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Abstract

Background: Individual skeletal muscles have evolved to perform specific tasks based on their molecular composition. In
general, muscle fibers are characterized as either fast-twitch or slow-twitch based on their myosin heavy chain isoform
profiles. This approach made sense in the early days of muscle studies when SDS-PAGE was the primary tool for mapping
fiber type. However, Next Generation Sequencing tools permit analysis of the entire muscle transcriptome in a single
sample, which allows for more precise characterization of differences among fiber types, including distinguishing
between different isoforms of specific proteins. We demonstrate the power of this approach by comparing the differential
gene expression patterns of extensor digitorum longus (EDL), psoas, and soleus from mice using high throughput RNA
sequencing.

Results: EDL and psoas are typically classified as fast-twitch muscles based on their myosin expression pattern, while
soleus is considered a slow-twitch muscle. The majority of the transcriptomic variability aligns with the fast-twitch and
slow-twitch characterization. However, psoas and EDL exhibit unique expression patterns associated with the genes
coding for extracellular matrix, myofibril, transcription, translation, striated muscle adaptation, mitochondrion distribution,
and metabolism. Furthermore, significant expression differences between psoas and EDL were observed in genes coding
for myosin light chain, troponin, tropomyosin isoforms, and several genes encoding the constituents of the Z-disk.

Conclusions: The observations highlight the intricate molecular nature of skeletal muscles and demonstrate the
importance of utilizing transcriptomic information as a tool for skeletal muscle characterization.

Keywords: RNA sequencing, Fast-twitch muscle, Slow-twitch muscle, Transcriptome, Muscle specialization, Differential
gene expression

Background
Muscle sarcomere is a complex network of proteins that
work together to generate force. Specific fiber types have
evolved to express a unique array of proteins according to
the tasks that muscles perform [1–3]. The basic principles
associated with muscle contraction were established with

the development of the sliding filament model [4, 5].
However, there remain many unanswered questions asso-
ciated with muscle function and the differences among
skeletal muscle fiber types [2, 6, 7], even after close to a
century of work. Transcriptomic variability among differ-
ent types of skeletal muscle is one particular area that has
been poorly characterized. A complete understanding of
these differences will not only help improve fiber type
characterization but will also provide the necessary tools
to characterize transcriptome-level changes associated
with age or muscle-based diseases.
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Muscle fibers are classified at the physiological level as
either fast-twitch or slow-twitch, based on their con-
tractile properties. Myosin heavy chain isoform compos-
ition is the most common technique used in muscle
fiber typing and is associated with contractile efficiency
and energy metabolism [8]. Metabolic properties of
muscle fibers associated with the mitochondrial struc-
ture and mitochondrial-associated enzyme content [6]
determine the degree of aerobic (oxidative) and anaer-
obic (glycolytic) capacity [9], resulting in four primary
categories of muscle; slow-twitch oxidative type 1, fast-
twitch oxidative glycolytic type 2A, fast-twitch glycolytic
type 2X, and fast-twitch glycolytic type 2B [6, 8, 10–12].
Several other structural and physiological characteristics,
including mitochondrial composition [2, 13, 14], energetic
substrate availability [2, 14], Z-line thickness [2, 14], and
myoplasmic Ca2+ concentration and Ca2+ affinity of regu-
latory proteins [15] follow the same primary fiber type
classification. While this approach provides a high-level
characterization of muscle fiber type, it does not provide
insights into the more subtle but important differences in
gene expression that occur in different types of skeletal
muscles. The majority of skeletal muscles contain a com-
bination of fast- and slow-twitch fibers [8], resulting in
characteristics of both fiber types, although they are gen-
erally classified based on the predominant myosin heavy
chain isoform as either fast-twitch or slow-twitch.
Skeletal muscles vary enormously in embryonic ori-

gins, shapes, and functional roles [3]. The diversity of
structural and functional constituents of myofibers
makes skeletal muscles highly adaptable to functional
demands [2, 16, 17]. This diversity has been observed in
metabolic profiles [2, 14] and isotonic shortening veloci-
ties [2, 18, 19], despite fundamental slow- or fast-twitch
characteristics remaining well preserved. However, these
studies have not been correlated with differential gene
expression patterns to develop a complete molecular un-
derstanding of how gene expression drives the physi-
ology. This is an important gap in knowledge that is
critical to understanding the etiology of sarcopenia,
dynapenia, myopathy, muscle injuries, and other muscle
diseases.
Muscle diseases are generally linked to a heritable gen-

etic mutation or metabolic dysfunction and interestingly
are often localized to a specific muscle(s) rather than
targeting all muscles with a similar fiber type or archi-
tecture [16, 20]. For example, Duchenne muscular dys-
trophy (DMD) predominantly affects fast muscle fibers
in the body but does not affect the head muscles [20].
Because susceptibility of a particular muscle to a disease
phenotype is likely a function of gene expression, lack of
data on gene expression differences between muscle
types prevents a deeper understanding of musculoskel-
etal diseases. One of the most common approaches for

assessing transcriptomic profiles is RNA Sequencing
(RNA-Seq), which quantitatively determines the expres-
sion level of all transcripts within a particular tissue.
This approach has been largely overlooked as a tool to
explore transcriptomic variability in muscles. One of the
pioneering studies was recently published by Terry et al.
[3], who conducted a comprehensive study of the tran-
scriptomic diversity of skeletal, smooth, and cardiac
muscle tissues in mice and rats. This study demonstrated
that there are two main clusters of genes in skeletal mus-
cles that exhibited transcriptomic variability that corre-
lated with fast-twitch and slow-twitch muscle phenotypes.
However, one of the key findings of this study was that
muscle-specific transcriptomic variability is more complex
than an orthogonal classification of fiber types, and it is
too simplistic to just refer to muscles by their prominent
phenotype. Skeletal muscle classification should extend
beyond the fiber type associated behavior, and take into
account the physiological, metabolic, morphological, and
developmental diversity of different muscles.
Comparative literature focusing on biophysical charac-

teristics of skeletal muscles generally use representative
muscles composed of primarily of either fast-twitch or
slow-twitch fibers [21–23]. Much of the work using iso-
lated muscles and muscle fibers has focused on EDL and
soleus fibers as they represent fast-twitch and slow-
twitch muscles [6, 24, 25]. Psoas muscle is generally clas-
sified as a fast-twitch muscle based on physiological
studies, but the exact fiber composition of this muscle is
less clear since the myosin heavy chain (Myh) distribu-
tion pattern differs among studies [26, 27]. Since EDL
and psoas have been categorized as fast muscles, we pre-
dicted that the transcriptome of mouse psoas muscle
would more closely resemble the transcriptome of the
EDL muscle, while soleus would have a distinctly differ-
ent gene expression pattern. In this study, we test this
hypothesis using RNA-Seq and demonstrate that many
of the gene clusters analyzed show similar patterns of
up- and down-regulation in the psoas and EDL tran-
scriptomes and these patterns differ from soleus. How-
ever, there are specific gene clusters where either psoas
or EDL muscles more closely resemble the expression
pattern of soleus muscles. Our results highlight the im-
portance of transcriptome-level comparisons to gain in-
sights into the molecular characteristics of skeletal
muscles, that were not possible to obtain using physio-
logical studies.

Results
Gene expression profiles of EDL, psoas, and soleus col-
lected from RNA-seq were studied to understand the tran-
scriptomic variation among muscles. The myosin heavy
chain (Myh) composition of these muscles has been charac-
terized in several different studies [3, 8, 13, 24, 26–29],
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providing a robust data set for validating our RNA-Seq ana-
lysis. There are four predominant myosin isoforms that are
typically used for isoform typing of muscle fibers, namely
Myh-2X, Myh-2A, Myh-2B, and Myh-1, which are encoded
by the Myh1, 2, 4, and 7 genes respectively. The expression
percentages of these four genes in EDL, psoas, and soleus
were determined as a fraction of total normalized reads
counts in fragments per kilobase million (FPKM) and com-
pared to published percent expression levels (Fig. 1b). The
calculated percentages of myosin heavy chain isoforms in
each muscle showed no significant difference compared to
the transcriptomic and proteomic data gathered from the
literature when compared using a 95% significant level
(Table S2 in SI). The percent expression levels of the major
myosin heavy chain isoforms in EDL and psoas are similar
(~ 79% Myh-2B; ~ 16% Myh-2X and ~ 4% Myh-2A) with
Myh4 exhibiting the highest transcript level of any isoform
in both EDL and psoas, consistent with their classification
as fast-twitch muscles. In contrast, soleus expresses a

mixture of both fast and slow myosin isoforms (5% Myh-
2B, 26% Myh-2X, 39% Myh-2A, and 30% Myh-1), which is
similar to the percentages observed in previous transcripto-
mics and proteomics experiments (Fig. 1a-b, Table S2 in
SI).

EDL and psoas exhibit different transcriptomic patterns
Pairwise comparison of gene expression profiles in EDL,
psoas, and soleus was carried out using DESeq2 and dif-
ferentially expressed genes among the muscles were
identified. At a 99% significance level, the comparison of
psoas vs. EDL identified 1227 differentially expressed
genes with more than a two-fold expression difference,
which was the highest number of differentially expressed
genes in any pairwise comparison. In contrast, soleus vs
EDL and soleus vs psoas comparisons yielded 716 and
944 genes, respectively. This was surprising as we ex-
pected psoas to have an expression pattern that was
closer to EDL, due to the similar Myh expression

Fig. 1 EDL, psoas, and soleus constitute unique expression signatures. a Expression of the four primary myosin isoforms in EDL, psoas, and soleus.
Both EDL and psoas predominantly express Myh-2B (Myh4) isoform, while soleus expresses nearly equivalent levels of Myh-1(Myh7), Myh-
2A(Myh2), and Myh-2X(Myh1). b Percent Myh isoform expression in mouse EDL, psoas, and soleus from the present study (red) agree well with
the proteomics and transcriptomics data gathered from the literature (black). Percent Myh isoform expression was calculated as a fraction of total
FPKM values of Myh1, Myh2, Myh4, and Myh7, and compared to the data reported by previous publications using t-tests. Data used to carry out
the statistical analysis, and the results are shown in Table S2 in SI. At the 95% significant level, no significant expression difference was observed
between the two datasets (c) PCA after filtering-out marginally expressed genes (see methods for the selection criteria used). PC1 identifies 46%
of the expression variability among genes and creates two major clusters separating fast muscles (EDL and psoas) from slow muscle (soleus). PC2
accounts for 27% of the variance and separates EDL, psoas, and soleus into three distinct clusters. d UpSet plot showing the number of unique
and overlapping genes between the up and down-regulated genes identified by the pairwise comparison of EDL, psoas, and soleus. The total
number of uniquely differentially expressed genes between two fast muscles is greater than that of the fast to slow comparisons
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profiles between these two muscles, and the fact that
they are both classified as fast-twitch muscles [8, 29].
Therefore, a principal component analysis (PCA) was
carried out on the complete dataset with the marginally
expressed genes removed (see methods) to determine
the underlying components associated with the expres-
sion variability (Fig. 1c). The first principal component
(PC1) accounted for 46% percent of the transcriptomic
variability among the genes. We observed two major
clusters along PC1 separating soleus from EDL and
psoas. The second principal component (PC2) accounts
for 27% of the expression variability among the genes.
Although EDL and psoas occupy similar coordinates
along PC1, they showed clear separation along PC2,
where soleus clusters between EDL and psoas. The
remaining principal components carried minor contribu-
tions to the observed variance among the samples
(PC3 = 8.47%, PC4 = 6.59%, PC5 = 5.17%, PC6 = 4.44%,
PC7 = 2.90%, PC8 = 2.84, PC9 = 1.01%).
To investigate the genes with the highest correlation

to PC1 and PC2, the genes were ranked on their respect-
ive loading value, and the top 10 genes from each data
set were selected (Table 1). The Pearson correlation co-
efficients calculated for the FPKM values of the selected
genes and the respective principal components are

shown in Table 1. The selected genes with the highest
correlation to PC1 were related to genes in striated mus-
cles that exhibit fiber type-specific characteristics, lead-
ing to the prominent separation of EDL and psoas from
soleus along PC1. Likewise, the selected genes with the
highest correlation to PC2 were associated with extracel-
lular matrix and signaling (Table 1), and these genes do
not have a direct association with a particular fiber type.
The expression variability of these genes gave rise to the
separate clustering of the EDL, psoas, and soleus along
PC2.
Up- or down-regulated genes identified in each pairwise

differential expression analysis were compared in an
UpSet plot to investigate the number of unique and over-
lapping genes (Fig. 1d). The two largest gene subsets were
associated with the psoas vs EDL pairwise comparison,
showing that the expression differences observed between
two fast muscles are unique to that specific pair. This is
likely a characteristic of muscle specialization [3]. Even
though EDL and psoas are fast muscles, the two muscles
are located in different parts of the body and the func-
tional loads imposed on them are different [20, 30]. Mo-
lecular adaptations in response to the difference in
function are likely reflected by the observed gene expres-
sion differences between EDL and psoas.

Table 1 Genes with the highest correlation to principal components 1 and 2. The top 10 genes with the highest loading to PC1
and PC2 are shown. The Pearson correlation coefficients of FPKM values of selected genes to principal components are denoted by
R2

Principal component Gene symbol Gene name R2

PC1 Myh7 Myosin, heavy polypeptide 7, cardiac muscle, beta 0.92

Myl2 Myosin, light polypeptide 2, regulatory, cardiac, slow 0.91

Tnni1 Troponin I, skeletal, slow 1 0.91

Tnnt1 Troponin T1, skeletal, slow 0.97

Tpm3 Tropomyosin 3, gamma 0.96

Myh6 Myosin, heavy polypeptide 6, cardiac muscle, alpha 0.89

Atp2a2 Atpase, Ca++ transporting, cardiac muscle, slow twitch 2 0.97

Myl3 Myosin, light polypeptide 3 0.96

Tnnc1 Troponin C, cardiac/slow skeletal 0.94

Strit1 Small transmembrane regulator of ion transport 1 0.87

PC2 Col11a1 Collagen, type XI, alpha 1 0.89

Kera Keratocan 0.92

Wif1 Wnt inhibitory factor 1 0.91

Tnmd Tenomodulin 0.95

Cilp2 Cartilage intermediate layer protein 2 0.86

Tnc Tenascin C 0.92

Ecrg4 ECRG4 augurin precursor 0.87

Lars2 Leucyl-trna synthetase, mitochondrial −0.49

Col1a1 Collagen, type I, alpha 1 0.80

Col11a2 Collagen, type XI, alpha 2 0.81
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Differential expression patterns vary between muscle
types based on function
Recognizing that there were clear differences in gene ex-
pression among the three muscles, we were interested in
clustering differentially expressed genes by functional
characteristics. Spangenburg and Booth [6] demon-
strated that studying functional gene clusters that de-
pend on common regulatory factors provides valuable
insights into muscle phenotype. Using this approach, we
employed k-means clustering [31–34] on the differen-
tially expressed genes exhibiting more than a two-fold
expression difference in at least one pairwise muscle
comparison (Fig. 2). Based on the similarity in pheno-
type and myosin isoform expression patterns between
psoas and EDL, we predicted that these two muscles
would exhibit similar expression signatures compared to
the soleus, and this pattern was discernable in the clus-
tering analysis.
K-means clustering resulted in five gene clusters,

which were plotted in a heatmap of corresponding ex-
pression differences (Fig. 2). Two primary gene expres-
sion patterns can be identified in the resulting heatmap.
One is associated with the fiber type classification (Clus-
ters 2 and 4), and the other, more specific to individual
muscle characteristics (Clusters 1, 3, and 5). Among the
identified gene clusters, Cluster 2 contains 533 genes
that exhibit elevated expression levels in soleus relative
to EDL and psoas, and Cluster 4 contained 269 genes
exhibiting the opposite pattern, with soleus genes down-
regulated relative to EDL and psoas. The ten most sig-
nificant gene ontology terms enriched from these two
gene sets were associated with sarcomere structure,
function, and energy metabolism (Fig. 3). The majority
of the genes associated with selected gene ontology
terms show concurrent up or down-regulation in soleus
vs EDL, and soleus vs psoas comparisons. This was ex-
pected because both EDL and psoas are fast fiber-rich
muscles [8, 29]. However, there was a smaller subset of
genes associated with the selected GO terms, which
showed significant expression changes in the psoas vs
EDL comparison (Fig. 3, and Fig. S4 and Fig. S6 in SI).
The remaining gene clusters showed muscle-specific

expression signatures, that did not adhere to a broader
fiber-type based classification of muscles. Gene clusters
1, 3, and 5 contained 277, 337, and 660 genes, respect-
ively. The number of up or downregulated genes associ-
ated with the top 10 gene ontology terms enriched from
Clusters 1, 3, and 5 are shown in Fig. 4. Even though
EDL and psoas are fast fiber-rich muscles [8, 29], up or
downregulated gene signatures in soleus vs EDL, and so-
leus vs psoas comparisons are distinctly different from
one another. Furthermore, a higher number of differen-
tially expressed genes was observed in the comparison
between two fast muscles (psoas vs EDL) in association

with the selected gene ontology terms for Clusters 1 and
5 (Fig. 4, and Fig. S3 and S7 in SI). The gene expression
variability captured by Clusters 1, 3, and 5 emphasizes
the differences between two fast muscles (EDL and
psoas). They also highlight particular cases in which the
expression patterns of EDL or psoas align with the slow
soleus muscle. Genes in clusters 1 and 3 were associated
with a wider array of ontology categories, but cluster 5
showed association with extracellular matrix compo-
nents (Fig. 4, Additional files 2, 4, and 6).
The observations gathered from the gene ontology

analysis can be linked back to the genes correlated with
PC1 and PC2 as shown in Table 1. Clusters 2 and 4 con-
tain genes associated with structural and functional
components of muscles, that followed an expression pat-
tern concordant with the fiber type and comparable with
PC1. Clusters 1, 3, and 5 are associated with the second
layer of variation among the skeletal muscles, which was
also observed in the genes correlating to PC2 (Table 1).
Clusters 1 and 3 highlight variations in EDL and psoas
muscles associated with a multitude of structural and
functional characteristics including myofibrils, mito-
chondrion distribution, sarcoplasm, muscle contraction,
transcription, translation, and carbohydrate catabolism
(Fig. 4) that are not apparent in physiological studies.
Similarly, cluster 5 exhibited muscle-specific characteris-
tics associated with the extracellular matrix (ECM) com-
ponents that did not directly follow fiber-type (Fig. 4
and Fig. S5). These observations agree with the findings
reported by Prado et al. [35], who observed a higher
contribution of ECM to passive stiffness in both soleus
and EDL relative to the psoas. Generally, slow oxidative
muscles like soleus contain a more extensive collagen
fiber network than fast muscles [35]. However, this is
not universally the case as EDL has more collagen than
psoas [35, 36]. Taken together, it is hard to establish a
correlation between fiber type and ECM thickness
among EDL, psoas, and soleus, which is reflected in our
transcriptomic data.

Slow fiber specific isoforms play a central role in
developing slow muscle characteristics
In addition to the global gene expression differences ob-
served in the study, specific sets of genes, such as the
myosins, troponins, and tropomyosins are of particular
interest as these contain sets of slow and fast-fiber spe-
cific isoforms that are coded by different genes. There-
fore, we looked at the gene expression levels related to
these thin and thick filament proteins in more detail. As
shown earlier, EDL and psoas predominantly express a
fast-twitch isoform of the myosin heavy chain, while so-
leus expresses a mixture of the four main myosin heavy
chain isoforms (Fig. 1a). Interestingly, when we com-
pared the gene expression levels of the myosin light
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chains (Myl) (Fig. 5a), troponins (Fig. 5b), and tropomy-
osins (Fig. 5c), we observed a unique set of features. The
slow-fiber related isoforms are expressed only in soleus,
while the fast isoforms are expressed in all three mus-
cles. Slow fiber associated Myl2 and Myl3 showed high
expression levels in soleus, but extremely low levels in
EDL and psoas. In contrast, fast-fiber related Myl1,
Mylpf, and Mylk2 exhibit comparatively high expression
levels in all three muscles, though EDL and psoas had
higher levels than the soleus. Similar gene expression

trends were observed in troponin transcripts, where slow
isoforms - Tnnc1, Tnni1, and Tnnt1 were markedly high
in soleus, while fast isoforms - Tnnc2, Tnni2, and Tnnt3
were found in all three muscles. In tropomyosin, Tpm1
(prominent in fast muscles [37]) is expressed in all three
muscles, though higher expression levels were observed
in EDL and psoas. Tpm2 (prominent in slow muscles
[37]) showed elevated levels in the psoas compared to
EDL (psoas vs EDL p-adj = 6.37e-10). Furthermore,
Tpm3 transcript levels were markedly high in soleus

Fig. 2 Differentially expressed genes show five distinct clusters among EDL, psoas, and soleus. a Z-score based hierarchal clustering of the gene
subsets identified by k-means clustering of the differentially expressed genes (padj< 0.01 and fold change > 2). The optimal number of k-means
clusters was determined using (b) elbow, and (c) gap statistic methods. The color intensities correspond to the average gene expression standard
deviation from the mean (cluster centers). Red represents upregulation, and blue represents downregulation
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compared to EDL or psoas (soleus vs EDL p-adj = 8.23e-
75, soleus vs psoas p-adj = 4.56e-112). This unique pat-
tern of slow isoform expression among different muscles
suggests a significant role played by the expression ratio
of fast and slow isoforms in tuning the phenotype of dif-
ferent skeletal muscles.

Genes associated with sarcomere Z-disk display a unique
expression signature in EDL
The Z-disk is a dense network of proteins anchoring
thin filaments from opposing sarcomeres to actinins,
titin, and many other structural and signaling proteins
[38, 39]. We observed a unique expression pattern in the
genes coding for the proteins that assemble in this

region, in which EDL exhibits lower expression levels
compared to the psoas. We have studied six genes that are
associated with the z-disk [40, 41] (Fig. 5d). Titin shows
1.7-fold expression upregulation in psoas vs EDL (p-adj =
0.0005). Nebulin (Neb), obscurin (Obscn), calpain3
(Capn3), desmin (Des), and filamin-C (Flnc) follow a simi-
lar expression signature to titin. These observations sug-
gest possible structural or functional variability at the Z-
disk of the fast muscle sarcomere [42, 43], which may lead
them to respond to cellular perturbations differently.

Discussion
Skeletal muscle is a complex network of proteins that
work together to generate the forces necessary for

Fig. 3 Gene clusters 2 and 4 associate with muscle structure, function, and energy metabolism and highlight the cellular processes differentiating
fast and slow fiber-rich muscles. Gene ontology terms identified for gene cluster 2 and cluster 4 were summarized using REViGO online tool and
the number of up and down-regulated genes (absolute log fold change > 2) associated with the top ten gene ontology terms (based on the p-
value) were visualized in bar charts. Gene expression heatmaps associated with the bar charts for cluster 2 and cluster 4 are shown in Fig. S4 and
Fig. S6 in SI
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movement. The diversity of muscle function spans from
involuntary and rhythmic movements of respiratory
muscles to the fine contractions of extraocular muscles
to limb muscles, which have variable endurance capaci-
ties [3]. The same general architecture is used to accom-
plish these different tasks by tuning isoform expression
levels of certain critical proteins [2, 3]. Contractile prop-
erties such as muscle shortening velocity, twitch dur-
ation, and endurance capacity, as well as metabolic
properties which control the rate of ATP synthesis and
hydrolysis [44], play a central role in skeletal muscle di-
versity. These characteristics depend on which isoforms,
or combination of isoforms, are expressed in a particular
muscle fiber. One of the primary methods for identifying
fiber type is the determination of the expression profile
of fast and slow myosin heavy chain isoforms. This ap-
proach provides general insights, but many muscle-
specific differences are not captured through this ap-
proach [3]. Within both the fast and slow fiber classifica-
tions, there is tremendous variability in many important

gene families, which creates subtle distinctions between
the various muscles within these two broad categories.
To start to understand this variability, we used RNA se-
quencing to explore gene expression differences in EDL,
psoas, and soleus muscles. Our data shows that there is
a rich diversity of gene expression beyond myosin iso-
forms that defines the characteristics of any muscle fiber,
and this diversity results in the range of muscle pheno-
types that are known to exist.

Transcription of muscle-specific genes does not strictly
adhere to fast and slow fiber types
In the current study, we show that the fast vs. slow-
twitch classification of muscles can be explained by the
most prominent transcriptomic changes among the
muscles, which agrees with the traditional perspective.
This claim was supported by the major clustering along
the first principal component (PC1) in the principal
component analysis, and the correlation of muscle-
specific genes to PC1. This was also reflected in gene

Fig. 4 Gene clusters 1, 3, and 5 show muscle-specific characteristics of gene expression. Gene ontology terms identified for gene Clusters 1, 3,
and 5 were summarized using REVIGO online tool and the number of up and down-regulated genes (absolute log fold change > 2) associated
with the top ten gene ontology terms were visualized in bar charts. Gene expression heatmaps associated with the bar charts for cluster 1,
cluster 3, and cluster 5 are shown in Fig. S3, Fig. S5, and Fig. S7 in SI
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Fig. 5 (See legend on next page.)
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Clusters 2 and 4, identified from the k-means cluster
analysis, showing opposite expression patterns, when the
slow muscle (soleus) was compared to the fast muscles
(EDL and psoas). Clusters 2 and 4 were primarily associated
with muscle structure, contraction, and energy metabolism,
which are the predominant cellular characteristics differen-
tiating fast muscles from slow muscles [2]. This can be con-
sidered as the most prominent layer of transcriptomic
differences among the skeletal muscles.
Previous studies have highlighted the importance of

considering multiple functional gene groupings in addition
to myosin heavy chain to characterize different skeletal
muscles [3, 6]. Our study supports this conclusion since we
identified a second layer of transcriptomic differences
within our data set. This was highlighted by EDL, psoas,
and soleus forming distinctly separated clusters along the
second principal component (PC2) in the principal compo-
nent analysis, which were not correlated with the fast vs.
slow-twitch classification of muscles. Genes showing the
highest correlation to PC2 were associated with extracellu-
lar matrix (ECM) and signaling. ECM has been shown to
be associated with muscle-specific behavior in previous
physiological studies [35] and this conclusion is supported
by gene Cluster 5, which showed a strong association with
the extracellular matrix.
Gene clusters identified from the study also revealed

an additional layer of transcriptomic differences between
EDL, psoas, and soleus. Underneath the first and the
second layers of transcriptomic differences discussed
previously, the gene expression variability captured by
Clusters 1 and 3 highlight a wide array of gene ontol-
ogies associated with the differences between fast muscle
(EDL and psoas). Both gene clusters were associated
with a multitude of structural and functional characteris-
tics including myofibrils, mitochondrion distribution,
sarcoplasm, muscle contraction, transcription, transla-
tion, and carbohydrate catabolism (Fig. 4) that are not
easily identified in physiological studies.
These observations further highlight the value of con-

sidering transcriptomic diversity when trying to under-
stand the molecular underpinnings of specific muscle
functions. Genes associated with subtle processes, such
as transcription, translation, carbohydrate metabolism,
and muscle adaptation, are not as closely associated with

fiber type. These molecular processes are more easily
overlooked or hard to measure, making them less appar-
ent in most physiological measurements. Our results
highlight that muscle fibers are multi-faceted structures
and that differences exist among muscles with diverse
contractile properties. We predict that similar profiles
could be developed for most skeletal muscles, providing
new insights into the function of various muscles.
Gene expression differences identified from this study

may help explain why EDL, psoas, and soleus muscles
are specifically targeted or spared in certain types of my-
opathies [3, 20]. For example, the response severity of
EDL and psoas to muscular dystrophy with myositis is
different from one another, even though the wildtype
muscles contain similar myosin heavy chain profiles
[45]. By utilizing transcriptomic level information, the
skeletal muscles can be compared with respect to their
response pattern to a given muscle disease [46]. The
transcriptomic changes introduce an additional layer of
information, which helps to differentiate muscles even
when their fiber type composition is similar. These tran-
scriptomic signatures can be used to identify comparable
characteristics among diverse sets of muscles. In such
cases, variable muscle response to myopathic conditions
could be associated with shared transcriptomic behaviors.

The expression ratio between slow and fast fiber specific
isoforms act as a determining factor of muscle function
The development of fast and slow-twitch phenotypes is
associated with the expression of Myh4 and Myh7 iso-
forms, which act as the fingerprints of those respective
muscle phenotypes [3, 47]. Both EDL and psoas do not
express Myh7, and the expression of Myh4 in soleus is
about 5% of the total myosin content. However, fast-
twitch muscles still express a small percentage of slow
myosin isoforms, and slow-twitch muscles express fast
myosin isoforms. Interestingly, we have observed that
the level of fast isoform expression in the slow muscle
soleus is greater than the expression level of slow iso-
form in fast muscles EDL and psoas. This could be a
function of the fiber composition of soleus. Expression
of both slow- and fast-twitch related isoforms of myosin
light chain (Myl), troponin (Tnnc, Tnni, Tnnt), and
tropomyosin (Tpm) in skeletal muscles have previously

(See figure on previous page.)
Fig. 5 Isoforms associated with fast-twitch fibers are expressed in all three muscles. Expression levels of (a) Myosin light chains, (b) troponin, and
(c) tropomyosin isoforms in EDL, psoas, and soleus. Fast-twitch myosin light chain isoforms (Myl1, Mylk2, and Mylpf), troponin isoforms (Tnnc2,
Tnni2, and Tnnt3), and tropomyosin 1 (Tpm1) are the expressed in all three muscles, but the expression levels are notably higher in EDL and
psoas. At least 97-fold higher expression of slow myosin light chain isoforms Myl2 and Myl3, 137-fold expression upregulation of slow troponin
isoforms Tnnc1, Tnni1, and Tnnt1, and 31-fold expression upregulation in Tpm3 are observed in soleus compared to EDL and psoas. Tpm2 is
preferentially expressed in slow muscles, but 2.4 fold up-regulated was observed in psoas compared to EDL (p-adj = 6.37e− 10). d Genes coding for
proteins that interact at the Z-disk are downregulated in EDL. The calpain 3 (Capn3), desmin (Des), filamin-C (Flnc), nebulin (Neb), obscurin
(Obscn), and titin (Ttn) follow a similar expression signature, where all six genes are significantly downregulated in EDL compared to the psoas. *

p-adj < 0.01. Adjusted p values were calculated using DESeq2
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observed in other studies as well [48–51]. Expression of
fast Myl isoforms was observed in slow-twitch muscles
in both humans and rats, while slow Myl isoform ex-
pression was reported in the rat fast-twitch EDL and
plantaris muscles [49, 51]. In this study, we observed
that the fast and slow transcript levels for Myl in soleus
are nearly identical. Myl is associated with shortening
velocity, but soleus phenotypically behaves as a slow-
twitch muscle, even though there are equivalent tran-
script levels of both fast and slow Myl isoforms. This
suggests the possibility that the slow isoform playing a
larger role in determining muscle phenotype when
equivalent expression levels exist.
This possibility is further highlighted by tropomyosin

expression patterns. The expression ratio between slow
to fast tropomyosin isoforms is associated with fiber
type, with a more prominent expression of Tpm3 in
slow muscles [52]. In our studies, the observed ratio of
slow muscle associated tropomyosin (Tpm2 and Tpm3)
to fast muscle associated tropomyosin (Tpm1) expres-
sion in psoas is significantly greater than that of EDL.
This could be associated with other transcriptomic vari-
abilities observed in fast muscles, as tropomyosin plays a
critical role in controlling Ca2+ sensitivity [53]. The co-
expression of both Tpm1 and Tpm2 in psoas has previ-
ously been observed in a rabbit mRNA study [50]. While
psoas is typically characterized as a fast-twitch muscle, it
does exhibit some slow-twitch characteristics in certain
experiments [54], which could be a function (at least in
part) of expressed tropomyosin isoforms ratios. These
observations provide an example of how tuning isoform
expression could modify muscle physiology.
In addition to the contractile machinery of the sarco-

mere, other structural proteins exhibit variation in ex-
pression between EDL and psoas. Titin, calpain-3,
obscurin, desmin, nebulin, and filamin-C are all associ-
ated with the Z-disc and they exhibit clear expression
differences between EDL and psoas. No significant ex-
pression difference between psoas and soleus were ob-
served in these genes at the 99% significant level.
Expression differences between psoas and EDL have
been previously observed in desmin [55], and titin [56],
but differences in the transcript levels for these proteins
have not been previously correlated with differences
among fast muscles.
The Z-disk periodicity of fast muscles is lower than

that of slow muscles, so that slow muscles have a thicker
Z-band compared to fast muscles [57, 58]. The Z-band
thickness depends on the number of Z-repeats of titin,
which interacts with α-actinin. The psoas tends to ex-
press a very short Z-repeat domain in titin, where titin
length [59], and the Z-repeat expression [58] vary as a
function of muscle type (psoas< EDL < soleus). It was
surprising to observe similar expression profiles in psoas

and soleus associated with Z-disk proteins even though
they have distinct Z-disk periodicity. There is a clear dif-
ference between the titin-based passive force generation
in psoas compared to EDL [35]. As the Z-disk is a sig-
naling hub of the sarcomere and is also involved in force
transmission between neighboring sarcomeres, it is rea-
sonable to propose that the expression patterns we ob-
served in Z-disk proteins are associated with the
different passive force profiles of EDL and psoas. It is
important to note that transcriptomic differences do not
always correlate with protein dynamics inside a cell.
However, transcription is one of the key response mech-
anisms related to changing cellular needs and provides a
guide for future investigations. Identifying these subtle
but distinct changes at transcription level between mus-
cles with similar fiber compositions can provide valuable
insights into why muscles of the same overall fiber type
may respond differently to genetic or environmental
perturbations.

Conclusions
Skeletal muscles are traditionally categorized as fast-
twitch or slow-twitch based on fiber composition, which
is often assessed using myosin heavy chain expression
profiles. However, more than half of the transcriptome
undergoes significant expression changes [3], which can
be used to differentiate skeletal muscles from each other.
The results presented in this study support the trad-
itional view of muscle fiber types, but also demonstrate
the importance of using a more comprehensive view of
gene expression differences to understand subtle differ-
ences in function among muscles. There are significant
gene expression differences between two fast muscles EDL
and psoas, associated with the myofibril, transcription,
translation, actin cytoskeleton, sarcoplasmic reticulum,
energy metabolism, and extracellular matrix. These obser-
vations highlight the importance of considering the expres-
sion ratios of slow and fast isoforms of a variety of muscle-
related protein-coding genes to differentiate muscles with
similar fiber type composition and also to correlate skeletal
muscles regardless of the general muscle fiber type classifi-
cation. The gene sets undergoing similar expression regula-
tion between muscles could help to understand the
complex phenotypes of various myopathies and possibly
identify hitherto unknown players associated with muscle
diseases.

Methods
Sample preparation
The mouse colony was established at the animal care fa-
cility of Northern Arizona University, Flagstaff, AZ,
USA, using heterozygous B6C3Fe a/a-Ttnmdm/J mice ob-
tained from The Jackson Laboratory (Bar Harbor, ME,
USA). Mice were fed ad libitum and maintained under
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light: dark 12 h:12 h cycle in a temperature-controlled fa-
cility. Mouse muscle samples collected from 32 to 54-
day old homozygous wild-type mice were used for the
study (Table S1). The experimental protocol and the use
of animals were approved by the Institutional Animal
Care and Use Committee at NAU (Reference number:
18–002).
Three biological replicates for EDL and psoas muscles

and four biological replicates for soleus muscle were ex-
tracted from a total of 6 mice. Mice were sacrificed
under 0.5 ml of isoflurane gas in a euthanization cham-
ber and were conscious prior to the treatment. Extracted
muscle tissues were stored in RNAlater™ stabilization so-
lution (ThermoFisher Scientific) at − 80 °C before RNA
extraction. The tissues collected for this study were har-
vested from mice subjected to another study to
minimize the number of euthanized mice. The six mice
used in the study were determined by the availability of
the required muscles based on the other experimental
study conducted with the mice. Power analysis for the
transcriptomic study was carried out using Scotty -
Power Analysis for RNA Seq Experiments tool (http://
scotty.genetics.utah.edu/) with a 70% alignment rate and
20% or above gene detection while keeping other param-
eters at their default values.

RNA extraction and next-generation sequencing
Total RNA was extracted from the collected muscle tis-
sues using Qiagen fibrous tissue total RNA extraction
mini kit. The concentration and quality of RNA were
measured using the Qubit RNA Broad-Range assay and
Agilent 2100 Bioanalyzer RNA 6000 Nano assay. Sam-
ples with RNA integrity value over seven and a concen-
tration that was greater than 20 ng/μl were selected for
cDNA library preparation using an Illumina TruSeq
Stranded Total RNA Library Prep kit with Ribo-Zero
Globin treatment. The cDNA libraries were quantified
using KAPA Library Quantification qPCR Kit for Illu-
mina sequencing platforms. The library fragment sizes
were determined using an Agilent bioanalyzer 2100 High
Sensitivity dsDNA quantification assay. The mean library
sizes of the samples were between 256 and 295 bp (Table
S1). The cDNA libraries were sequenced and 2 × 75 bp
reads were generated with an Illumina NextSeq 500 high
throughput sequencer using the sequencing guidelines
suggested by Illumina, over three sequencing runs. The
sequenced library coverage varies between 12 and 82
million reads with a median of 25 million (Table S1).

Raw data processing
The fastq files containing the short reads generated from
RNA sequencing were processed before analysis. The
quality of the short-read files was assessed using the
FastQC quality control tool (http://www.bioinformatics.

babraham.ac.uk/projects/fastqc/) for high throughput se-
quence data. Fastq files with a per base quality score
below 20 were preprocessed using the sliding window
quality filtering (window size 4) in Trimmomatic v0.32
[60]. After filtering, only the paired-end reads collected
from the read-trimming were used for downstream data
analysis (Table S1). Fastq files containing reads with
more than 20 per base quality score were used without
filtering. Adaptor trimming was performed while con-
verting initial BCL data to fastq files before receiving the
data files from the sequencing center. No adaptor con-
tamination was detected in the FASTQC analysis for the
samples used in the study.

Data alignment
The preprocessed fastq files were aligned to the mouse
reference genome as follows. The insert sizes between
paired-end reads were calculated using the Galaxy web
platform [61]. A subset of 250,000 reads from each sam-
ple was aligned to the built-in reference mouse genome
(mm10) using the default settings in the BWA-aln short
read alignment tool [62]. The CollectInsertSizeMetrics
Picard tool (http://broadinstitute.github.io/picard/) was
used to generate the alignment statistics. The calculated
average insert sizes and standard deviations of each sam-
ple were then used to generate complete read alignments
using Tophat v2.1.1 [63], using the Mus musculus
GRCm38.p4 genome annotation (see alignment details
in Table S1).

Differential gene expression analysis
Statistical analysis of generated read alignments was per-
formed using R_3.6.1. Gene-wise read counts of the
Tophat alignments were generated using the R libraries
GenomicFeatures v1.34.3 [64] and GenomicAlignments
v1.18.1. To reduce the noise in the data and increase the
precision of data analysis [65] the marginally expressed
genes were filtered out. Genes were identified as margin-
ally expressed if a gene carries less than three samples
with a minimum read count of 10 [65] among all the
samples in the data set and these genes were removed
from the dataset before downstream data analysis. This
filter resulted in a gene subset of 16,112 genes out of the
46,078 genes in the reference genome. A heatmap of this
gene set is shown in Fig. S2 in SI. To determine whether
the variable read coverages affects the correlation among
replicates, a distance matrix was calculated prior to dif-
ferential gene expression analysis using variance stabi-
lized normalized (DESeq2::vst) and sequencing batch
effect corrected (limma:: removeBatchEffect) [66] gene
expression levels of selected 16,112 genes using R dist
function (Fig. S1). Replicates of each muscle created
unique clusters, while two fast muscles (EDL and psoas)
branch discretely from slow soleus.
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To compare the transcriptomic profiles of EDL, psoas,
and soleus, the differential gene expression analysis was
performed using the R library DESeq2 v1.22 [67, 68]. In
the DESeq2 protocol, the RNA-Seq data get fitted with a
generalized linear negative binomial distribution model
to calculate subtle changes in gene expression. Then to
assess the statistical significance of differential gene ex-
pression DESeq2 utilizes a Wald test as the dataset has
been modeled as a binomial distribution. The P-values
calculated were further adjusted using the Benjamini-
Hochberg multiple testing procedure [69] in the subse-
quent DESeq2 protocol steps. After that, the significantly
differentially expressed genes in the pair-wise compari-
sons among EDL, psoas, and soleus were identified using
adjusted p-value cut-off 0.01 (at the 99% significance
level) and fold change cutoff of 2. A higher significance
level cut-off was used to avoid possible selection bias
due to the small sample size of the data set.

Gene ontology analysis
Gene ontology (GO) analysis was performed to deter-
mine the cellular processes associated with the differen-
tially expressed genes using ClusterProfiler_3.10.1 [70]
against the org.Mm.eg.db v3.7.0 - Bioconductor genome-
wide annotation for the mouse [71], with a q-value cut-
off of 0.05. The semantically similar terms of the identi-
fied GO terms were removed using SimRel semantic
clustering in the REViGO [72] online tool with reference
to the in-built Mus musculus Jan 2017 database release
by the GO Consortium. The GO id list and the respect-
ive adjusted p-values generated from clusterProfiler R li-
brary were used as the input to REViGO and GO term
summaries were generated with 0.5 allowed similarity.
The top 10 gene ontology terms enriched from each
gene cluster were selected by sorting the REViGO se-
lected GO terms by their respective log10 p-value in the
resulting list (Additional files 2, 3, 4, 5 and 6). The num-
ber of up- or down-regulated genes associated with se-
lected GO terms were identified using the complete
gene set associated with all the semantically similar go
terms represented by the chosen parent terms by
REViGO to create the bar charts.

Data visualization and graphical output generation
Variance stabilizing transformed and sequencing batch
effect corrected, gene expression levels of the differen-
tially expressed genes were used to create the heatmaps.
The Z-scores calculated for the differentially expressed
genes using this dataset were used for k-means cluster-
ing. The optimal number of gene clusters were deter-
mined [33] using elbow and gap statistics methods using
R function NbClust::fviz_nbclust (https://sites.google.
com/site/malikacharrad/research/nbclust-package) keep-
ing other parameters at default values. The R library

Pheatmap_1.0.12 (https://cran.r-project.org/web/pack-
ages/pheatmap/index.html) was used for clustering and
to generate the heatmap of gene clusters (Fig. 2).
Complete lists of genes in each cluster are included in
the Additional files 2, 3, 4, 5 and 6.
The UpSet plot was created using R library UpSetR_

1.4.0 [73]. The bar charts were generated using the R li-
brary ggplot2_ 3.3.2 (https://ggplot2.tidyverse.org/).
Gene expression levels were converted to Fragments

Per Kilobase Million (FPKM) using DESeq2::fpkm func-
tion keeping the parameters at default values, where the
gene lengths were determined with the union of all
GRanges assigned to a given gene in the data object.
(https://www.rdocumentation.org/packages/DESeq2/ver-
sions/1.12.3/topics/fpkm). Calculated FPKM values for
the differentially expressed genes are in Additional file 7.
Gene subset selected by filtering marginally expressed

genes were used to carry out the principal component ana-
lysis (PCA). Their gene expression values were subjected to
variance stabilization transformation, and batch effect cor-
rection as described above. R prcomp function with default
parameters was used to carry out PCA with the transformed
and corrected gene expression values. To calculate the Pear-
son correlation coefficients between PCs and gene expres-
sion, FPKM values of the same gene set, and the PC scores
(coordinates of the individual observations on the principal
components calculated with R prcomp function) were used
as the inputs for R cor function, while keeping other param-
eters at default values.
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