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Intermediate acceptance criteria are the foundation for developing control

strategies in process validation stage 1 in the pharmaceutical industry. At drug

substance or product level such intermediate acceptance criteria for quality are

available and referred to as specification limits. However, it often remains a

challenge to define acceptance criteria for intermediate process steps. Available

guidelines underpin the importance of intermediate acceptance criteria,

because they are an integral part for setting up a control strategy for the

manufacturing process. The guidelines recommend to base the definition of

acceptance criteria on the entirety of process knowledge. Nevertheless, the

guidelines remain unclear on how to derive such limits. Within this contribution

we aim to present a sound data science methodology for the definition of

intermediate acceptance criteria by putting the guidelines recommendations

into practice (ICH Q6B, 1999). By using an integrated process model approach,

we leverage manufacturing data and experimental data from small scale to

derive intermediate acceptance criteria. The novelty of this approach is that the

acceptance criteria are based on pre-defined out-of-specification probabilities,

while also consideringmanufacturing variability in process parameters. In a case

study we compare this methodology to a conventional +/- 3 standard

deviations (3SD) approach and demonstrate that the presented methodology

is superior to conventional approaches and provides a solid line of reasoning for

justifying them in audits and regulatory submission.
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1 Introduction

Process Validation for the pharmaceutical industry is “the collection and evaluation

of data, from the process design stage throughout production, which establishes

scientific evidence that a process is capable of consistently delivering quality

products.” (FDA, 2011). This involves a series of activities taking place over the life
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cycle of the product and process. The goal of process validation

is to set-up and maintain a control strategy that enables the

process to continuously deliver product quality. This desired

quality is defined by the quality target profile (QTPP) of a

product (ICH Q8, 2009, S. 8) and acceptable quality limits are

defined by drug substance and drug product specification

limits. The final gate keeper for the market release of

product from a manufacturing process are the drug product

specification limits for each of the individual attributes of the

QTPP, referred to as Critical Quality Attributes (CQAs).

Amongst other goals, a control strategy aims to control

3 types of parameters: process parameters (CPPs), material

attributes (CMAs) and the quality attributes themselves

(Burdick et al., 2017). In process design, depicting phase 1 of

process validation, process parameters and material attributes are

assessed and investigated (FDA, 2011). Their impact on product

quality and process performance is studied and quantified in

experiments. Dependent on the observed effects on product

quality, appropriate control ranges are defined for process

parameters and quality attributes. Most commonly, each

process step (or unit operation) is investigated individually.

However, to define the control ranges of CPPs and CMAs, it

is important to know which quality attribute levels are acceptable

at each process step (Jiang et al., 2010).

In ICH Q6B, an acceptance criterion is defined as “An

internal (in-house) value used to assess the consistency of the

process at less critical steps.” (ICH Q6B, 1999, S. 6). Within this

contribution, we focus on acceptance criteria for CQAs at

intermediate process steps (Figure 1). Hence, we refer to

these limits as intermediate acceptance criteria. They

describe which quality levels each unit operation has to

deliver, whereas the drug substance or product specification

limits describe, which quality levels the process has to

ultimately deliver before product release.

Without knowing which quality levels are acceptable at each

process step, it is difficult to set up control ranges for CPPs and

CMAs at the respective process steps. As managing the risk to

quality is regarded to be the ultimate goal (ICH, 2005), deriving

these limits is crucial for the success of a process validation

project. EMA-FDA, also requires acceptance criteria for CPPs

and CQAs to be part of the process validation protocol

(European Commission, 2015). Per these guidelines, the

acceptance criteria should be based on development data or

documented process knowledge. If the measurement of quality

attributes in the process are part of the control strategy (as in-

process controls), intermediate acceptance criteria (iACs) are

required and solid rationales should be provided for their

establishment.

There are currently multiple methods to derive iACs for

quality attributes.

One solution to define iACs is by performing wet-lab spiking

studies. This is an approach commonly applied in virus clearance

studies (Darling, 1993). EMA also explicitly mentions spiking

experiments to demonstrate the clearance capacity of

downstream unit operations for host-cell relate impurities

(EMA/CHMP/BWP/187338/2014, 2016). However, finding the

correct spike material is difficult, as care has to be taken that the

sample matrix is not completely altered by other components

contained in the spiking material and correctly represents the

material in the naturally occurring process.

Acceptance criteria may also be calculated based on data

collected at set-point conditions. They can be calculated by

applying +/- 3 standard deviations (3SD) of the existing data,

or statistical intervals based on an assumed underlying

distribution (e.g. tolerance intervals). These approaches do not

account for variability around process parameters and don’t

provide a linkage to drug substance specifications (Seely et al.,

2003; Orchard, 2006; Wang et al., 2007). Moreover, both

approaches heavily rely on the observed variance. Higher

variation leads to wider acceptance criteria and lower

variation to tighter limits. Both approaches reward poor

process control and punish good process control. Moreover,

the mentioned methods are focused on individual unit

operations only.

Another approach linking knowledge across multiple unit

operations is described byMontes (Montes, 2012). They compare

methods to estimate the to-be-expected variance at each process

step. One of the discussed approaches is to apply variance

transmission. The variance for e.g. process step 3 is calculated

by applying error propagation using the known regression

models for process steps 1 to 3. The estimated variance is

used to calculate tolerance intervals. The worst case side of

the tolerance interval (in the case of a two-sided interval) is

FIGURE 1
Drug substance specifications define the quality limits that
must be achieved before product release. However, these are only
assessed at the final unit operation. There is no standardized
methodology for assessing the first unit operation’s impact
on the drug substance (yellow line) nor is there a standardized
method for linking any derived intermediate acceptance criteria
with the final drug substance specifications.
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then used as acceptance criteria for the respective step. This

approach leverages the knowledge of known functional

relationships. The defined acceptance criteria give information

on the possible worst case of a process at the observed variance.

However, they don’t give any information how likely it is to meet

drug substance criteria.

Monte Carlo approaches have been applied to the definition

of specification limits (Burdick et al., 2017). Burdick et al. used

the approach to calculate the final distribution of a drug product

quality attribute after several storage steps and suggested to use

the calculated distribution to derive specification limits.

Ideally, iACs share the following characteristics:

•) iACs should provide a link to drug substance or product

limits: the likelihood or probability of meeting drug substance

specifications while staying within the intermediate

acceptance criteria.

•) iAC derivation should consider the uncertainty around

process parameters and material attributes

Within this contribution, we build upon the concept on

integrated process modelling as described by Zahel et al.

(Zahel et al., 2017). In an integrated process model (IPM),

each unit operation is described by a multilinear regression

model where the performance (clearance or purification

capability) is the dependent variable and the input of the

previous unit operation as well as the process parameters act

as independent variables. These models are built with large scale

data from manufacturing and small scale data from process

characterization studies.

The models are concatenated by using the predicted output

of a unit operation as input for the subsequent unit operation.

Using Monte Carlo simulation, random variability caused by

process parameters can be incorporated into the modeled process

(Zahel et al., 2017). IPMs can be used to predict the out-of-

specification probability for a given set of process parameter set-

points. Another application is to set up a control strategy for

process parameters by defining proven acceptable ranges (Taylor

et al., 2021).

FIGURE 2
(A) One of the current best practices approaches. Control strategies are set up for each unit operation individually. The defined acceptance
criteria are not linked to drug substance specifications. (B) Themethodology described in this contribution links iACs to drug substance specification
limits using an integrated process modelling approach. Each unit operation is described by one ore multiple multilinear regression models built with
large scale data from manufacturing and small scale data from process characterization studies. The models are concatenated by using the
predicted output of a unit operation as input for the subsequent unit operation. By doing so, acceptance criteria can be based on drug substance
limits. The in-silico linking of unit operations has also been discussed in other contributions (Montes, 2012; Burdick et al., 2017)
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Within this contribution,we aim to derive iACs that ensure a pre-

defined out-of-specification probability. These specification-driven

ranges enable the set up of a control strategy that prevents failed

batches at highest possible manufacturing flexibility. The novelty of

this approach is that the acceptance criteria are based on pre-defined

out-of-specification probabilities, while also considering

manufacturing variability in process parameters (Figure 2).

Themanuscript is structured in two parts. First the developed

method is described. In a second step the developed method is

applied to a real world case study and compared to a

conventional approach.

2 Methods and materials

2.1 Candidate process for case study

For the case study, a monoclonal antibody (mAb) production

process in mammalian cell culture was provided by Boehringer

Ingelheim in Biberach, Germany. Themodel depicts the downstream

process segment of the drug substance manufacturing process.

The downstream process consists of 9 unit operations. The first

step is the pool of the harvested fermentation broth (UO1), the second

step is a chromatographic capture step (UO 2), followed by a viral

inactivation (UO 3), depth filtration (UO 4), two chromatographic

steps (UO5,UO6), a viral filtration (UO7), another chromatographic

step (UO 8) and ultra-and diafiltration (UO 9).

Three quality attributes defined as CQAs were modelled. One

product-related impurity (UP-SEC Aggregates) and one host-

related impurity (HCP ELISA) that need to be cleared by the

downstream process and one parameter, purity (UP-SEC

Monomer), that should be increased.

2.2 Data for the integrated process model

For the capture chromatography, the virus inactivation and

the anion exchange chromatography one-factor-at-a-time

(OFAT) studies were performed. For the cation exchange

chromatography 2 factors were investigated in a design of

experiments (DoE) approach. One factor was varied in

5 levels and the second factor in 3 levels. One center-point

was performed. The design is able to resolve main effects and

quadratic effects. For the hydrophobic interaction

chromatography 3 factors were investigated in a face-centered

central composite design with 3 center points. The design is able

to resolve main effects, two-factor interactions and quadratic

effects. All experimental studies were performed in small scale.

The available data for each unit operation is summarized in

Table 1.

2.3 Calculation of performance indicators

Clearance parameters were calculated for each impurity (i)

according to Eq. 1, where i is the specific impurity concentration,

i.e. units per mg product, in load or pool of the respective process

step.

SCi � Specific Clearancei � iload
ipool

For product quantity and purity attributes, yields were

calculated according to Eq. 2, where i is the product amount

or percentage of desired isoform in load or pool of the respective

process step.

TABLE 1 Available data sets, process parameters, and monitored critical quality attributes (CQAs) for each unit operation included in the IPM.

Unit Operation Available datasets PPs varied in DoEs Monitored CQAs

Harvest 10 Manufacturing Runs (2 kl) Load Pool Temperature HCP ELISA

Capture Chromatography 5 OFAT Runs (3L), 10 Manufacturing
Runs (2 kl)

HCP ELISA, UP-SEC Aggregates,
UP-SEC Monomer

Virus Inactivation 5 OFAT Runs (3L), 10 Manufacturing
Runs (2 kl)

Stirrer Speed HCP ELISA, UP-SEC Aggregates,
UP-SEC Monomer

Depth Filtration 10 Manufacturing Runs (2 kl) - HCP ELISA, UP-SEC Aggregates,
UP-SEC Monomer

Anion Exchange (AEX)
Chromatography

4 OFAT Runs (3L), 10 Manufacturing
Runs (2 kl)

Equilibration_pH HCP ELISA, UP-SEC Aggregates,
UP-SEC Monomer

Cation Exchange (CEX)
Chromatography

11 DoE Runs (3L), 10 Manufacturing
Runs (2 kl)

Elutions buffer Cond, Elutions buffer pH HCP ELISA, UP-SEC Aggregates,
UP-SEC Monomer

Viral Filtration 10 Manufacturing Runs (2 kl) - UP-SEC Aggregates, UP-SEC
Monomer

Hydrophobic Interaction (HIC)
Chromatography

17 DoE Runs (3L), 10 Manufacturing
Runs (2 kl)

Loading Pool_pH, Loading Pool_Conductivity,
Loading Pool_Temperature

UP-SEC Aggregates, UP-SEC
Monomer

Ultra- and Diafiltration 10 Manufacturing Runs (2 kl) - UP-SEC Aggregates, UP-SEC
Monomer
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Yi � Yieldi � ipool
iload

Eq. 2

2.4 Modelling the individual unit
operations

Ordinary least squares (OLS) regression was used for

statistical analysis. Scale was treated as fixed effect. As

dependent variables, clearances and yields were used. A

clearance represents the ratio of two assumed-to-be

normally distributed random variables. Therefore, a

clearance is not normally distributed. After analysis of the

residuals it was decided to log-transformed the responses

prior to modelling. All independent variables were scaled

between -1 and 1 according to Goos and Jones (Goos &

Jones, 2011). The independent variable (response) was

neither scaled nor centered. For the analysis of the DoEs, a

best subset variable selection was applied using a p-value

threshold for the partial t-statistic of 0.1. The threshold of

0.1 was chosen as opposed to the commonly applied threshold

of 0.05 to minimize the risk of overlooking potentially critical

process parameters. A strong heredity principle was followed

i.e. if a two-factor interaction is included in the model, the

main effects of both factors involved in the interaction are

included in the model as well (even if the main effects are not

significant with the chosen threshold). To ensure model

adequacy, a thorough analysis of the model residuals is

performed to check whether any of the assumptions for

regression analysis are violated. i.e. the model errors are

statistically independent, of constant variance, and

normally distributed.

The unit operations were described by the specific clearance

or yield for a given quality attribute. Clearances were used to

describe the performance of the respective unit operation.

Specific clearances are clearances calculated from impurity

concentrations that are normalized to the amount of total

product. This harbors the advantage that the values are

independent of the scale and total volume. The specific

clearances and yields were described by OLS models or

observed mean values (in the absence of OLS models) with

their respective calculated uncertainty. Models describing the

FIGURE 3
Variance of the median response and the mean absolute deviation (MAD) over the number of cycles used in the Monte Carlo simulation for all
responses. The results were mean centered for visualization purposes. No severe changes in variance of the median prediction and the prediction
variance were observed. Therefore, it was not expected that an increase in the number of simulation cycles improves the accuracy of the model
predictions.
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specific clearance as a function of process parameters are

termed “DoE Model” and were derived from small scale

experiments. Models describing the specification clearance as

function of the input material are termed “SC Model” and were

derived from manufacturing data. If neither a DoE model nor a

SC model was available, the specific clearances were described

by fitting a normal distribution to the available

manufacturing data.

If more than one OLS model was available for a unit

operation, both models were used to describe the unit

operation. As the specific impurity loading concentration was

not included as a factor in the DoE, interaction effects between

factors investigated in the DoE and the specific impurity loading

concentration were assumed not to be expected.

The linkage of DoEmodels and specific clearance models was

performed as described elsewhere (Zahel et al., 2017). The

combination of DoE model and load model predictions was

performed according to Eq. 3, where ŜCi denotes the specific

clearance predicted from DoE model, ŜCi(PPi) denotes the

specific clearance predicted from the process parameters,

ŜC(SLCi) denotes the specific clearance predicted from the

specific clearance model using the input concentration from

the simulation (SLCi) and ŜC(SLCDoE) denotes the specific

clearance predicted from the specific clearance model using

the concentration of the starting material of the DoE

(SLCDoE). The runs of a DoE were performed with the same

starting material. The DoEmodel is valid for the concentration of

the starting material used in the DoE. Therefore, the change in

specific clearance from the DoE start concentration to the

simulation input concentration was used as correction factor.

ŜCi � ŜC(PPi) · ŜC(SLCi)
ŜC(SLCDoE)

Eq. 3

2.5 Linkage of unit operations using the
integrated process modelling technology

The IPM technology applied in this contribution is described in

detail elsewhere (Zahel et al., 2017). The principle behind the IPM is

to concatenate models describing the CQA values of individual unit

operation together in order to predict the CQA distribution at each

intermediate unit operation and ultimately at drug substance.

To account for error propagation during this concatenation,

a Monte Carlo simulation is performed in the following way:

A pre-defined number of runs through 9 unit operations are

simulated for each response, each using a set of different process

parameter values drawn randomly from the their normal

operating range represented by a normal distribution. Only

set-point values of process parameters were available at the

time of analysis. Without loss of generality of the approach,

the coefficient of variation of each parameter was assumed to be

3%. The technical realization of the normal operating range is

given in the results section.

The impact of the number ofMonte Carlo runs on the variance

of the mean prediction and the prediction variance was

investigated for all investigated responses. The results are

shown in Figure 3. The impact of the number of simulation

runs on the results was investigated in a range from 50 to

1200 simulations. No severe changes in variance of the median

prediction and the prediction variance were observed. For that

reason, 800 simulation runs were chosen for the subsequent

parameter sensitivity analysis. This number leads to simulation

cycles that can be conducted in a reasonable amount of time.

Unit operation performances are modelled as a function of

process parameters (using OLS) and have some variance

associated with them. Using this information, an uncertainty

interval is defined around the mean prediction representing the

uncertainty of the model prediction. Without loss of generality,

95% prediction intervals were chosen for the IPM. That is, for

TABLE 2 Summary of models used for modelling each unit operation and each CQA. Models describing the specific clearance as function of process
parameters are termed “DoE Model”. Models describing the specification clearance as function of the input material are termed “SC Model”. If
neither a functional relationship of specific clearance on process parameters nor on the input material was found, the unit operation was described
by the specific clearance observed in manufacturing, termed “Manufacturing SC”.

HCP ELISA UP-SEC monomer UP-SEC aggregates
HCCF

Capture DoE Model+SC Model Manufacturing SC Manufacturing SC

Virus Inactivation Manufacturing SC

Depth Filtration SC Model SC Model SC Model

AEX SC Model SC Model

CEX DoE Model DoE Model+SC Model DoE Model

Viral Filtration Manufacturing SC Manufacturing SC

HIC SC Model DoE Model

UFDF Manufacturing SC

Bulk SC-Model Manufacturing SC
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each simulated run, a response value is drawn randomly from

this uncertainty interval around the mean.

Using the predicted clearance of a unit operation and the

available load concentration, the pool concentration is calculated.

Special consideration is given to the simulated load values

that fall outside the range of the observed load values used to

train the model. Similar to Zahel et al., no extrapolation of

clearances outside of the observed load models was

performed (Zahel et al.). If simulated load values outside

fall outside of the range, the clearance of the unit operation

was assumed to be constant. For impurities (CQAs that need

to be decreased), this approach might underestimate the

clearance for load values higher than the observed range

used to fit the models. This is considered more

conservative from a risk based approach. For load values

lower than the observed range the clearance might be

overestimated. For setting up acceptance criteria the load

values are gradually increased for each unit operation. For

that reason, this case was not observed. For purities (CQAs

that need to be increased) the signs need to be reversed.

The overall result of theMonte Carlo simulation with varying

process parameters is a distribution for a specific CQA in the pool

of the last unit operation, i.e. in drug substance. This distribution

may be used to verify OOS event probabilities, given process

parameter and model variability.

2.6 Calculation of OOS events

The number of out-of-specification events was calculated

according to Taylor et al. (Taylor et al., 2021). A normal

distribution was fit to the data. The OOS probability was

defined by the area under the curve that lies beyond the drug

substance specification limit. The parameters of the normal

distribution were the arithmetic mean and the upper 80%

confidence interval of the standard deviation. The upper

confidence of the standard deviation was used to provide a

fair comparison between the simulated runs and the real

manufacturing runs, because of the large difference in sample

sizes (800 simulated runs vs. 10 manufacturing runs).

FIGURE 4
Comparison of distributions of the simulation to 10 large scale manufacturing runs for the CQAHCP ELISA. The upper plot shows the simulated
data based on 1000 simulations performed at set-point conditions. The lower plot shows the data from 9 large scale runs. Due to the large value
range of this CQA the values were logarithmically scaled for visualization purposes.
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3 Results

3.1 Description of the integrated process
model

A pre-requisite of setting up an IPM is that the quality

attributes to be modelled are measured both as input and

output of the unit operations under investigation. Due to data

availability, the IPM for HCP ELISA was set up from unit

operation 1 to unit operation 6. For UP-SEC Aggregates and

UP-SEC Monomer the integrated process model was set up from

unit operation 2 to unit operation 9. Table 2 outlines how the unit

operations were modelled for each CQA.

3.2 Definition of the NOR

For modeling the process parameters, the definition for the

NOR as outlined by FDA and EMA is followed.

“The NOR describes a region around the target operating

conditions that contain common operational variability

(variability that can’t always be controlled)” (EMA/213746/

2017, o. J.).

For the purpose of the ensuing analysis, we aim to provide a

technical realization of this definition. To our knowledge no

mathematical description of the normal operating range has been

given so far.

Without loss of generality, this operational variability is

assumed to be caused by experimental errors stemming from

several independent, uncontrollable sources. Therefore, it is

sufficient to assume that continuous process parameter values

follow a normal distribution (with the target operating value

(set-point) being the most probable one (mean of the

distribution)). This holds true for any targeted continuous

process parameter value. For parameters that are controlled in

such a way the NOR follows a normal distribution described

by two parameters (mean and standard deviation). For

parameters that don’t need to meet a target, but are

allowed to stay within a range according to manufacturing

batch records other distributions might be applicable (such as

uniform distributions, poisson distributions or truncated

normal distributions).

Each process parameter value has a certain probability of

being observed associated with it; the set-point is the most

probable value. The process parameter distribution follows a

normal distribution around the set-point. The normal operating

FIGURE 5
Comparison of distributions of the simulation to 10 large scale manufacturing runs for the CQA UP-SEC Aggregates. The upper plot shows the
simulated data based on 1000 simulations performed at set-point conditions. The lower plot shows the data from 9 large scale runs.
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range (NOR) of a process parameter is then defined as the lower

and upper boundary of the distribution covering a pre-defined

area under the curve (e.g. +/- 3 standard deviations around the

set-point). The values within the NOR are normally distributed

(and not uniformly distributed). Following this definition, the

normal operating range is a function of the applied set-points and

is subject to change in the case the process parameter set-point is

changed.

As a consequence, the results of the integrated process model

are only valid if the process is controlled at target conditions

including the uncertainty (NOR) around it, that is, whereat all

PPs are kept at set-point and the process variability (i.e. standard

deviation) does not increase.

3.3 Plausibility check of the integrated
process model

Each individual OLS model was assessed individually based

on model statistics R2, Q2, p-values, and RMSE as described in

the material method section. The quality of the simulation with

the concatenated models was assessed by comparing the

predictions of the IPM with actually performed manufacturing

runs at target conditions. Additionally, the predicted OOS rate

was compared to the OOS rate calculated from the

manufacturing runs.

The results are shown in Figure 4–Figure 6. The span of the bar in

the histograms was normalized in a way that the sum of all bin areas

equals 1 (i.e., the area of each bar corresponds to the probability that

an event falls into that bin). For that reason, the height of the bars (i.e.,

the probability densities) between the simulated values and the real

data might differ, but the integrals equal 1. Therefore, the y values in

these plots are not relevant for comparing the simulation with the real

data. For all investigated CQAs, the simulated distributions fit quite

well to the available manufacturing data. The predicted OOS

probabilities (given in the plot titles) are in the same range as the

OOS calculated from the manufacturing data. Based on these results

the set-up model framework is regarded as fit for the application of

setting up acceptance criteria.

The definition of the Acceptance Criteria in ICH Q6B was

followed. The statement “considered acceptable for it intended

use” is interpreted in the following way: The drug substance

material is considered acceptable for its intended use, if it

conforms to the drug substance specification limits.

FIGURE 6
Comparison of distributions of the simulation to 10 large scale manufacturing runs for the CQA UP-SEC Monomer. The upper plot shows the
simulated data based on 1000 simulations performed at set-point conditions. The lower plot shows the data from 9 large scale runs.
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3.4 Definition and calculation of
intermediate criteria

Following the outlined definition, the intermediate acceptance

criteria will be defined by performing a parameter sensitivity analysis

(PSA) within the IPM simulation framework. It will be assessed how

a change in CQA load values in an intermediate unit operation

affects out-of-specification (OOS) events at drug substance level.

For each CQA, the PSA was conducted as follows:

1) The screening range for the PSA was calculated from available

manufacturing data. A range of plus/minus 10 standard

deviations around the observed mean in the pool of the

unit operation was calculated. The screening range was

divided into 15 equidistant segments. If this resulted in

negative values, the screening range was decreased by

limiting it to positive values only.

2) The CQA’s pool value of the UO, for which the acceptance

criteria are calculated, (= load value of the next UO) is set to a

fixed value.

3) An IPM Monte Carlo simulation consisting of 800 simulated

runs was performed according to the description in section

3.1.2, where all process parameters are randomly drawn from

their normal operating range.

4) The number of OOS results for the CQA and a corresponding

OOS probability is calculated.

5. Steps 2-5 are repeated for each of the screening range

segments defined in step 1.

6) The intermediate acceptance criteria is then defined by the

CQA pool concentration that results in the pre-defined OOS

probability.

The procedure is then repeated for each CQA in each UO. An

illustration of this procedure is given in Figure 7.

FIGURE 7
Illustration of the procedure to derive intermediate acceptance criteria: The CQA pool value at unit operation 3 is increased in discrete steps. At
each step a Monte Carlo simulation is performed. With each step, the CQA distribution at DSmoves towards the drug substance limit (DSL). The pool
value, where a predefined fraction of the CQA distribution lies outside the DSL (out-of-specification probability), will define the iAC.
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For the case study an OOS probability of 5% was defined as

threshold.

3.5 Case study–Comparison of
approaches for setting up acceptance
criteria

Figure 8 shows the results of the PSA to determine the

intermediate acceptance criteria or UP-SEC Monomer in unit

operation 2. For each data point, i.e. for a specific CQA pool

value, CQA distributions at DS are predicted, and the probability

to generate an out of-specification (OOS) limit is calculated. The

OOS probability is then plotted as a function of the pool value.

With each step the CQA distribution at drug substance moves

towards the specification limit, increasing the risk of OOS events.

At a 5% OOS probability, the proposed upper iAC for UP-SEC

Monomer at unit operation 2 is 96.71% for the lower

specification limit of 98%.

This procedure was followed for all unit operations and all

CQAs under investigation. The corresponding plots are provided

in the appendix.

In the case study the IPM derived acceptance criteria were

compared to acceptance criteria based on + - three standard

deviations. For all three responses only 1-sided specification

criteria were defined. For this reason, the IPM derived

acceptance criteria are also 1-sided. For impurities (HCP

ELISA and UP-SEC Aggregates) an upper limit was defined

and for purities (UP-SEC Monomer) a lower limit was

defined.

Due to the large value range of HCP ELISA, the values

were logarithmically scaled for visualization purposes (Figure

9). For HCP ELISA, the IPM derived acceptance criteria were

higher than the upper three standard deviation limits in all

investigated unit operations. Especially in the first four unit

operations the three standard deviation derived limits are

much tighter than the IPM derived limits. Runs that fall

outside the 3SD limit might still exhibit an acceptable out-of-

specification probability. If these 3SD limits are applied, it

might lead to the issue that alerts are raised unnecessarily.

Except for unit operation 7 at the last five unit operations no

data was available for HCP ELISA. At unit operation 7 CQA

measurements are available, however they all represent one

value: the limit of quantification. For that reason no standard

deviation could be calculated and integrated process

modeling could not be applied. The intermediate

acceptance criteria were therefore set equal to the drug

substance specification limits. This approach relies on the

assumption that the impurity does not increase in these unit

operations.

FIGURE 8
Out-of-specification probability at drug substance for various theoretical UP-SEC Monomer pool values in unit operation 2. Intermediate
acceptance criteria are defined, as the CQA’s pool value, for which the out-of-specification probability equals a critical threshold, here 5%.
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For UP-SEC Aggregates the IPM derived acceptance criteria

were higher than the upper three standard deviation limits in all

investigated unit operations (Figure 10). As described for the

previous CQA if 3SD limits are applied, it might lead to the issue

that alerts are raised unnecessarily.

For UP-SEC Monomer the IPM derived acceptance criteria

lie close to the observed manufacturing values in unit operations

1 to 4 (Figure 11). For unit operation 2 a manufacturing run falls

even below the acceptance criteria, although it still meets the final

drug substance specification limit. The definition of the

intermediate acceptance criteria is based on a probabilistic

approach, i.e. at the intermediate acceptance criterion, there is

a certain probability (here 5%) that the CQA does not meet drug

substance specification limits. Consequently, even if a

manufacturing run is close to the proposed intermediate

acceptance criteria, this does not necessarily lead to the run

being out of specification at DS. If it lies exactly at the

intermediate acceptance limit, there is still a 95% probability

that the run is within the specification limit.

Additionally, the lower limit of the three standard deviation

derived ranges is lower than the IPM derived acceptance criteria

for the first four unit operations. Based on the results of the IPM

this means that the out of specification probability is larger than

5% at these limits. For unit operation 3 the lower 3 SD limit is

97.1%. At this value the IPM yields a 14.9% out of specification

probability. If 100 runs were close to the lower 3 SD limit

14.9 runs would not meet the specification criteria at drug

substance.

4 Discussion

Many contributions elaborate on methods to set up control

strategies for process parameters (e.g. design space) (Abu-Absi

et al., 2010; Jiang et al., 2010). A prerequisite for that is the

knowledge, which levels of quality attributes are acceptable.

Acceptance criteria serve as backbone for a proper control

strategy on process parameters and material attributes. Often

irrespective of the control strategy methodology, the reader is left

alone in setting up acceptance criteria. Additionally EMA

requires acceptance criteria for CPPs and CQAs to be part of

the process validation protocol, which should be based on

FIGURE 9
Graphical representation of the intermediate acceptance criteria (blue line) across the entire downstream process for the response HCP ELISA.
Available large scale, manufacturing data per batch (circles) and three standard deviation ranges (grey lines) are given as well. The shown iACs at DS
are the DS specification limits. Due to the large value range of this HCP ELISA the values were logarithmically scaled for visualization purposes. Except
for unit operation 7 at the last five unit operations the intermediate acceptance criteria were set equal to the drug substance specification limits.
At unit operation 7 CQA measurements are available, however they all represent one value: the limit of quantification. For that reason no standard
deviation could be calculated and integrated process modeling could not be applied.
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development data or documented process knowledge (European

Commission 2015). However, here no specific guidance is

provided to derive such limits.

Within this contribution we refined the definition of acceptance

criteria by ICH Q6B by further specifying the term “for intended

use” to having a link to final specification limits used for drug

substance release (ICH Q6B, 1999). Additionally, we presented a

methodology to calculate intermediate acceptance criteria based on

drug substance specification limits and considers uncertainty

around process parameters.

It should be emphasized that IPM derived acceptance criteria

are only valid for a defined set of process parameter conditions.

This means that if acceptance criteria were defined based on

manufacturing runs at set-point conditions, they are only valid

for runs that are performed at set-point. In the case of process

changes, intermediate acceptance criteria need to be revised. This

not only applies to the method presented in this contribution, but

also applies to other approaches that rely on historic

manufacturing data such as approaches that rely on min -max

ranges. +/- 3 standard deviations, or statistical intervals (Seely

et al., 2003; Orchard, 2006; Wang et al., 2007). Approaches that

include data where variance was purposefully introduced into

process parameters, as done in process development or process

characterization studies, offer the advantage that the established

models can easily be used to calculate acceptance criteria for the

new process set-points without the need of acquiring new data

(Montes, 2012; Burdick et al., 2017). Updating the acceptance

criteria is in line with ICH Q8, which states that acceptance

criteria can be updated in the case new process knowledge is

available (ICH Q8 (R2), 2009, S. 8). Whereas ICH Q8 states that

they should be updated in the case new process knowledge is

available, we want to emphasize that they also need to be updated

if process changes are implemented (e.g. process parameter set-

points).

In this contribution we used OLS regression models to

describe the individual unit operations. At the time of the case

study the experimental work has already been conducted. The

performed OFATs and DoEs were designed to be analyzed

using OLS regression. This technique is the standard method

for the analysis of DoEs. Care has to be taken, when

extrapolation beyond the training range is performed.

However, the described methodology for setting up

acceptance criteria is not limited to OLS models. If

mechanistic models are available model-based DoE

approaches could be applied and the functional relationship

between quality attributes and process parameters could be

FIGURE 10
Graphical representation of the intermediate acceptance criteria (blue line) across the entire downstream process for the response UP-SEC
Aggregates. Available large scale, manufacturing data per batch (circles) and three standard deviation derived ranges (grey lines) are given as well.
The shown iACs at DS are the DS specification limits.
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FIGURE 12
Specification-driven acceptance criteria provide a solid line of reasoning and enable robust control strategies for process parameters.

FIGURE 11
Graphical representation of the intermediate acceptance criteria (blue line) across the entire downstream process for the response UP-SEC
Monomer. Available large scale, manufacturing data per batch (circles) and 3 standard deviation ranges (grey lines) are given as well. The shown iACs
at DS are the DS specification limits.
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described by purely mechanistic or hybrid models (Kroll et al.,

2017; Nold et al., 2021). For model-based approaches

capturing the prediction uncertainty is not straight-forward

and novel methods to do so are discussed in scientific

literature (Briskot et al., 2019). However, an in-depth

comparison of modelling approaches is beyond the scope of

this contribution.

In addition to suitable data, the presented method requires

knowledge in programming or scripting languages to

concatenate the individual OLS models and perform the

Monte Carlo simulations. In contrast, to that the 3SD

approach can easily be applied in table calculation

programs like MS Excel. Despite the complex knowledge

required, we believe that the benefit of being able to

leverage all available process knowledge in the form of

statistical models in the integrated process model outweighs

the increased analysis effort. Additionally, setting up

integrated process models can be automated dependent on

the digital maturity of the companies. If quality data and

process parameter values are automatically collected in a

centralized system the process of setting up an integrated

process model can be facilitated.

The available guidelines encourage basing the definition of limits

on the entirety of process knowledge. ICH Q6E states “In this

respect, limits are justified based on critical information gained from

the entire process spanning the period from early development

through commercial scale production.” (ICH Q6B, 1999). ICH

Q8 further emphasizes the fact that it should be justified how in-

process controls contribute to the final product quality (ICH Q8

(R2), 2009, S. 8). ICH Q11 states that links between process and

quality is needed (ICH, 2012, S. 11). The above approach puts the

guidelines recommendations into practice. It combines the

knowledge from small scale studies and manufacturing runs.

Functional relationships of quality and process parameters are

included. The results are based on drug substance specification

criteria. Following the principle of the control strategy lifecycle as

outlined in ICH Q8, acceptance criteria can be updated using the

IPM as new knowledge is available (ICH Q8 (R2), 2009, S. 8).

The presented IPM approach models independently from

each other. Hence, it relies on the assumption that there are no

interactions between the studies quality attributes. This could be

addressed by studying various CQA starting concentrations in

wet-lab experiments and modelling CQAs as function of other

CQAs. In that way multivariate range can be set up that not only

consider multivariate dependencies on process parameters but

also on other CQAs.

Currently most specifications are based on process variability and

not patient-driven.We’d like to see futurework that focuses on how to

define drug substance/product specifications that are based on patient

response (safety and efficacy). In order to achieve this, manufacturing

data should be linked to data from the clinic. Additionally, the

quantity and quality of the data is important.

The aforementioned aspects of the IPM derived acceptance

criteria provide a solid line of reasoning for justification in audits as

they are built on the total amount of available evidence, while using

already well established modelling techniques (i.e. OLS). The

described methodology enables the definition of acceptance

criteria based on the probability of reaching the specification

limits. We therefore firmly support using specification-driven

acceptance criteria form a solid base for activities in setting up

control strategies (Figure 12). The IPM derived acceptance criteria

may prove to be an excellent foundation for the establishment of

patient centric specifications as correlations between product

attributes and clinical outcomes are made.
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