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Fluid selection and administration during shock is typically guided by consideration

of macrovascular abnormalities and resuscitative targets (perfusion parameters, heart

rate, blood pressure, cardiac output). However, the microcirculatory unit (comprised

of arterioles, true capillaries, and venules) is vital for the effective delivery of oxygen

and nutrients to cells and removal of waste products from the tissue beds. Given that

the microcirculation is subject to both systemic and local control, there is potential

for functional changes and impacts on tissue perfusion that are not reflected by

macrocirculatory parameters. This chapter will present an overview of the structure,

function and regulation of the microcirculation and endothelial surface layer in health

and shock states such as trauma, hemorrhage and sepsis. This will set the stage for

consideration of how these microcirculatory characteristics, and the potential disconnect

between micro- and macrovascular perfusion, may affect decisions related to acute

fluid therapy (fluid type, amount, and rate) and monitoring of resuscitative efforts.

Available evidence for the impact of various fluids and resuscitative strategies on the

microcirculation will also be reviewed.
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INTRODUCTION

Given the complex and multi-faceted nature of emergent and critical disease processes,
determination of optimal approaches to fluid resuscitation continues to be a challenge for both
human and veterinary medicine. Further complicating the ideal approach is determining how best
to initially assess the severity of systemic compromise and gauge response to therapy. Traditionally,
monitoring of a patient’s hemodynamic state has been conducted at the macrovascular level by
monitoring heart rate, respiratory rate, blood pressure, oxygen content and lactate, among other
parameters. While these parameters may reflect systemic cardiovascular regulation, they do not
necessarily indicate what is occurring at the level of the microvasculature. As the microcirculation
is ultimately the conduit for delivery of oxygen and nutrients to tissues, it represents a relatively
uncharted avenue of exploration to help enhance our understanding of disease processes like
trauma and sepsis, its impact on tissue perfusion, as well as new ways to monitor response
to therapy.
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The goal of this manuscript will be to explore the structure,
function, and regulation of the microcirculation, both in health
and in response to disease processes like traumatic hemorrhage
(representing hypovolemia and systemic vasoconstriction) and
sepsis (representing a vasodilatory and maldistributive process).
Finally, there will be consideration of modalities for assessing the
microcirculation and tissue perfusion.

STRUCTURE AND FUNCTION OF THE
MICROCIRCULATION

The microcirculatory unit is comprised of arterioles feeding
into a capillary bed that is drained by venules (Figure 1). The
feeder arterioles are highly muscular throughout their length,
while the terminal metarterioles have intermittent bands of
smooth muscle. True capillaries have walls that lack musculature
and are one endothelial cell thick and attached to a basement
membrane. A precapillary sphincter is located between the
arteriole and the capillary bed. Arterioles and venules in the
microcirculation generally have a diameter < 100 microns, while
the capillaries are < 10 microns in diameter (1). There are also
shunt vessels that allow arterial blood to completely bypass the
associated microcirculatory unit, as dictated by arteriolar and
precapillary sphincter tone (1). The vascular endothelial surface
layer (ESL) also plays a pivotal role in health and disease; this
is the intimal surface of blood vessels containing the endothelial
glycocalyx and associated components from the endothelial cells
and plasma (2, 3). The ESL ranges from 200 nm to 2µm in
thickness and comprises up to 25% of the vascular space (4).
The glycocalyx is a complex carbohydrate rich gel-like layer that
serves as a barrier between the vessel wall and the blood (2, 5,
6) and has an overall negative charge. It contains membrane-
bound proteoglycans, secreted glycosaminoglycans, sialic acid-
containing glycoproteins, and glycolipids that are associated
with the vascular endothelial surface (7). Proteins within the
plasma, such as albumin and antithrombin, are also contained
within the glycocalyx (7–9). The primary goals of the ESL are
to maintain the vascular permeability barrier, modulate nitric
oxide produced in response to shear stress, retain protective
enzymes such as superoxide dismutase, contain factors that
inhibit coagulation such as antithrombin, tissue factor pathway
inhibitor and protein C, assist with mechanotransduction, and
prevent leukocyte adhesion and binding of ligands to control
local inflammation (3, 10). Recent discoveries in the ESL have
contributed to the revised version of the Starling principle of
transvascular fluid flux (11). Further details about the ESL are
described in “Resuscitative Fluid Therapy and the Endothelial
Surface Layer” found elsewhere in this “Fluid Therapy in Small
Animals” series.

Altogether, the microcirculation represents the largest
vascular surface area in the body and is vital for the effective
delivery of nutrients to the cells and removal of waste products
from the tissue beds (1). Both systemic and local regulation of
blood flow through these units, as well as maintenance of the
ESL, are essential to maintain adequate perfusion and match
metabolic demand to oxygen/nutrient delivery.

MICROVASCULAR
PERFUSION—SYSTEMIC CONTROL

Vascular tone can be influenced by numerous chemical
mediators in the circulation, such as catecholamines, endothelin
and thromboxane (Table 1). Catecholamines are important
(predominantly) vasoconstrictor agents released in large
amounts when the sympathetic nervous system is activated.
This occurs via central nervous system control in response to
baroreceptors and chemoreceptors in the aortic arch and carotid
sinuses (12). Baroreceptors respond to changes in vessel wall
distension and chemoreceptors respond to hypoxia, hypercapnia
or acidemia with associated modulation in vascular tone. These
effects are most important once the systemic arterial pressure
drops below 80 mmHg; they attempt to maintain perfusion
in individual capillary beds despite decreased systemic blood
pressure (12).

It is important to note sympathetic innervation exists for
the arterial tree and much of the venous system but is not
present down to the level of the capillaries. The absence of
innervation and musculature in the true capillaries means flow
through each capillary bed is regulated by the hemodynamic
pressures generated between the precapillary sphincter and the
post capillary venules. A single capillary bed can be fed by
multiple arterioles, a situation that allows flow through the
capillary bed to increase by 200–500% without any significant
change in the overall arteriolar pressure (13). This can help
to preserve microcirculatory flow to specific tissue beds during
periods of transient systemic hypotension.

Maintenance of vascular tone is not the only factor influencing
arterial blood pressure and tissue perfusion. Vascular volume
also contributes to maintenance of appropriate blood pressure
and tissue perfusion. In normal animals, the renin-angiotensin-
aldosterone system is integral in maintaining appropriate blood
volume, as well as contributing to systemic vascular tone
(4). Angiotensin II acts on vascular smooth muscle to cause
vasoconstriction and in the proximal tubules it causes sodium
and water retention, leading to increased blood volume and
arterial pressure (14). Angiotensin also causes the release of
aldosterone and vasopressin, thus promoting vasoconstriction
and water retention (14).

Systemically acting vasodilators include the kinins,
adrenomedullin and atrial natriuretic peptide (ANP). The
kinins include bradykinin and l-lysyl-bradykinin and are
activated by the kallikreins. They typically regulate blood
flow at the tissue level but can also be found circulating in
the bloodstream. In addition to causing arteriolar dilation,
bradykinin increases capillary permeability, thereby increasing
the delivery of nutrients to the tissue bed (15). Histamine, which
is released when tissues are damaged or in allergic reactions,
also acts as a vasodilator and increases capillary permeability.
Adrenomedullin increases the production of NO while ANP acts
to antagonize numerous vasoconstrictor agents, both exerting
their influence on the vascular tone indirectly (15).

These systemic regulators are responsible for controlling
delivery of blood to the precapillary sphincter across different
tissue beds. Once blood arrives at the capillary bed, local
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FIGURE 1 | Schematic of the microcirculation. Boxes on the left represent ranges of vessel diameters at varying levels of the microcirculation. Boxes throughout the

diagram represent the average interstitial (tissue) oxygen tension (PtO2). Arrows represent direction of blood flow across the microcirculatory unit.

TABLE 1 | Endogenous chemical mediators of vascular smooth muscle tone.

Vasoconstriction Vasodilation

Thromboxane A2 Prostacyclin

Endothelins Endothelium-derived hyperpolarizing

factor

Endothelium-derived constricting

factor 1

Nitric oxide

Endothelium-derived constricting

factor 1

Histamine

Vasopressin Kinins

Angiotensin II Carbon dioxide

Epinephrine/Norepinephrine Elevated tissue potassium, ADP,

adenosine

Hypothermia Hyperthermia

Hyperoxia Hypoxia

Alkalosis Acidosis

regulatory mechanisms act to maintain flow through the
capillary bed, sometimes independent of systemic changes to
perfusion (15).

MICROVASCULAR PERFUSION—LOCAL
CONTROL

Basal tissue bed requirements vary based on their metabolic
rate, nutrient availability and accumulation of waste products.
Given that each capillary bed has unique requirements that may
change independent of nearby capillary beds or systemic tissue
needs, there are many local regulators of microcirculatory flow
(Table 1). Typically, these changes in perfusion occur at the
level of the precapillary sphincter. Independent regulation of
flow based on local tissue needs results in selective capillary
perfusion and the potential for microcirculatory shunting.
Given the expansive nature of the capillary circulation, cardiac
output would be insufficient to maintain forward flow if every

FIGURE 2 | Curve reflecting tissue autoregulation for maintaining consistent

blood flow across varying systemic perfusion pressures.

capillary bed were to open simultaneously. Thus, the ability to
adjust capillary perfusion through local and systemic changes is
essential for modulating cardiac workload (15).

Rapid control of microcirculatory flow is mediated at a local
level through autoregulation. One major mechanism is flow
autoregulation, which allows maintenance of consistent capillary
blood flow over a wide range of arterial perfusion pressure. This
is achieved through vascular stretch receptors which respond to
changes in peripheral pressure. Increases in vascular pressure
trigger increased tone of the precapillary sphincter to mute
transmission of that pressure though the capillary circuit (16).
The opposite happens with a fall in peripheral pressure. This
mechanism is effective for maintaining consistent flow over a
perfusion pressure (mean arterial pressure) of 60–160mm Hg
and occurs independent of any neurohormonal input (Figure 2).

Changes in local metabolic demand can also have a significant
impact on local control of blood flow. Understandably, by-
products of increased metabolic activity, such as carbon dioxide,
lactate, and hydrogen ion will trigger vasodilation to enhance
local blood flow and improve oxygen/nutrient delivery. While
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FIGURE 3 | Diagram representing the impact of shear force generated against

the endothelium. Through mechanotransduction, intracellular calcium is

increased leading to increased nitric oxide (NO) production from stimulation of

constitutive nitric oxide synthetase (cNOS). NO diffuses into surrounding

smooth muscle cell causing activation of guanylyl cyclase (GC) and conversion

of guanosine triphosphate (GTP) into cyclic guanosine monophosphate

(cGMP). The resulting decrease in cytosolic calcium causes relaxation of

vascular smooth muscle and vasodilation.

these metabolites are produced downstream, the countercurrent
flow between arterioles and venules allows them to be “sensed”
at the level of the precapillary sphincter and alter inward flow
(16). In addition, inter-cell and local neural pathways allow
conduction of signals from capillary endothelium and venular
smooth muscle in response to these signals (16).

Local levels of oxygen tension will also affect microcirculatory
regulation. Under normal circumstances, capillary blood has a
significantly lower PO2 (5–12mm Hg) compared to arteriolar
blood (∼60mm Hg). This occurs because of early off-loading
in precapillary tissues, as well as endothelial consumption and
countercurrent exchange with venous flow (16). An increase in
precapillary tissue PO2 will promote vasoconstriction, whereas
a decrease will result in vasodilation, largely through release of
nitric oxide (NO). In addition to this role, NO has an impact
on microvascular tone in a number of other circumstances
(16). Normally, the constitutive form of nitric oxide synthetase
(cNOS) is responsible for maintaining a basal level of NO
and modulating vascular tone. Further, an increase in blood
viscosity, which occurs in diseases such as polycythemia vera
or severe hemoconcentration, results in elevated shear stress
on the vascular endothelium. Through mechanotransduction
shear stress serves to increase cNOS activity, resulting in
increased release of NO, and associated vasodilation (Figure 3).
The opposite would occur in severe anemia/hemodilution with
significant reduction in red cell mass and blood viscosity (17).
The inducible form of nitric oxide synthetase (iNOS) can
be produced by the endothelial cells when triggered by the
inflammatory cascade. Prostacyclin-induced vasodilation may
also play a role in the normal response to hypoxia, especially
when NO is blocked there is shear stress (18).

MICROVASCULAR CHANGES WITH
TRAUMA AND HEMORRHAGIC SHOCK

Given the complex nature of the microcirculation and its
multifactorial regulation, it stands to reason that microvascular
perfusion will be altered in varying ways in response to
disease states. In the face of tissue injury, hypotension, and
impaired oxygen delivery, it can be expected that there will
be activation of both systemic and local compensatory and
pathological mechanisms. While some of this response has
already been described in a general sense, what follows is more
specifically related tomicrovascular changes secondary to trauma
and hemorrhage.

The initial systemic response to tissue trauma, pain, and
hemorrhage is largely driven by the sympathetic nervous system
leading to release of epinephrine and norepinephrine. The
resulting influx of catecholamines will promote vasoconstriction,
particularly in the large arterioles (70–150µm) supplying skeletal
muscle (19). Smaller arterioles (10–25µm) have a more varied
response, with constriction to some beds and dilation in others.
This next level allows for finer regulation of microcirculatory
flow based on metabolic demand and the “essential nature” of the
associated organ/tissue bed (e.g., heart and brain).

Local factors caused by trauma and hemorrhage will also cause
changes at the level of the small arterioles. Decreased oxygen
delivery and tissue hypoxia will tend to cause vasodilation.
However, this is offset by inhibition of eNOS (and thereby
release of NO) in the early stages of trauma/hemorrhage. With
time, however, there is upregulation of iNOS (from both tissue
damage and inflammatory mediators) and more tendency for
vasodilation (20). In addition, tissue injury and the inflammatory
response will promote release of assorted vasoactive mediators
with mixed effects. Progressive acidosis and accumulation of
cellular metabolites (particularly in the terminal stages of shock)
will tend to promote vasodilation and serve to undo systemic
vasoconstrictive efforts. Despite the vasodilation, the decrease in
driving pressure in the face of hypotension ultimately leads to
stagnation of blood flow.

It is also important to consider the potential role of the
venous circulation on microvascular perfusion. In the initial
response to trauma and hemorrhage, catecholamine-induced
venoconstriction, albeit limited, serves to decrease venous
capacitance and encourage return of blood to the heart. However,
as shock progresses there will be a general relaxation (through
similar mechanisms described above), and pooling of blood
in venous circulation. This downstream stagnation can then
negatively impact blood flow across the capillary bed.

There are several other factors that can contribute to impaired
microcirculatory flow. With trauma, inflammation, and shock
there can be significant swelling of vascular endothelial cells
secondary to increased membrane permeability, acidosis, and
impaired electrolyte transport from failure of ATP-dependent
channels (21). Given capillary luminal size, further reduction
from endothelial swelling can have a significant negative
impact on capillary blood flow. Endothelial edema causes
decreased release of prostacyclin and NO and increased release
of endothelin and thromboxane; the net effect of which is
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FIGURE 4 | Representative images from a sidestream dark-field microscopy device from a healthy dog (A), dog in hemorrhagic shock (B), and dog in septic shock

(C). Note the decreased density of capillaries in patients with shock.

upstream vasoconstriction and a further reduction in capillary
flow. Another contributing factor can be decreased red blood
cell (RBC) deformability secondary to oxidative injury, ATP
depletion, cell membrane injury, and cellular dehydration
(21). As RBCs are typically slightly larger than the capillary
lumen, folding is necessary for them to effectively move
through the microcirculation. Impaired deformability, along
with aggregation, can lead to capillary plugging, or shearing
injury/destruction of RBCs. Along similar lines, increased
leukocyte rigidity, activation, and endothelial adherence can also
result in arteriolar and capillary plugging. Lastly, microthrombi
formed secondary to tissue/endothelial injury, inflammatory
response and hypercoagulability can lodge at various levels of the
microcirculation and impede downstream flow.

These upstream and downstream effects will ultimately serve
to impact capillary flow and delivery of oxygen and nutrients.
Vasoconstriction will lead to shunting of blood away from
capillary circulation (decrease vessel number) and hypotension,
vasodilation, and obstruction will lead to stagnation (decreased
flow). In addition, these abnormalities can persist for an
extended period after resuscitation has been achieved, even when
macrovascular parameters have been normalized (21, 22).

Shedding of the endothelial glycocalyx has been seen in
experimental rodent models of non-traumatic hemorrhagic
shock, although the changes are independent of increased
vascular endothelial permeability (23–25).

MICROVASCULAR CHANGES WITH
SEPSIS

The pathophysiological syndrome of sepsis characterized by the
progression of illness severity and potentially culminating in
septic shock (26). Septic shock is described in human medicine
as the presence of refractory hypotension, hyperlactatemia,
and organ dysfunction that persists despite aggressive fluid
resuscitation (27). The rapid progression from sepsis to
septic shock and organ dysfunction is poorly understood;
profound changes in the macro- and microcirculation are
believed to contribute to the development of organ failure
and subsequent death (28–31). Microcirculatory alterations

include a decreased microvascular density and perfusion along
with increased capillary flow heterogeneity (Figure 4C and
Supplementary Video 3) (28, 29, 32). These changes have been
found to precede macrocirculatory changes in septic humans
and microcirculatory improvement has also been correlated
with improved survival (28, 29, 32, 33). Early microcirculatory
changes were a stronger predictor of outcome than any
macrocirculatory variable in septic human patients (34).

Various factors likely contribute to the microcirculatory
derangements in septic patients, including hypovolemia,
endothelial cell dysfunction secondary to adhesion molecule
expression, increased white blood cell adhesion, degradation
of the endothelial glycocalyx, connexin uncoupling, vascular
hyperpermeability, formation and deposition of microthrombi,
loss of vasomotor autoregulation and reactivity, changes in
local perfusion pressure and flow, and shunting of oxygen to
hyperperfused capillary beds (35).

The sublingual microcirculatory derangements appear to
correlate with microcirculatory changes in other organs such as
the intestines and kidneys in experimental and clinical studies
(36–38). Microcirculatory changes in healthy, anesthetized dogs
correlate with macrocirculatory measurements of perfusion,
although dogs with hemorrhagic shock do not maintain this
hemodynamic coherence (39–41). Correlations in septic dogs has
not yet been published.

The degraded glycocalyx layer becomes thin and sparse during
sepsis, thus enabling plasma proteins and fluid to move across
the vascular wall and into the interstitium (42, 43). Degradation
of the glycocalyx likely occurs secondary to inflammation and
increased circulating “sheddases” such as metalloproteinases,
heparinase, and hyaluronidase which are activated by reactive
oxygen species and proinflammatory cytokines (44). Specific
changes to the endothelial glycocalyx of the lung in septic rodent
models include peeling away from the endothelial surface and
form spherical bodies that are visualized at the site of damage
(45). An decrease in the thickness of the endothelial surface
layer was seen in human patients suffering from sepsis and
correlated with severity of critical illness. However, there was
not an association between this thickness and microcirculatory
parameters such as flow index and the proportion of perfused
vessels (46).
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MONITORING OF THE
MICROCIRCULATION VS.
MACROCIRCULATION

There is mounting evidence in human medicine to suggest that
goal directed therapy aimed at maximizing macrocirculatory
parameters may not improve outcome (47–49). Despite
preservation of total blood flow to organs, heterogeneity of
microcirculatory flow can lead to hypoxic zones (29, 50).
Several techniques have now been developed to assess
the microcirculation to investigate its role as a diagnostic,
prognostic, and monitoring tool, including laser Doppler,
near-infrared spectroscopy, and videomicroscopy (51). As
mentioned above, macrocirculatory hypoperfusion is associated
with microcirculatory derangements; however, dysfunction of
the microcirculation may occur despite normal macrocirculatory
indices. This loss of hemodynamic coherence can lead to
hyperlactatemia and acidemia despite normal perfusion
parameters (also known as cryptic shock) (52). When patients
are in shock, normalization of cardiovascular parameters may
not equate to improvements in microcirculatory perfusion,
as evidenced in both clinical and experimental studies
(22, 29, 32, 34, 53). There are four possible mechanisms
for this loss of hemodynamic coherence: (1) increased
microcirculatory heterogeneity of perfusion (i.e., secondary
to inflammatory cytokines), (2) hemodilution from non-
oxygen carrying intravenous fluids, thus decreasing hematocrit
and oxygen content, (3) microcirculatory vasoconstriction
or tamponade from endogenous/exogenous vasopressors
and/or increased venous pressure, ad (4) interstitial edema
of tissues secondary to endothelial and glycocalyx damage
(i.e., secondary to inflammation or excessive fluid therapy)
(54). In this regard, direct assessment of microcirculatory
flow, such as with videomicroscopy, could be better suited to
determine the presence of derangements, as well as response to
fluid resuscitation.

Techniques like side stream dark field (SDF) and incident
dark field (IDF) microscopy allow direct imaging of the
microcirculation with the ability to quantify vessel density as
well as assess quality of flow (55). Both of these technologies
involve a hand-held device that emits green light (530 nm) which
is absorbed by the hemoglobin of erythrocytes. These illuminated
red blood cells show up as a dark density flowing through the
microcirculation, resulting in a real-time magnified video with
resolution to allow detection of true capillaries (Figures 4A–C,
Supplementary Videos 1–3). Where they differ is how the light
is emitted and received by the device, with reported differences
in image quality and magnification (55). Analysis of the resulting
videos generates parameters including total vessel density (TVD),
proportion of perfused vessels (PPV), perfused vessel density
(PVD), and microvascular flow index (MFI) which reflect the
quantity and quality of microvascular flow. In order to allow a
more consistent approach to microvascular analysis, consensus
criteria for the acquisition and analysis of microcirculatory
images using have been established (56).

Despite the availability of direct microvascular imaging for
two decades and some evidence in veterinary medicine, (39,

40) it has still not become a standard in monitoring response
to fluid therapy. Largely this has to do with some of the
limitations of these technologies. The camera is expensive and
not widely available. Because of the need for light to transmit
and reflect back, only mucosal or serosal surfaces can be
used for visualization, and areas with keratinized epithelium
or significant pigmentation cannot be examined with this
technique. In order to generate diagnostic quality videos for
analysis, sufficient pressure has to be applied to the tissue,
while avoiding excessive compression of the microvasculature
(56). While significant steps have been made toward automating
the vascular analysis (previously it was largely a manual effort
taking over 1 h per video), accuracy of vessel assignment used
for automated calculations remains a challenge. This can result
in inconsistency and variability of results. Therefore, while
microvascular imaging has significant potential to aid in guiding
response to fluid therapy, further refinement of automated
analysis and increased availability is needed before its use can
become more commonplace.

There are two primary methods for assessing the integrity
of the endothelial glycocalyx: measurement of shed glycocalyx
components in the plasma or serum (i.e., glycosaminoglycans
such as hyaluronan and proteoglycan ectodomains such as
syndecan-1) and use of imaging techniques that can be done
in vivo or ex vivo. Damage to the ESL and shedding of the
glycocalyx has been shown to occur in a multitude of serious
illnesses; the degree of shedding is associated with poor outcomes
(57). Potential therapeutic strategies to support repair of a
damaged ESL, including fluid therapy prescriptions, is the focus
of ongoing research.

The use of circulating biomarkers as an indicator of
glycocalyx damage has limitations. These primarily include
the variable methodology itself, potential for other sources
of the markers since they are not unique to the glycocalyx,
and upregulation of some markers with diseases such as
inflammation. Further details on glycocalyx biomarkers can
be found in “Resuscitative Fluid Therapy and the Endothelial
Surface Layer” found elsewhere in this “Fluid Therapy in Small
Animals” series.

Imaging of the ESL in vivo, ex vivo, and in vitro
has been performed using multiple methods. These include
transmission electronmicroscopy, (58–60) intravital microscopy,
(61, 62) microparticle image velocimetry, (63) confocal laser
scanning microscopy or atomic force microscopy, (10) two-
photon laser scanning microscopy, (64) and videomicroscopy
using handheld devices and various imaging technologies
(i.e., orthogonal polarization spectroscopy, sidestream dark-field
imaging incident dark-field imaging) (56). More recently, in
vivo indirect assessments of the glycocalyx have been performed
in humans and small animals using the sidestream dark-
field microscopic technique in conjunction with specialized,
proprietary software that measures the width of the vessel lumen
available for red blood cell movement as an indirect assessment
of glycocalyx thickness (also known as the perfused boundary
region or PBR) (65–68). If there is damage to the ESL, RBC are
able to penetrate further toward the endothelium and the PBR
increases (69).
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EFFECTS OF FLUID RESUSCITATION ON
THE MICROCIRCULATION IN TRAUMA
AND HEMORRHAGIC SHOCK

The nature of traumatic injury and hemorrhage presents
significant challenges regarding how to optimize fluid therapy
and volume replacement, particularly in the animal with active
bleeding. In addition to loss of circulating volume, there are also
aspects of progressive anemia, protein loss and coagulopathy.
While administration of blood products over crystalloid or
colloid is generally recommended in human medicine, (70)
limited availability in veterinary medicine can result in greater
use of crystalloids or consideration of synthetic colloids.
Experimental hemorrhagic shock studies in rodent models
suggest a benefit of balanced crystalloids, fresh frozen plasma or
concentrated albumin over normal saline for restoration of the
endothelial glycocalyx (71, 72). Results have not been consistent,
however, Further, albumin and fresh frozen plasma appear to
be more protective in most studies when compared to synthetic
colloids (73). In addition to the type of fluid, volume and rate
of administration are also a subject of debate; there is concern
that aggressive fluid administration could serve to exacerbate
ongoing hemorrhage, worsen coagulopathy, and damage the
endothelial glycocalyx (74, 75). Of further consideration are
the implications that fluid type and rate of administration
might have on the microcirculation. As previously indicated,
improving macrovascular parameters does not always correlate
to restoration of microvascular perfusion.

Numerous experimental models and preclinical studies
have attempted to assess the impact of various fluids on
the microcirculation in patients with hemorrhagic shock.
A systematic review of many of these studies, totaling 71
articles between 1990 and 2015, evaluated an assortment of
fluid comparisons including blood products, hemoglobin-based
oxygen carriers, crystalloids and colloids (76). Major findings
of this analysis suggested that improved microcirculation was
found with solutions containing hemoglobin vs. those without,
those that were hyperoncotic vs. those that were not, and those
that were hyperviscous vs. those that were not (76). In fitting
with this, a recent study in sheep comparing hydroxyethyl starch
(HES) and saline found improved hemodynamic coherence with
HES, whereas saline only improved macrovascular parameters
(77). However, concerns regarding the potential for acute kidney
injury with synthetic colloids has served to significantly reduce
their use in both human and veterinary medicine. What remains
to be determined is whether use of a limited acute volume
expansion carries a similar risk. In a human clinical study
of patients with traumatic hemorrhagic shock, it was shown
that the presence of microvascular derangement at the time
of presentation that persisted after resuscitative efforts was
more predictive of progression to multiple organ dysfunction
syndrome than other more traditional parameters (like lactate
and blood pressure) (78). This was true regardless of the type of
resuscitative fluid used.

In hemorrhagic shock and trauma, there is potentially even
greater interest in specifically looking at the impact of blood
transfusion on restoring or maintainingmicrovascular perfusion.

One study in human patients showed that administration of
packed red blood cells helped to improve patients with
microvascular parameters that were initially decreased, however
there was no change or reduction in patients that started with
normal values (79). Another pilot study showed improvement
in microvascular parameters with red blood cell transfusion
of one unit despite no change in macrovascular parameters
or hemoglobin levels (80). Interestingly, these changes were
negatively correlated with pre-transfusion microvascular
parameters, again suggesting that the worse the microvascular
impairment, the more significant the improvement. However,
duration of red blood cell storage could alter the impact of
red cell transfusion on microvascular perfusion. It has been
demonstrated that aged red cell units may have increased levels
of free hemoglobin which can serve to scavenge NO and worsen
microvascular blood flow (81). Future studies evaluating the
use of plasma for resuscitation from trauma are underway;
initial data suggests that plasma therapy may play a beneficial
role in ameliorating immunomodulatory dysfunction and
trauma-induced endotheliopathy (82).

EFFECTS OF FLUID RESUSCITATION ON
THE MICROCIRCULATION IN SEPSIS

Intravenous fluid therapy has been one of the cornerstones of
treatment for sepsis spanning many decades. Although fluid
resuscitation may improve microvascular perfusion, this effect
is not predictable and likely depends in part on the timing of
administration; microvascular perfusion is improved if fluids
are given within 12–24 h of diagnosing sepsis but may be
less effective or even deleterious when given at later stages
according to one study (83). However, additional studies found
that bolus fluid therapy worsened survival in people with
sepsis (84, 85). Humans with abdominal sepsis displayed an
increase in mean arterial blood pressure, cardiac index, and
sublingual microcirculatory red blood cell velocity following a
fluid challenge; however, the intestinal microcirculatory indices
did not change (86). The role of fluids in the augmentation
of septic endothelial dysfunction and glycocalyx damage is the
focus of current investigation (87). Adverse outcomes have
also been linked to fluid therapy and fluid balance, increasing
the need to determine the pathogenesis of these findings (88–
93). There is evidence to suggest that intravenous crystalloid
and colloid fluid administration promotes endothelial glycocalyx
degradation in endotoxemic sheep (94) and humans with sepsis
(74, 87). Although the exact mechanism is still unknown, there
are several possible etiologies: (1) acute vascular stretching
along with inflammatory mediators could stimulate endothelial
expression of glycocalyx-sheddingmatrix metalloproteinase, (95)
(2) oscillatory shear stress-induced increases in cathepsin L
activation (an enzyme that may be involved in post-translational
activation of endothelial heparinase), (96) (3) direct activation of
circulating leukocytes and trigger neutrophil-elastase glycocalyx
destruction, (97–99) and (4) atrial natriuretic peptide which has
been found to induce glycocalyx damage in some human studies
(26, 100, 101).
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The effect of the type of fluid administered may also play
a role in causing glycocalyx damage with sepsis. Both clinical
and preclinical data suggest that balanced crystalloids, albumin,
fresh frozen plasma, and synthetic colloids may be less injurious
compared to isotonic saline (102–104). It is possible that albumin
preserves the glycocalyx and may be more beneficial compared
to isotonic crystalloids in experimental studies, (105, 106) but
results of glycocalyx evaluation following albumin therapy in
septic patients are not yet available. Albumin therapy in the
form of concentrated albumin or plasma products has sparked
interest for its potential ability to protect the glycocalyx due to
its ability to carry erythrocyte-derived sphingosine-1-phosphate
to the endothelium; this may mediate glycocalyx recovery by
suppressing metalloproteinase activity (107–109). It has even
been suggested that individual patients should receive tailored
fluid treatment plans based on admission markers of endothelial
glycocalyx damage to avoid the deleterious consequences of fluid
administration to patients with high risk for vascular leakage and
subsequent organ dysfunction (109).

CONCLUSION

In conclusion, the hemodynamic coherence between the macro-
and microcirculation is often poor in shock states such as
hemorrhage or sepsis. Various diseases lead to vascular changes
that may not be readily apparent with current monitoring
strategies. Therefore, intravenous fluid resuscitation strategies

must take into account not only microcirculatory parameters
such as systemic arterial blood pressure, but also downstream
measures and/or microcirculatory assessments of the patient’s
response to treatment. Continued research focusing on the
effects or different fluid therapy prescriptions on the macro-
and microcirculation/endothelial surface layer in various disease
states, the goals and timing of its administration, and ultimately
outcome of the patients will likely change fluid therapy in
the future.
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