,
more generally, to characterize genome-wide levels of recombination in the human female. Our analyses indicate that the
number of MLH1 foci is lower than predicted from genetic linkage analysis, but its localization pattern conforms to that
expected for a crossover-associated protein. In studies of individual chromosomes, our observations provide evidence for
the presence of ‘‘vulnerable’’ crossover configurations in the fetal oocyte, consistent with the idea that these are
subsequently translated into nondisjunctional events in the adult oocyte.
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Introduction

Meiotic errors generate an extraordinary number of chromo-

some abnormalities in humans, with most of the abnormalities

originating in the first meiotic division in the oocyte [1]. Studies

conducted over the past 10–20 years have identified the first

molecular correlate of these abnormalities, as disturbances in

meiotic recombination have been linked to a variety of human

trisomies of maternal origin [1]. Specifically, reductions in

recombination have been associated with nondisjunction of

chromosomes 13, 15, 16, 18, 21, 22 and the sex chromosomes

[2,3,4,5,6,7,8,9,10], and alterations in the location of crossover

events with trisomies 16 and 21 and sex chromosome trisomies

[5,8,10]. These associations are consistent with similar observations

in model organisms such as Drosophila [11] and S. cerevisiae [12],

but the magnitude of the effect in humans has been surprising. For

example, the majority of cases of trisomy 21 appear to be

attributable to failure to crossover, or to crossovers located too

close to, or too far away from, the centromere [13]. Similarly, most

cases of trisomy 16 are associated with distally located exchanges

[5]. Thus, it appears that a large proportion, if not a majority, of

human trisomies involve achiasmate homologous chromosomes, or

homologous chromosomes with sub-optimally located exchanges.

These observations present a conundrum. That is, how can

aberrant meiotic recombination, an event that occurs in the fetal

ovary, be a major contributor to trisomy when advancing

maternal age, a process that occurs decades later, is unquestion-

ably the most important risk factor for meiotic nondisjunction?

The answer is not yet obvious, but several groups have suggested

that there is a two-step process that links the two etiological factors

[14]. Specifically, it is assumed that a proportion of homologs are

either achiasmate or tethered by sub-optimally located crossovers.

With increasing maternal age, these configurations become more

likely to nondisjoin. If this is the case, at least two predictions

follow: First, for older women, chromosome-specific genetic maps

constructed from analyses of trisomic conceptions should be

shorter, and with a different distribution of exchanges, than those

from chromosomally normal offspring. Second, direct analyses of

crossover events in human fetal oocytes should reveal ‘‘vulnerable’’

crossover configurations that should exhibit chromosome specific-

ity consistent with data from trisomic conceptions (e.g., for

chromosome 16, distally located exchanges and for chromosome

21, proximal and distal exchanges, as well as achiasmate

chromosomes).

Over the past several years, a number of groups have attempted

to address the first prediction, examining the relationship between

crossing-over patterns and maternal age in trisomic conceptions

(e.g., [3,4,8,15]). However, there has been little attempt to address

the second prediction. In part this is attributable to the obvious

challenges in obtaining the appropriate study material (i.e.,
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prophase stage oocytes from fetal ovaries); however, more

importantly, there has been no simple approach to visualize the

crossing-over process. The introduction of immunofluorescence

methodology eliminates this problem and provides a simple,

straightforward approach to the analysis of human meiosis,

making it possible to monitor the formation of meiosis-specific

structures (e.g., the synaptonemal complex, SC) and to visualize

interactions between homologs as they pair, synapse and

recombine during meiotic prophase. Of particular importance

has been the employment of the MutL homologue, MLH1, to

identify the sites of crossovers on meiotic chromosomes. Studies of

male and female mice and human males indicate a 1:1

correspondence between the occurrence of MLH1 foci in

pachytene spermatocytes/oocytes and sites of chiasmata in

diakinesis stage cells or sites of recombination inferred from

genetic linkage studies (for review, see [16]). Consequently, by

using MLH1 as a surrogate for exchanges, it now seems possible to

analyze crossing-over ‘‘as it happens’’ during pachytene. Further,

the inclusion of chromosome-specific fluorescence in situ hybrid-

ization (FISH) in such investigations provides a means to monitor

recombination on individual chromosomes.

Utilizing this approach, several groups have initiated studies of

human female meiosis [17,18,19,20] but in most of these the focus

has been on the meiotic process, and not specifically on

recombination. Thus, we recently initiated studies utilizing human

fetal ovarian samples. We evaluated the utility of MLH1 as a

marker of crossing-over in females and asked whether achiasmate

chromosomes and sub-optimal crossover patterns are, indeed, a

feature of human female meiosis. In this report we summarize

results on an initial series of 1035 prophase oocytes from 31 fetal

ovarian samples. Our results provide evidence of temporal

differences between human males and females in the appearance

of MLH1 foci on the synaptonemal complex, but indicate that

MLH1 foci are a useful marker of crossovers in females as well as

males. The results of analyses of the number and location of

MLH1 foci provide evidence for the presence of ‘‘vulnerable’’

crossover configurations, observations consistent with data from

previous human trisomy studies.

Results

Preparations of prophase oocytes were made from 31 fetal

ovarian samples collected from female fetuses with gestational ages

between 14–23 weeks. A summary of the information on these

cases is provided in Table 1.

Temporal aspects of MLH1 localization
In previous studies of human males [20,21,22], mouse males

[23,24] and mouse females [25], MLH1 has been observed to

localize primarily to SCs of pachytene stage cells. However, similar

immunostaining studies of human fetal oocytes have suggested a

more ‘‘relaxed’’ temporal pattern, with MLH1 foci evident in earlier

meiotic stages [17,26]. Thus, in initial analyses, we were interested

in examining the temporal pattern of MLH1 localization in our own

series. Representative images of leptotene, zygotene and pachytene

cells are provided in Figure 1A–1C. At leptotene (Figure 1A),

MLH1 foci were occasionally observed as small, dispersed signals

throughout the nucleus, but it was unclear whether these were

actually associated with SCs. However, at zygotene (Figure 1B), SC-

associated MLH1 foci were clearly visible in all cases that we

examined, although the signals were not nearly as intense as those in

later pachytene stage cells (Figure 1C). We made no systematic

attempt to quantify the number of foci present in zygotene cells, but

in general they were less abundant than in pachytene cells.

Analyses of recombination over the entire genome
Table 2 provides a summary of the mean genome-wide MLH1

counts per cell for the 31 ovarian samples (see Figure S1 for graphical

representation of the data). The overall mean MLH1 value per cell

for the 1035 pachytene cells we examined was 69.3614.3. However,

there was considerable variation within and among individual

ovarian samples. For example, for most ovaries there was an

approximate two-fold difference between the lowest and highest

MLH1 values. Similarly, there was highly significant variation

among the 31 samples (F = 19.0; p,0.0001), with individual mean

values ranging from a low of 52.6 (SF 009) to a high of 88.3 (EC 101).

This variation was not attributable to either gestational or maternal

age, as we saw no obvious relationship between MLH1 counts and

these variables. Further, there was no obvious effect of fetal

abnormalities (i.e., identified in cases EC 41, 69, 76, 96 and 98;

Table 1) on the number or distribution of MLH1 foci.

In a second analysis, we were interested in determining the

number of cells in which there were one or more chromosomes

without MLH1 foci (assuming a 1:1 correspondence between

MLH1 foci and crossovers, such situations would yield achiasmate

chromosomes at metaphase/anaphase I). This assessment was

complicated by the length of the individual SCs, which resulted in

numerous overlapping SCs in most cells. Nevertheless, we were

able to independently visualize all 23 SCs in 176 (17.0%) of the

1035 cells; Figure 1C provides an example of one such cell. In the

vast majority (132/176 = 75.0%) of these cells, MLH1 foci were

detected on all bivalents. However, in 31 cells we observed a single

‘‘MLH1-less’’ bivalent, in 9 cells two of the SCs were lacking

MLH1 foci, in one cell 3 bivalents were without foci and in one

cell 6 SCs were lacking foci. We made no attempt to identify the

specific MLH1-less chromosomes using FISH; however, on the

basis of morphology, exactly one-half involved small acrocentric

chromosomes (i.e., either chromosomes 21 or 22), with no other

chromosome group being obviously over-represented.

Chromosome-specific recombination studies
In subsequent studies, we were interested in assessing recombi-

nation patterns on chromosomes known to be associated with

Author Summary

One of the defining events in the formation of eggs and
sperm is meiotic recombination, a process in which DNA is
exchanged between ‘‘partner’’ chromosomes. If this
process is perturbed, chromosomes often go astray during
meiotic division, resulting in eggs or sperm with too many
or too few chromosomes. In humans, the resulting
embryos are almost always abnormal and are a major
source of miscarriages or congenital birth defects (e.g.,
Down syndrome). Over the past decade, techniques have
become available that make possible the examination of
meiotic recombination ‘‘as it happens’’ in the human egg,
and this has allowed us to define the properties of this
process. In the present study, we used this methodology
to characterize meiotic recombination in human fetal
oocytes and to ask whether we could identify abnormal
recombination patterns. Such patterns were, indeed,
observed for each chromosome we studied, although
different abnormalities were observed among the individ-
ual chromosomes. Thus, factors operating before birth
influence the likelihood of chromosome misdivision in the
adult oocyte, although those that make chromosome 21
misdivide (leading to Down syndrome) may not be the
same as those that make other chromosomes misdivide.

Recombination in Human Oocytes
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Table 1. Summary of patient information from 31 fetal ovarian samples.

ID Maternal Age (years) Gestational Age (weeks) Clinical Observations/Reason for Ascertainment Chromosome Constitution

EC 010 18 46,XX

EC 018 22 46,XX

EC 041 16 anencephaly

EC 053 16

EC 069 20 multiple congenital anomalies 46,XX

EC 076 19 neurotube defect

EC 091 21

EC 096 20 renal agenesis with anhydramnios 46,XX

EC 098 17 anencephaly

EC 099 19

EC 101 20 maternal vaginal lymphoma

SF 001 21 20 elective termination

SF 002 21 21 elective termination

SF 004 27 20 elective termination

EC 141 15

SF 008 25 19 elective termination

EC 143 14

SF 009 31 23 elective termination

EC 147 18 placenta accreta

SF 010 30 19 elective termination

SF 011 18 23 elective termination

SF 012 29 22 elective termination

SF 013 21 15 elective termination

SF 018 32 23 elective termination

SF 020 31 19 elective termination

SF 023 18 21 elective termination

SF 024 37 19 elective termination

SF 025 21 19 elective termination

SF 029 16 23 elective termination

SF 032 24 22 elective termination

SF 035 19 20 elective termination

doi:10.1371/journal.pgen.1000661.t001

Figure 1. Representative images from (A) leptotene, (B) zygotene, and (C) pachytene stage human fetal oocytes. Antibodies against
SYCP3 (representing the axial elements of the synaptonemal complex) are visualized in red and against the DNA mismatch repair protein MLH1 in
green, and CREST antiserum-positive signals (recognizing centromeric regions) are visualized in blue.
doi:10.1371/journal.pgen.1000661.g001

Recombination in Human Oocytes
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clinically relevant human trisomies. Thus, we examined chromo-

somes associated with clinical syndromes (i.e., trisomies 13, 18 and

21), or high frequencies of occurrence in spontaneous abortions (i.e.,

trisomies 16 and 22); additionally, we included chromosome 17 as a

‘‘comparison’’ for the other E group chromosomes (i.e., chromo-

somes 16 and 18). Cumulatively, these six chromosomes account for

well over 50% of all clinically recognized trisomies [27].

For these analyses, we examined slides from a subset of the study

population (i.e., cases EC 69, 76, 91, 96, 98, 99 and 101). These

cases were not selected in any way, but instead represented seven

consecutive samples collected at the time at which we were

interested in conducting this specific analysis. The pooled genome-

wide MLH1 mean value for these seven cases was slightly higher

than for the general study population (i.e., 77.9 vs. 69.3). However,

the data on the individual chromosomes was similar among the

seven cases, despite the fact that the mean MLH1 values varied

from 68.2 to 88.3; additionally, the proportion of achiasmate

chromosomes for these individuals was similar to that observed for

individuals in the general series. Thus it seems likely that, in general,

the data are representative of the study population as a whole.

Chromosome-specific genetic lengths. Table 3 shows the

number of MLH1 foci per bivalent and the estimated genetic

lengths (assuming that one MLH1 focus = one crossover = 50 cM)

for chromosomes 13, 16, 17, 18, 21 and 22. The overall number of

MLH1 foci was virtually identical for SCs of chromosomes 13, 16

and 17, with each averaging approximately 2.5 foci per bivalent.

The number of foci was slightly reduced for chromosome 18, at

2.2 foci, and chromosomes 21 and 22 each averaged slightly more

than one focus, with chromosome 22 somewhat higher than

chromosome 21.

In general, we found that most chromosome arms possessed at

least one MLH1 focus (Table 4). The most notable exceptions

were the short arms of the acrocentric chromosomes (13, 21 and

22), on which foci were detected in only 11/412 cells (2.7%).

Additionally, the short arm of chromosome 18 exhibited a

surprisingly high proportion of ‘‘MLH1-less’’ events, as in 42/

112 cells (37.5%) either both the p and q arms or the p arm lacked

MLH1 foci. This contrasted sharply with the other two E group

chromosomes, as for chromosomes 16 and 17 the frequencies of

MLH1-less short arms were 0% and 18.3%, respectively.

Chromosomal location of MLH1 foci. Figure 2, Figure 3,

Figure 4, Figure 5, Figure 6, and Figure 7 show the approximate

location of MLH1 foci, ordered by the number of MLH1 foci per

SC, for chromosomes 13, 16, 17, 18, 21 and 22 (Figure S2, S3, S4,

S5, S6, S7 show the same information, but with the data pooled by

the number of MLH1 foci per SC). For this analysis, we simply

divided the chromosome arms into five equal segments, and

specified the segmental location for each MLH1 focus. Clearly,

this only provides a general assessment of MLH1 localization,

since it does not take into account the variation in arm-arm

physical lengths for individual chromosomes. Nevertheless, it

provides a mechanism for generating initial cytological maps and

for examining spatial relationships between foci that are located on

the same chromosomes.

For most chromosome arms, interstitial locations predominated,

with the highest proportion of MLH1 foci being medially placed.

That is, excluding the short arms of the acrocentric chromosomes,

the proportion of foci located in the ‘‘middle’’ segment exceeded

the predicted 20% assuming random placement, and typically

accounted for between 30% and 60% of foci per arm (Figure S2,

S3, S4, S5, S6, S7). In contrast, telomeric and centromeric foci

were under-represented on almost all chromosome arms, with

each region typically accounting for 10% or fewer of all foci.

Chromosome 16 provided the one notable exception to this trend.

Specifically, on 16q the highest proportion of MLH1 foci (29%)

was located in the most telomeric region; further, the proportion of

telomeric foci on 16p (16%) was only slightly less than the 20%

expectation and was higher than that observed for any other

chromosome arm except 16q.

In a separate analysis, we examined the spacing of MLH1 foci

on bivalents with two or more foci. For each of the six

chromosomes, the placement of foci was clearly non-random,

consistent with strong positive interference (Figure 2, Figure 3,

Figure 4, Figure 5, Figure 6, Figure 7). For example, in the

simplest situation – SCs with exactly two MLH1 foci – the two foci

were never observed in the same region (i.e., 0/238 SCs involving

chromosomes 13, 16, 17, 18, 21 or 22). Subsequently, we

examined interference more directly by estimating coincidence

values over different interval distances for each of the chromo-

somes (Figure 8). When all SCs with multiple foci were considered,

estimates of coincidence indicated significant positive interference

over one to three chromosome regions. The relative distance over

Table 2. Summary of MLH1 analyses from 31 fetal ovarian
samples.

ID Number of Cells Mean MLH1 Count6S.D. Range

EC 010 25 59.3610.0 43–81

EC 018 7 80.7618.1 53–96

EC 041 71 65.1611.5 40–89

EC 053 14 69.8612.4 46–89

EC 069 40 68.268.8 44–83

EC 076 36 71.7610.9 54–95

EC 091 39 68.669.4 49–92

EC 096 60 79.6610.7 59–102

EC 098 30 82.1610.2 57–107

EC 099 37 87.1616.0 50–115

EC 101 53 88.3610.3 66–109

SF 001 59 59.2614.0 27–89

SF 002 34 59.7610.4 37–74

SF 004 17 59.1613.9 40–96

EC 141 13 76.3614.1 58–94

SF 008 70 66.6611.6 42–92

EC 143 11 87.2611.1 64–104

SF 009 13 52.6610.5 40–61

EC 147 40 67.8611.0 48–88

SF 010 54 65.5612.8 45–100

SF 011 10 75.068.8 55–89

SF 012 10 64.868.0 52–76

SF 013 40 66.4613.9 43–97

SF 018 12 72.2614.6 56–107

SF 020 11 60.2610.8 48–74

SF 023 20 64.3612.6 45–86

SF 024 39 61.8610.8 45–84

SF 025 46 59.969.7 43–77

SF 029 18 69.6610.9 55–92

SF 032 50 73.3611.6 51–103

SF 035 56 69.9610.3 50–100

Total 1035 69.3614.3 27–107

doi:10.1371/journal.pgen.1000661.t002

Recombination in Human Oocytes
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which interference extended varied among the different chromo-

somes; i.e. estimates of coincidence significantly ,1.0 were

observed over three adjacent intervals for chromosome 13, over

two intervals for chromosomes 16, 17 and 18, and over one

interval for chromosomes 21 and 22 (Figure 8).

We were also interested in determining whether interference

acted across the centromere, or whether the positioning of MLH1

foci on one chromosome arm was independent of focus location on

the other arm. For this analysis, we examined the three non-

acrocentric chromosomes (i.e., 16, 17 and 18), analyzing all

situations in which adjacent MLH1 foci were located on opposite

chromosome arms. Specifically, we analyzed the distribution of

MLH1 foci on the short arm by the location of the adjacent long

arm focus; for both arms, we collapsed the five segments

(centromeric, proximal, medial, distal, telomeric) into three

because of the relatively small number of centromeric and

telomeric MLH1 foci (Figure 9). The short arm localization

patterns were highly significantly different for the three categories

(x2 = 20.4; p,0.001), with distal/telomeric short arm foci more

likely to be observed in association with centromeric/proximal

long arm foci than with distal/telomeric long arm foci. Thus, we

conclude that interference operates over the centromere.

Discussion

The purpose of the present study was threefold: 1) to determine

whether analysis of MLH1 foci in pachytene oocytes could provide

a reliable approach to studying human female recombination and

if so; 2), to use this approach to characterize basic features of

female recombination and; 3), to determine whether ‘‘vulnerable’’

chiasma configurations predicted by the two hit model of human

nondisjunction [28] are evident in pachytene oocytes.

Are MLH1 foci reliable markers of crossovers in human
ooocytes?

Over the past several years, analyses of pachytene stage

meiocytes from human males, mouse males and mouse females

have demonstrated a remarkable correlation between the number

Table 3. Number of MLH1 foci on individual chromosomes.

Chromosome (number cells) Number exchanges (%) Mean/cell Genetic length (cM)

0 1 2 3 4 5 6

13 (104) 1 8 42 39 12 2 – 2.57 128.4

(1.0) (7.7) (40.4) (37.5) (11.5) (1.9) –

16 (73) – 5 30 35 3 – – 2.49 124.5

– (6.8) (41.1) (47.9) (4.1) – –

17 (98) 1 12 31 42 9 2 1 2.57 128.6

(1.0) (12.2) (31.6) (42.9) (9.2) (2.0) (1.0)

18 (112) 3 17 53 30 8 1 – 2.23 111.6

(2.7) (15.2) (47.3) (26.8) (7.1) (0.9) –

21 (164) 8 115 40 1 – – – 1.21 60.4

(4.9) (70.1) (24.4) (0.6) – – –

22 (144) 9 87 41 7 – – – 1.32 66.0

(6.3) (60.4) (28.5) (4.9) – – –

doi:10.1371/journal.pgen.1000661.t003

Table 4. Presence or absence of exchanges on arms of individual chromosomes.

Chromosome (no cells) Presence (+) or absence (2) of MLH1 focus(i) on individual arms of bivalent

p arm2/q arm2 p arm+/q arm2 p arm2/q arm+ p arm+/q arm+

13 (104) no. 1 0 99 4

(%) (1.0) (0.0) (95.2) (3.8)

16 (73) no. 0 5 4 64

(%) (0.0) (6.8) (5.5) (87.7)

17 (98) no. 1 5 17 75

(%) (1.0) (5.1) (17.3) (76.5)

18 (112) no. 3 3 39 67

(%) (2.7) (2.7) (34.8) (59.8)

21 (164) no. 8 2 152 2

(%) (4.9) (1.2) (92.7) (1.2)

22 (144) no. 9 0 132 3

(%) (6.3) (0.0) (90.3) (2.1)

doi:10.1371/journal.pgen.1000661.t004

Recombination in Human Oocytes
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and location of MLH1 foci and the predicted occurrence of

meiotic recombination events (e.g., [21,23]). Thus, a number of

laboratories, including our own, have assumed that MLH1 foci

mark the sites of crossovers. However, the evidence that MLH1

localizes to sites of recombination in human female oocytes is not

as convincing. For example, both Lenzi et al [17] and Hulten and

colleagues [26] have reported lower average MLH1 counts per

oocyte than those predicted from genetic linkage analyses of

human females (Table 5).

The results of the present study are in good agreement with

these previous immunostaining studies. In our series the overall

mean number of MLH1 foci per oocyte was 69.3, corresponding

to a genome-wide genetic length of 3465 cM. As estimates from

linkage analyses indicate a female genome-wide length of

approximately 4300–4600 cm [29,30,31,32,33,34] it means that

– similar to the previous immunostaining studies – we may have

‘‘missed’’ approximately 20% of all recombination events.

The reason for this discrepancy is not clear; however, we can

think of at least four possible explanations why MLH1-based

studies may have underestimated the ‘‘real’’ number of exchanges.

First, it could be that these studies selected a sub-set of cells that

are unrepresentative of all pachytene stage oocytes. For example,

in the present analysis, we excluded cells with obvious synaptic

defects. However, since such cells typically contain fewer, not

more, MLH1 foci (data not shown), this seems an unlikely

explanation. Second, it could be that the discrepancy is

attributable to differential selection against a sub-set of oocytes.

For example, it may be that, in the human female, the prenatal

wave of oocyte atresia is more likely to involve oocytes with low

numbers of exchanges so that, on average, oocytes that survive to

be ovulated have more exchanges than pachytene stage human

fetal oocytes. However, this does not explain the fact that oocyte

atresia in female mice does not produce obvious differences in

results between MLH1-based assays of recombination and genetic

linkage analyses [25,35]. Third, the discrepancy may reflect the

existence of other, non-MLH1-associated crossover pathways.

Indeed, non-interfering crossover pathways that are independent

of MLH1 have been described in multiple organisms (e.g.,

[36,37]), and appear to exist in mammals as well [38]. However,

they seem unlikely to play a major role in crossover formation.

Cytological [39] and molecular studies [40,41] of mice homozy-

gous for mutations in MLH1 (or its partner MLH3) suggest that

only a small number (10% or less) of crossovers occur in the

absence of the MLH1-associated pathway. Thus, while other non

MLH1-driven crossover pathways almost certainly contribute to

the discrepancy, they provide at best only a partial explanation.

Finally, the discrepancy may reflect biological differences in the

recombination pathway between human females and human

males and mice. In our experience, MLH1 foci are rarely

visualized before pachytene in human and mouse males, and are

also infrequent in mouse females. In contrast, we and others

[17,26] have observed abundant MLH1 localization in both

zygotene and pachytene stage human oocytes, suggesting that

crossing-over occurs over a wider temporal window in the human

female. If so, crossovers may not be established synchronously in

human oocytes, meaning that it will be difficult to visualize all

MLH1 foci at the same time. Thus, MLH1 foci would mark

exchanges in human oocytes as in human males and mice but, at

any given time, not all exchanges would be identifiable.

We favor this last explanation, since it is the only one that fits

our observations. Nevertheless, the suggestion of a fundamental

difference in the chronology of recombination between human

males and females – and between human females and mice –

clearly requires confirmation. Initially, it will be important to

assess the localization patterns of other recombination proteins in

human males and females, and ask whether there are other

consistent sex-specific differences.

Regardless of the correctness of this or any of the other possible

explanations, one conclusion seems clear – some proportion of

exchanges are unrepresented by the MLH1 methodology. Thus it

is important that we judiciously interpret MLH1-based data on

human female recombination. For example, MLH1 analysis

presumably over-estimates the number of achiasmate bivalents,

one of the ‘‘vulnerable’’ chiasma configurations associated with

models of human nondisjunction. Further, inferences about

interference will be complicated by the fact that some exchanges

Figure 2. Chromosomal locations of MLH1 foci on chromosome 13 (Figure 2), considered by the number of MLH1 foci per SC.
doi:10.1371/journal.pgen.1000661.g002
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are missed, leading to erroneous conclusions about the chromo-

somal locations of exchanges. We do not take this to mean that the

MLH1-based approach is without merit. Indeed, by comparison

with other approaches (e.g., genetic linkage analysis, diakinesis

studies of chiasmata), it may provide the most straightforward

approach to capturing the vast majority of exchanges in human

females. Nevertheless, it does not provide the apparent 1:1

correspondence that has been observed between MLH1 foci and

crossovers in human males and mice.

What do MLH1 studies tell us about meiotic
recombination patterns in human females?

Despite concerns about the utility of the MLH1 approach, the

number and distribution of MLH1 foci in pachytene oocytes

conformed to two basic principles of meiosis common to most

species: first, the presence of at least one exchange per bivalent and

second, the non-random positioning of exchanges on chromo-

somes.

Most importantly, in our analyses virtually all chromosomes

contained at least one MLH1 focus. In the 176 cells in which we

were able to analyze the number of MLH1 foci on all 23 bivalents,

we identified only 57 MLH1-less bivalents. Considered on a per

chromosome basis, this means that only 1.4% (57/4048) of all

bivalents lacked an MLH1 focus. Subsequent analyses of individual

chromosomes 13, 16, 17, 18, 21 and 22 were consistent with the

genome-wide observations. Specifically, the proportion of MLH1-

less bivalents ranged from a low of 0% for chromosome 16 to highs

of approximately 5–6% for chromosomes 21 and 22 (Table 3).

While we did not systematically study individual chromosomes 1–12

or the X chromosome, limited analyses of these chromosomes

provided little evidence of MLH1-less bivalents (data not shown);

thus in our series the values for chromosomes 21 and 22 are

undoubtedly the highest for any chromosomes.

Our observations also provide strong evidence for a non-

random distribution of exchanges on chromosomes. First, the

number of MLH1 foci per chromosome was constrained. For

example, for the smallest chromosomes (i.e., 21 and 22), virtually

all bivalents had either one or two MLH1 foci, while for

chromosomes 13, 16, 17 and 18 the vast majority had two, three

or four foci. Second, for each of the six individual chromosomes

analyzed, the foci were spread out along the chromosomes; i.e.,

their placement was consistent with positive crossover interference

Figure 3. Chromosomal locations of MLH1 foci on chromosome 16, considered by the number of MLH1 foci per SC.
doi:10.1371/journal.pgen.1000661.g003
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(Figure 8). Consistent with immunostaining studies of human

males [42] and with previous linkage analyses [43], we found no

evidence that interference was impeded by the centromere.

The number and distribution of MLH1 foci also recapitulated

several observations from human genetic linkage analyses and

cytological analyses of recombination. For example, despite our

conclusion that we missed some exchanges, the mean number of

MLH1 foci per oocyte was still far in excess of that reported for

human pachytene spermatocytes (i.e., approximately 50 per cell;

[22]). Thus, in agreement with evidence from genetic linkage

studies (e.g., [44]), our analyses indicate that meiotic recombina-

tion events are more frequent in human females than in human

males. Additionally, our observations were consistent with

available data on sex-specific differences in the placement of

exchanges. On nearly all chromosome arms that we examined,

interstitially located foci predominated (Figure 2, Figure 3,

Figure 4, Figure 5, Figure 6, Figure 7). This finding agrees with

data from human genetic linkage analyses and previous immuno-

staining studies, which indicate that distal chromosome regions are

enriched for recombination in males by comparison with females

(e.g., [16]). Finally, consistent with previous MLH1-based data

[16],we observed significant among-individual variation in ex-

change frequencies, with mean MLH1 counts per cell ranging

from approximately 60 to 90. Similarly, previous linkage analyses

of genome-wide recombination levels in human females have also

identified significant individual to individual variation [30], albeit

not as pronounced as the differences that we observed.

Thus, in general, our observations on MLH1 foci reinforce

several previously reported features of human female recombina-

tion. However, there was one surprising difference between our

observations and previously reported genetic linkage data.

Specifically, our observation of low levels of MLH1-less bivalents

is in sharp contrast to previous chromosome-specific estimates of

exchangeless chromosomes from linkage analyses. For example,

Bugge et al [6] suggested that approximately 12% of chromosome

13 bivalents are achiasmate, while Oliver et al [15] recently

reported a value of 20% for chromosome 21. In contrast, in our

analysis only 1% of chromosome 13 bivalents and 5% of

chromosome 21 bivalents were lacking an MLH1 focus (Table 3).

Further, as discussed above, these values likely overestimate the

real frequency of MLH1-less bivalents, making the discrepancy

between the linkage and MLH1-based data even more puzzling.

While it is not possible to know with certainty which of these

estimates is ‘‘right’’, it is instructive to ask which – if either – data

set yields the better fit to available data on trisomies from human

pregnancies. Assuming random segregation of achiasmate biva-

lents, our MLH1 data suggest maternal nondisjunction rates of

approximately 0.5% for chromosome 13 and 2.5% for chromo-

somes 21, while the genetic linkage analyses suggest levels of 6%

for chromosome 13 [6] and 10% for chromosome 21 [15]. While

the actual incidence of trisomies 13 and 21 in human gametes and

pregnancies is not known, observations from oocytes, cleavage

stage embryos and clinically recognized pregnancies are much

closer to the MLH1-based estimates than those implied by the

Figure 4. Chromosomal locations of MLH1 foci on chromosome 17, considered by the number of MLH1 foci per SC.
doi:10.1371/journal.pgen.1000661.g004
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linkage studies. Specifically, cytogenetic studies of oocytes and

cleavage stage embryos suggest that trisomy 21 is more common

than trisomy 13, but neither condition occurs in more than about

5% of cases (e.g., [45,46,47,48]); and in clinically recognized

pregnancies, trisomies 13 and 21 account for only 0.2% and 0.5%

of cases, respectively [27]. Taken together, these data suggest that,

even in oocytes or very early stage embryos, the observed levels of

trisomies 13 and 21 are one-half or less that expected on the basis

of the linkage data. Thus, unless humans possess Drosophila-like

mechanisms to segregate achiasmate chromosomes (e.g., [49]), it

seems likely that MLH1-based assays are better predictors of

achiasmate levels than are linkage analyses.

Regardless of the correctness of this conclusion, the discrepant

observations beg another question – why do the two methods

differ in the first place? Specifically, why does a method that does

not capture all crossovers (MLH1 analysis) yield a lower estimate

of exchangeless bivalents than a method (linkage analysis) that

yields a higher overall level of genome-wide recombination? We

can think of a number of reasons why there might be differences

between the two approaches, but none of them adequately

explains available data on recombination and/or levels of human

trisomies. For example, it may be that there is significant

recombination-associated selection against a sub-set of oocytes,

so that these are eliminated and never contribute to pregnancies

(and consequently, are not represented in linkage data sets).

However, to reconcile the linkage and MLH1 data the selection

would have to favor oocytes with exchangeless bivalents, a

phenomenon that – at least on the surface – seems implausible.

Further, this has the effect of increasing the expected incidence of

trisomies in humans to levels that are simply unrealistic in the

absence of an achiasmate segregation mechanism; e.g., to over 5%

for trisomies 13 and 21. Second, because we selected the ‘‘best’’

oocytes (those with complete synapsis) for our studies, we may

have excluded oocytes with exchangeless bivalents. If these are

able to complete meiosis and are capable of being fertilized, the

number of zero exchange events might be much higher than we

have estimated (e.g., possibly as high as that associated with

linkage analysis). However, if this were the case, we are still left

with the discrepancy between the observed and expected incidence

of trisomies; i.e., the high estimates associated with linkage studies.

Third, it may be that a proportion of MLH1 foci do not give rise

to crossovers, meaning that we under-estimated the real number of

exchangeless homologs. However, if this were the case, the

problems associated with the above explanations still apply;

additionally, we are unaware of data from any species suggesting

that only some MLH1 foci contribute to crossovers. Finally, it may

be that, at least for some chromosomes, linkage analysis

systematically underestimates the actual number of exchanges.

For example, marker panels might not adequately cover all regions

(e.g., extremely distal or proximal segments), resulting in missed

Figure 5. Chromosomal locations of MLH1 foci on chromosome 18, considered by the number of MLH1 foci per SC.
doi:10.1371/journal.pgen.1000661.g005
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exchanges. However, while this would bring the linkage data in

line with our observations it would create another problem, since

the discrepancy between the MLH1-based and linkage-based

estimates of genome-wide recombination estimates would be even

greater.

Thus, the reason for the discrepancy between the two

approaches is not immediately obvious. Clearly, it is important

that future analyses address this issue, since accurate data on the

number and chromosome-specific nature of exchangeless bivalents

is central to our understanding of human meiosis and mechanisms

of meiotic nondisjunction.

Are there chromosome-specific differences in the
frequency of ‘‘vulnerable’’ chiasma configurations?

Alterations in either the number or placement of recombination

events have been implicated in the genesis of all human trisomies

that have been appropriately studied. In general, these reports

suggest there are three types of chiasma configurations that

predispose to nondisjunction in humans: bivalents that have no

exchanges, bivalents with exchanges too far from the centromere,

and bivalents with exchanges too close to the centromere [14].

However, as outlined in Table 6, the nature of these alterations

varies for maternally-derived trisomies involving different chro-

mosomes.

Presumably, these chromosome-specific differences could orig-

inate in one of two ways. First, they could originate prenatally, at

the time that crossovers are formed. That is, it may be that the

likelihood of specific types of ‘‘vulnerable’’ chiasma configurations

varies among chromosomes and that, once established, similar

proportions of these are translated into nondisjunctional events. If

this is the case, the recombination patterns observed in linkage

analyses of individual trisomies should be reflected by the number

and chromosomal location of MLH1 foci in pachytene oocytes.

For example, for trisomy 18, achiasmate bivalents are an

important risk factor but ‘‘misplaced’’ (extremely proximal or

distal) exchanges are not; thus, in analyses of pachytene oocytes we

might expect to identify a relatively high proportion of MLH1-less

chromosome 18 bivalents but few, if any, with extremely proximal

or distal MLH1 foci.

Alternatively, it might be that the chromosome-specific

differences arise post-recombination in the adult ovary, with the

ability to process vulnerable chiasma configurations varying

among chromosomes. This might occur if chromosome-specific

differences in the distribution of repetitive elements affect the

binding of chromosome-associated proteins important for segre-

gation. For example, if the large block of heterochromatin on 16q

interferes with alignment of homologous centromeres on the

metaphase I plate, proximal exchanges might be more important

for segregation of chromosome 16 than for chromosome 17. In

this instance, there is no reason to invoke chromosome-specific

differences in the types or frequency of vulnerable chiasma

configurations in pachytene oocytes. Instead, the chromosome-

specific differences arise because of variation in the ability of

individual chromosomes to process sub-optimal chiasma configu-

rations.

Which, if either, of these alternatives fits the data from the

present study? For most trisomic situations it appears to be the

first, since the linkage results on trisomies are reflected by the

MLH1 data on pachytene oocytes. For example, in accordance

with the linkage data on trisomy 16, we found no evidence for

achiasmate chromosomes 16. For chromosome 18, the data from

trisomies predict a high proportion of achiasmate bivalents but no

unusually placed exchanges. Consistent with this prediction,

approximately 3% of bivalents lacked MLH1 foci and in a further

Figure 6. Chromosomal locations of MLH1 foci on chromosome
21, considered by the number of MLH1 foci per SC.
doi:10.1371/journal.pgen.1000661.g006

Figure 7. Chromosomal locations of MLH1 foci on chromosome
22, considered by the number of MLH1 foci per SC.
doi:10.1371/journal.pgen.1000661.g007
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Figure 8. Estimates of coincidence (and 95% confidence intervals) for intervals of different lengths on chromosomes 13, 16, 17, 18,
21, and 22. For this analysis, coincidence was defined as: Pr (MLH1 foci in both intervals)/Pr (MLH1 focus in interval 1)6Pr (MLH1 focus in interval 2).
Evidence for positive interference is denoted by coincidence values,1.0. For example, for chromosome 13, coincidence values were significantly
under 1.0 over one, two, and three intervals, indicating that the presence of an MLH1 focus inhibited the presence of a second focus over as many as
three intervals (e.g., from the p arm telomeric interval to the p arm proximal interval). Similarly, for chromosome 18 the effect extended over two
intervals (e.g., from the p arm telomeric interval to the p arm medial interval).
doi:10.1371/journal.pgen.1000661.g008
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37.5% MLH1 foci were missing on either the long or short arm;

further there was little evidence for extremely proximal or distal

exchanges. Finally, for chromosomes 21 and 22 we expected a

high incidence of achiasmate bivalents and these predictions were

met, with MLH1-less bivalents observed in no fewer than 4.9%

and 6.3% of cases, respectively.

Not all situations were as clear-cut. For example, we found no

evidence for ‘‘spikes’’ in the proportion of extremely distal or

proximal MLH1 foci on chromosome 21, despite the fact that

proximal and distal exchanges are associated with maternal

meiosis I and II-derived cases of trisomy 21 [13,15]. Additionally,

the proportion of MLH1-less chromosomes 13 was negligible,

despite the fact that an estimated 25–33% of maternally-derived

cases of trisomy 13 are thought to arise from achiasmate meioses

[3]. Thus, there was not complete concordance between the

MLH1 data on oocytes and the linkage data on trisomies.

Nevertheless, taken as a whole, the results provide strong evidence

that at least some of the chromosome-specific differences in

nondisjunction patterns are established during meiotic prophase

and, more generally, that some chromosomes are pre-disposed to

nondisjoin because of events that occurred in the fetal ovary. The

mechanisms by which these susceptibilities are ‘‘translated’’ into

nodisjunctional events years later are not clear, nor is the way in

which maternal age acts on the different aberrant exchange

configurations. For example, exchangeless bivalents presumably

impart a risk of nondisjunction regardless of maternal age, but the

effects of pericentromeric and telomeric exchanges on segregation

likely vary with age and among the different chromosomes.

Clearly, an eventual understanding of human nondisjunction will

require us to consider the effects of recombination and maternal

age separately for each chromosome, since it is now evident that

no one trisomy will serve as a paradigm for all such conditions.

Materials and Methods

Ethics statement
This study was conducted according to the principles expressed in

the Declaration of Helsinki. All procedures were approved by the

University of California-San Francisco, University of Washington

and Washington State University Institutional Review Boards, and

informed consent was obtained from all study participants.

Study population
The study material consisted of 1035 prophase oocytes from 31

fetal ovarian samples, with gestational ages ranging between 14–23

weeks, collected at the University of Washington Medical Center

in Seattle, Washington, or at the San Francisco General Hospital

Women’s Options Center in San Francisco, California (Table 1).

Typically, fetal ovaries were isolated and processed within 24

hours of the surgical procedure. Karyotypic information was

available on four cases, all of which had a 46,XX chromosome

complement; none of the other 27 cases were suspected to have a

chromosome abnormality.

Figure 9. Analysis of the location of adjacent short (p) arm and long (q) arm exchanges on chromosomes 16, 17, and 18. For bivalents
involving chromosomes 16, 17, and 18 in which we observed a single MLH1 focus on the p arm and a single MLH1 focus on the q arm, we examined
the location of the p arm focus (centomeric/proximal, medial or distal/telomeric), ordered by the location of the q arm focus.
doi:10.1371/journal.pgen.1000661.g009

Table 5. Estimates of genome-wide levels of recombination
in human females.

Method of
analysis

No.
meioses

Mean no.
MLH1 foci

Genetic
length (cM) Reference

MLH1 foci:

3 95.0612.3 4750 19

95 70.3610.5 3515 26

c. 250 50.3624.7 2515 16

1035 69.3614.3 3465 present study

Genetic linkage: ----- ----- 3799 28

----- ----- 4435 39

----- ----- 4460 30

----- ----- 4414 31

----- ----- 4600 32

----- ----- 4320 33

doi:10.1371/journal.pgen.1000661.t005
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Slide preparation and immunostaining
From collection of sample material, tissues were processed using

a standard surface-spreading technique [50]. Briefly, the ovaries

were isolated and excess connective tissue removed. Each ovary

was placed in a sterile watch glass, covered in ,2 ml of a hypo-

extraction buffer (600 mM TRIS, 500 mM sucrose, 170 mM

citric acid, 500 mM EDTA, 500 mM DDT and 100 mM PMSF

in distilled water) and incubated at room temperature for

45 minutes. Each ovary was cut into two sections and each

section separately suspended in ,75 ml of 100 mM sucrose. After

macerating the ovarian tissue with needles, 10 ml aliquots of the

cell suspension were spread across glass slides coated with 2%

paraformaldehyde (pH 9.2). Slides were kept overnight in a

humidified chamber.

Slides were washed in 0.04% PhotofloTM in double-distilled

water for 2 minutes and air-dried. The slides were then pre-

incubated for 20 minutes at room temperature in 16 antibody

dilution buffer (ADB). Sixty ml of an antibody cocktail consisting of

MLH1 (1:75; BD Pharmingen mouse anti-human) and CREST

(1:1,000; Fisher Scientific human anti-centromere) was applied to

the slides, which were then incubated overnight at 37uC. Sixty ml

of SYCP3 (1:150; Novus Biologicals rabbit anti-human polyclonal)

was added to the slides. The slides were covered with parafilm and

incubated for 2 hours at 37uC. Subsequently, the slides were

washed twice in 16 ADB for 20 minutes and a 60 ml cocktail

consisting of fluorescein anti-mouse (1:75) and CREST anti-

human (1:100) was added. Slides were incubated overnight at

37uC and 60 ml of rhodamine anti-rabbit (1:200) was added to the

slides. The slides were covered with parafilm and incubated for

45 minutes at 37uC; the slides were then washed twice in PBS. A

drop of FluoroGuard Antifade Reagent (BioRad Laboratories) was

added to the slides, which were kept at 4uC until viewing under

fluorescence optics. Slides were evaluated on a Zeiss epifluores-

cence microscope, images captured and cell coordinates noted for

subsequent fluorescence in situ hybridization (FISH) analysis (see

below).

Fluorescence in situ hybridization (FISH)
Chromosome-specific FISH was performed on slides that

contained meiotic cells with robust MLH1 and CREST signals

on initial analysis. Specifically, we used TelVysion13-Spectrum

Orange, CEP16-SpectrumGreen, TelVysion17-SpectrumGreen,

TelVysion18-SpectrumOrange, TelVysion21-SpectrumOrange

and TelVysion22-SpectrumOrange (Vysis). Briefly, previously

immunostained slides were dehydrated in an ethanol series

(75%, 95% and 100%) at room temperature, denatured in 70%

formamide/26SSC at 73uC for 5 minutes and again dehydrated

in an ethanol series (75%, 95% and 100%) at room temperature.

The probe mix was denatured using the same settings except for

the dehydration step. The probe mix was then added to the slides,

which were kept in a humidified chamber at 37uC overnight.

Slides were briefly washed in 0.46SSC, 26SSC/1% NP-40 and

distilled water for 10 seconds, 3 seconds and 1 second, respec-

tively, air-dried and stained with Vectashield (Vector Laboratories)

and analyzed using fluorescence optics. Cells that had previously

been analyzed in immunostaining studies were located, and FISH

images captured.

Cytological analysis
In determining the number and location of MLH1 foci in

pachytene oocytes, we restricted our analyses to cells in which

synapsis was complete, or nearly so, and to cells with MLH1

signals of robust size, shape, staining intensity and association with

the synaptonemal complex (SC). All such cells were scored, with

no attempt made to restrict our analysis to cells with an arbitrary

minimum number of MLH1 foci. Apparent MLH1 signals that

were observed at overlapping locations between two or more SCs

were not counted; additionally, to be considered as separate foci,

we required that the space between adjacent MLH signals be

equal to at least one MLH1 signal domain. All cells were scored by

at least two observers; in the event of discrepancies, the cells were

omitted.

For analyses of individual chromosomes, we used FISH to

analyze approximately 100 cells for six chromosomes (13, 16, 17,

18, 21 and 22) from a subset of seven representative cases (EC 69,

76, 91, 96, 98, 99 and 101). FISH-identified SCs involving

chromosomes 13, 16, 17, 18, 21 and 22 were analyzed by counting

the number of MLH1 foci per SC and per SC arm (p-arm and q-

arm). Each SC arm was arbitrarily divided into five segments of

equal length (centromeric, proximal, medial, distal and telomeric)

and the number and location of MLH1 foci along the SC

recorded.

Analysis of interference
We define the coincidence for the pair of intervals (i, j) to be

Cij = pij/(pi pj), where pij is the probability of crossovers (MLH1

foci) in both intervals i and j, and pi is the probability of a crossover

in interval i. (There were few instances of multiple crossovers

within an interval, and so we will define coincidence using the

probabilities of at least one crossover in the respective intervals.)

Let pi and pij denote our estimates of pi and pij, respectively (that is,

the observed proportions of meioses with crossovers in the interval

Table 6. Summary of data correlating recombination defects with the genesis of maternally-derived trisomies.

Trisomy
Achiasmate
bivalents

Distal
exchanges

Proximal
exchanges Comments (references)

13 yes no no Estimated 25–33% of cases associated with achiasmate bivalents (2, 3)

16 no yes no No known contribution of achiasmate bivalents, but distally located exchanges
reported for most cases (5, T. Hassold and H. Hall, unpublished observations)

17 unknown unknown unknown ‘‘Rare’’ trisomy; no available information on origin

18 yes no no Estimated 30% of cases associated with achiasmate bivalents (6)

21 yes yes yes Estimated 40% of cases involve achiasmate bivalents; distally located exchanges
important contributor to meiosis I cases and proximal exchanges important to
apparent meiosis II cases (7, 8)

22 yes no no Estimated 25% of cases associated with achiasmate bivalents (9)

doi:10.1371/journal.pgen.1000661.t006
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or interval pair). Note that coincidence = 1 corresponds to

independence (no crossover interference), while in the case of

positive crossover interference, coincidence will be ,1. With the

assumption that the coincidence is constant for pairs of intervals

that are a given distance apart, we estimate the coincidence to be

Spij/S(pi pj), where the sums are over pairs of intervals that are

separated by a fixed distance. This estimate is similar to taking the

average of the individual estimates, pij/(pi pj), but the ratio of the

sums provides a more stable estimate (that is, one with a smaller

standard error); this was confirmed by computer simulations.

Confidence intervals for the coincidence values were derived by

a nonparametric bootstrap [51]. That is, we sampled with

replacement from the observed set of meioses to obtain a new

data set of the same size (with some meioses omitted and some

repeated multiple times), estimated the coincidence for all possible

distances between intervals, and repeated this process 10,000

times. The interval defined by the 2.5 and 97.5 percentiles of the

coincidence estimates across bootstrap replicates provides an

approximate 95% confidence interval.

Supporting Information

Figure S1 Distribution of the number of MLH1 foci/cell for

1,035 pachytene oocytes from 31 fetal ovarian samples.

Found at: doi:10.1371/journal.pgen.1000661.s001 (4.66 MB TIF)

Figure S2 Chromosomal locations of MLH1 foci on chromo-

somes 13; data represent pooled observations from seven fetal

ovarian samples (EC 69, 76, 91, 96, 98, 99, and 101). For each

chromosome, the data are grouped by the number of MLH1 foci

per bivalent, and second pooled for all the individual groups;

n = the number of cells. For example, for chromosome 13, 8 cells

had a single MLH1 focus, 42 cells had two foci, 39 had three foci

and 14 cells had four or five foci; in total, we examined the

distribution of MLH1 foci on chromosome 13 in 103 cells.

Found at: doi:10.1371/journal.pgen.1000661.s002 (3.71 MB TIF)

Figure S3 Chromosomal locations of MLH1 foci on chromo-

some 16; see Figure S2 legend.

Found at: doi:10.1371/journal.pgen.1000661.s003 (4.04 MB TIF)

Figure S4 Chromosomal locations of MLH1 foci on chromo-

some 17; see Figure S2 legend.

Found at: doi:10.1371/journal.pgen.1000661.s004 (1.43 MB TIF)

Figure S5 Chromosomal locations of MLH1 foci on chromo-

some 18; see Figure S2 legend.

Found at: doi:10.1371/journal.pgen.1000661.s005 (1.44 MB TIF)

Figure S6 Chromosomal locations of MLH1 foci on chromo-

some 21; see Figure S2 legend.

Found at: doi:10.1371/journal.pgen.1000661.s006 (3.04 MB TIF)

Figure S7 Chromosomal locations of MLH1 foci on chromo-

some 22; see Figure S2 legend.

Found at: doi:10.1371/journal.pgen.1000661.s007 (3.10 MB TIF)
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