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ABSTRACT
Accumulating evidence suggests that the stem cell markers CD133 and CD44 

indicate molecular subtype in Glioblastoma Multiforme (GBM). Gene coexpression 
analysis of The Cancer Genome Atlas GBM dataset was undertaken to compare 
markers of the Glioblastoma Stem-Progenitor Cell (GSPC) phenotype. Pearson 
correlation identified genes coexpressed with stem cell markers, which were then 
used to build a gene signature that classifies patients based on a CD133 coexpression 
module signature (CD133-M) or CD44-M subtype. CD133-M tumors were enriched 
for the Proneural (PN) GBM subtype compared to Mesenchymal (MES) subtype for 
CD44-M tumors. Gene set enrichment identified DNA replication/cell cycle genes 
in the CD133-M and invasion/migration in CD44-M, while functional experiments 
showed enhanced cellular growth in CD133 expressing cells and enhanced invasion 
in cells expressing CD44. As with the 4 major molecular subtypes of GBM, there was 
no long-term survival difference between CD44-M and CD133-M patients, although 
CD44-M patients responded better to temozolomide while CD133-M patients benefited 
from radiotherapy. The use of a targeted coexpression approach to predict functional 
properties of surface marker expressing cells is novel, and in the context of GBM, 
supports accumulating evidence that CD133 and CD44 protein marker expression 
correlates with molecular subtype.

INTRODUCTION

Glioblastoma Multiforme (GBM) is an aggressive, 
heterogeneous tumor of the central nervous system. The 
diverse features of the tumor have made management of 
GBM difficult [1]. GBM has a 5 year survival of less than 
5%, rendering it one of the most lethal types of tumors 
[2]. Molecular profiling of patient specimens has revealed 
that GBM consists of several distinct subtypes with 
characteristic mutational, transcriptional and epigenetic 
profiles. Subtype classification is based on the similarity 
of the gene expression profiles with the major stages of 
neural development, Proneural (PN), Neural, Classical and 
Mesenchymal (MES) [3-5].

GBM is typically treated by a combination of 
surgical resection, radiotherapy and chemotherapy with 

temozolomide. Poor patient survival in GBM is due to 
the recurrence of the tumor despite therapy [6, 7]. It has 
been suggested that the inevitable recurrence is driven by 
a subpopulation of GBM cells with stem cell properties, 
glioma stem-progenitor cells (GSPCs) or glioma initiating 
cells (GICs) [8]. 

Understanding the underlying biology of GSPCs 
relies on the large body of knowledge derived from 
fundamental stem cell research. Advances in stem cell 
research has heavily relied on the ability to enrich rare 
subpopulations of cells for downstream characterization 
using fluorescence activated cell sorting (FACS) [9, 
10]. FACS relies on a robust extracellular protein 
marker or combination of markers based on prospective 
characterization of the phenotypic properties of the cells 
defined by those markers. Therefore the choice of FACS 
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marker is crucial in the experimental design of cancer 
stem cell studies. GSPCs were initially characterized 
based on the expression of the stem cell marker CD133 
(expressed by the PROM1 gene) [8, 11]. CD133+ 
cells were demonstrated to exhibit robust cancer stem 
cell/ tumorigenic potential compared to CD133− cells 
when as few as 100 CD133+ cells are transplanted into 
immunodeficient mice [12].

Although a number of studies have supported 
the prognostic value of CD133 in GBM [13-15] there 
are reports that CD133 expression is not restricted to 
GSPCs, and that CD133− cells also exhibit stem cell 
characteristics [16-18]. A variety of other stem cell 
markers have also been investigated in GBM including 
the adhesion molecules CD44, Integrin-α6, CD15 (also 
known as SSEA-1 expressed by the FUT4 gene) and the 
expression and activity of ALDH1A3 [19-22].

Gene expression profiling experiments show 
that GSPCs exhibit a similar molecular classification 
to the parental bulk GBM tumor, with 2 clusters of 
cells representing the PN and MES subtype [23, 24]. 
Phenotypically, PN cells exhibit non-adherent sphere 
forming growth in vitro and circumscribed, non-invasive 
growth in vivo. In contrast, MES cells grow semi-
adherently in vitro and show invasive growth in vivo 
[24, 25]. It has recently been shown that the PN subtype 
predominantly expresses CD133 or CD15 at the cell 
surface, whereas the MES subtype expresses CD44 [25, 
26]. 

To determine the precise context of the relationship 
between the cancer stem cell phenotype, molecular 
subtype and the expression of extracellular stem cell 
markers we have used publicly available gene expression 
data of GBM and GSPC samples to perform coexpression 
analysis. The utility of coexpression analysis has been 
previously demonstrated in various cancers, including 
GBM, through the identification of novel genetic modules, 
allowing for more precise molecular subclassification of 
tumor subtypes and the possibility that this information 
could be used in precision medicine based therapeutic 
strategies [27-29]. 

Based on the hypothesis that gene sets/modules 
coexpressed with specific cell surface markers contribute 
to the phenotype of the overall tumor, we studied gene 
signatures derived from the coexpression modules of 
several stem cell markers. We demonstrate that, in the 

context of GBM tumor tissue, expression of coexpression 
modules associated with CD133, CD44 and CD15 mRNA 
are markers of GBM molecular subtype independent of 
cancer stem cell molecular signatures.

RESULTS

Coexpression analysis of Glioblastoma cancer 
stem cell markers

To investigate the biological and clinical significance 
of selected putative cancer stem cell markers (Table 1) in 
GBM, a coexpression analysis was undertaken using The 
Cancer Genome Atlas (TCGA) Agilent microarray dataset. 
The Agilent dataset (483 patients) demonstrated more 
normally distributed gene expression profiles compared to 
the Affymetrix U133a dataset (539 patients) (Figure S1A 
and B). The top 5% of significant positively correlated 
genes (332-674 genes in length) with each cell surface 
marker mRNA was used to build a coexpression module 
(Table S1).

Positively correlated genes were selected for the 
signatures as they are expressed in the population with 
the stem cell marker and therefore are able to be detected, 
unlike negatively correlated genes.

The CD133 module signature (CD133-M) was 
negatively correlated with CD44, whereas the CD44 and 
CD15 module signatures (CD44-M and CD15-M) were 
highly correlated with each other (Figure S1C and D). 
It is interesting to note that there are no genes that are 
positively correlated with both CD133-M and CD44-M.

The greater overlap of CD44-M and CD15-M 
with the MES subtype was likely due to the greater 
magnitude of the Pearson correlation coefficients for 
genes coexpressed with CD44 mRNA compared to CD133 
mRNA (Figure S1E), due to higher absolute expression 
of CD44 mRNA in the GBM tumors (Figure S2A). As 
recent reports suggest a subset of cancer stem cell markers 
enrich for characteristic GBM molecular subtypes [25, 
26], coexpression modules were compared to the assigned 
molecular subtype for each patient. The TCGA RNAseq 
GBM dataset was utilized as an independent technical 
platform from the Agilent array dataset, to investigate 
association with molecular subtype. 

The coexpression modules derived from CD133, 

Table 1: GSPC markers selected for analysis.
Marker Function Reference

CD133 (PROM1) Unknown biological function [8]
CD44 Hyaluronan binding [19]

CD15 (FUT4) Transfer fucose to polysaccharides [20]
Integrin-α6 Subunit for laminin receptor [22]

L1CAM Cell-cell adhesion in neural lineage [21]
ALDH1A3 Detoxification of aldehydes generated by metabolism [37]
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CD44 and CD15 mRNA expression showed a striking 
pattern of overlap with the two most distinct molecular 
subtypes, PN and MES (Figure 1A). CD133-M was 
highly enriched in the PN molecular subtype (p-value 
4.2 e-08, Wilcoxon rank sum test). The number of genes 
shared between CD133-M and PN signatures was also 
significant at 31 genes (p-value 8.6e-16, hypergeometric 
test) (Table S2). Conversely CD44-M was enriched in the 
MES subtype (p-value 9.7e-14) and the number of genes 
that overlapped was greater at 106 genes (p-value 1.3e-
106), (Figure 1A). The number of genes shared between 
CD15 and MES signatures was 97, (p-value 5.93e-91), 
slightly smaller than for CD44-MES (Table S2). Given 
the redundancy (overlap) for CD44-M and CD15-M in 

marking the MES molecular subtype in our analyses, we 
focused primarily on a CD133/ CD44 classification based 
on the coexpression modules derived from these markers. 

Although the CD133-M/ CD44-M classification 
separates PN from MES molecular subtypes the 
distribution of CD133-M/ CD44-M was not significant in 
Classical tumors (p-value 0.53, binomial test) or Neural 
tumors (p-value 0.85, Figure 1B). The enrichment of 
CD133-M, CD44-M and CD15-M was reproduced in 
the independent Rembrandt dataset (Figure 1C) and the 
original Agilent TCGA dataset used in the coexpression 
analysis (Figure 1D).

Other markers tested showed a more scattered 
overlap with molecular subtype. Of note, the ALDH1A3 

Figure 1: Cancer stem cell marker coexpression modules are associated with molecular subtype. (A) The coexpression 
module signatures of a range of stem cell markers was used to assign a patient specific similarity score. This score was then related to 
the assigned molecular subtype (top horizontal bar). (B) Enrichment of PN subtype in CD133-M and enrichment of CD44-M in MES. 
All patients in the 2013 data freeze were assigned to either a CD133 or CD44 coexpression module subtype (CD133-M or CD44-M) and 
the percentage of each molecular subtype within each coexpression subtype calculated. Coexpression module signature analysis of the 
Rembrandt (C) and (D) and the TCGA Agilent microarray dataset.
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module showed an association with the MES subtype as 
previously reported (p-value 1.5e-4) [25]. 

The Integrin-α6 module was lower in the PN subtype 
compared to other subtypes, while the L1CAM marker 
was inconsistent in the Rembrandt dataset compared to the 
TCGA (Figure 1C). No marker tested could discriminate 
the G-CIMP subgroup of PN GBMs from the non G-CIMP 
PN subtype. 

Coexpression analysis was also performed with 
the addition of intra-cellular markers related to neural 
differentiation (Figure S2C). The neural marker TUBB3 
(also known as β3-tubulin) and oligodendrocyte marker 
OLIG2 were associated with the PN subtype, as previously 
reported [25, 26]. Conversely the astrocyte marker GFAP 
and mesenchymal marker YKL40 were associated with the 
MES subtype. 

There were 3 broad clusters of coexpression 
modules that were associated with the GBM samples. 
One cluster was indicative of the MES subtype, another of 

PN while a third contained markers of neural immaturity 
including nestin, Pax6 and ID1. Our data suggests that 
coexpression module signatures identify GBM molecular 
subtype better than either raw mRNA expression (Figure 
S2A) or z score normalized mRNA expression in the 
TCGA (Figure S2B).

The coexpression module subtypes of GBM are 
reflected in glioma stem-progenitor cell cultures

We next investigated if glioma stem-progenitor 
cells (GSPCs) grown in vitro, reflected the coexpression 
modules identified using whole tumor derived gene 
expression measurements. Analysis of publicly available 
datasets confirms the mutual exclusivity of CD133-M and 
CD44-M (Figure 2A and B). For the gene expression study 
conducted by Bhat et al., (2013) the PN subtype assigned 
by the authors overlapped with CD133-M and the assigned 

Figure 2: The coexpression modules identified in GBM tumors are reflected in GSPCs. (A) Coexpression module analysis of 
Bhat el al 2013 gene expression data. Hierarchical clustering of GSPC cultures by CD133-M and CD44-M partitions samples into 2 groups, 
largely overlapping with the assignment of PN (purple horizontal bar) and MES (red horizontal bar). (B) Coexpression module analysis 
of Gunther et al 2008 reveals 2 groups by clustering that largely overlap with the suspension or semi-adherent growth pattern described in 
the study. (C) Coexpression module analysis of Shats et al shows that CD133+ (blue) sorted cells are assigned to the CD133 coexpression 
signature and CD133− cells (red) are assigned to the CD44 coexpression signature. (D) Coexpression module analysis of Rath et al shows 
both normal neural and GBM cells that are CD133+ (blue) are enriched for CD133-M and CD133− cells are enriched for CD44-M (red).
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MES signature overlapped with CD44-M (Figure 2A) 
[26]. Likewise for the Gunther et al. (2008) dataset the 
coexpression modules overlapped with the growth pattern 
of the GSPCs described in the study, suspension for PN 
cells and semi-adherent for MES cells with the exception 
of 1 sample [30].

To investigate if CD133-M is enriched in CD133 
protein expressing cells we reanalyzed the Shats et al. 
(2011) dataset which was based on gene expression 
profiling of CD133 sorted cells [31] (Figure 2C). As 
expected, CD133+ cells grown in suspension culture 
conditions were strongly positive for CD133-M. However, 
CD133+ cells grown on the adherent substrate laminin 
were more strongly associated with CD44-M, suggesting a 
shift towards a more MES-like subtype in adherent culture 
conditions. This is consistent with the role of CD44 in 
the binding of extracellular matrix molecules such as 
laminin [32]. Overall, CD133− cells were associated with 
CD44-M, consistent with the pattern observed in a second 
dataset that included both normal neural stem cells and 
GSPCs (Figure 2D) [33].

Coexpression analysis identifies pathways 
involved in tumorigenesis

We next investigated pathways associated with 
the identified coexpressed genes by gene set enrichment 
analysis (GSEA). The Pearson correlation coefficient of 
all genes on the Agilent platform with CD133, CD44 and 
CD15 mRNA were used as input to GSEA [34]. Pathways 
highly correlated with CD133 mRNA expression included 
those involved in DNA repair, cell cycle and DNA 
replication (Figure 3A & Table 2). This suggests that 
tumors with high CD133 expression are more proliferative 
than tumors with low CD133 expression. This is more 
consistent with a progenitor or transit-amplifying cell, 
and not a quiescent stem cell. In contrast, GSEA of the 
intracellular stem cell marker Pax6 revealed an association 
with the Notch pathway, while expression of the neural 
stem/ progenitor marker nestin, was associated with an 
active Hedgehog pathway (Figure S3). Notch signaling 
has a role in the maintenance of stem cell identity [35] 
while the hedgehog pathway is involved in the regulation 
and identity of adult neural stem cells [36]. 

The validity of the analytical approach is 
strengthened as the top pathways enriched for each marker 
often reflected the known biological role of the protein 

Figure 3: Enrichment of proliferative pathways for CD133-M and enrichment of invasive pathways for CD44-M 
and CD15-M. The Pearson correlation score of all genes with CD133, CD44 and CD15 mRNA was used as input to pre-ranked GSEA. 
(A) Enrichment of proliferative pathways in CD133 correlated genes. (B) and (C) Enrichment of invasive pathways for CD44 and CD15 
correlated genes.

Table 2: Summary of functional categories enriched in genes coexpressed with GSPC markers.
CD133 CD44 CD15

Fanconi pathway Integrin1 pathway Integrin1 pathway
G2/ M checkpoints Cytokine receptor pathway Extracellular matrix organization

Cell cycle NOD-like receptor pathway Integrin3 pathway
Meiosis Complement and coagulation cascades Focal adhesion

Chromosome maintenance Interferon gamma signaling ECM receptor interaction
DNA replication Integrin3 pathway Leukocyte transendothelial migration

Double strand break repair ECM receptor interaction TRAIL pathway
Packaging of telomere ends NFκB pathway P53 downstream pathway



Oncotarget6272www.impactjournals.com/oncotarget

in question. ALDH1A3 is involved in the oxidation 
of intracellular aldehydes including retinol, producing 
retinoic acid [37]. The pathways associated with CD44 and 
CD15 included those involved in invasion and migration 
(Figure 3B and C). These pathways are consistent with 
the previously described role of CD44 as a MES marker 
in multiple cancer types [38]. In other cases there was 
no clear relationship between the pathways enriched by 
coexpression analysis and the stem cell marker, as for 
L1CAM and Sox2 (Figure S3).

Functional validation of predicted signatures 
enriched in CD44 and CD133 expressing GSPCs

To verify the coexpression analysis experimentally, 
functional assays were performed to test the hypotheses 
generated by gene set enrichment. The cell surface protein 
expression of CD15, CD44 and CD133 was examined in 
a panel of GSPC lines (‘MUxx’), derived from patient 
tumors using flow cytometry (FACS). Similar to the 
coexpression module signatures there was a bias towards 
the expression of either CD133 (MU35), or CD44 (MU39 
and MU41) (Figure 4A). However the relationship 
between expression of CD15 with CD44 or CD133 was 
not clear. For GPSC line MU39 CD15 was coexpressed 
with CD133. However MU35 did not express CD15 and 
MU41 expressed CD15 throughout the population (Figure 
4A). It is of note that MU39 is unique in that there are 
2 distinct subpopulations that express CD44 and CD133 
respectively.

FACS sorted cells were examined for a range of 
phenotypes predicted by GSEA. Interestingly CD44+/ 
CD133+ cells had a significantly increased growth and 
self-renewal capacity demonstrated by the ability to form 
gliomaspheres at low dilution, a property of more stem-
like cells (p-value 0.030, Tukey post-hoc test following 
ANOVA), (Figure 4B). Cells expressing CD44 had a 
greater invasive ability with CD44+/ CD133− GSPCs 
exhibiting a significantly increased invasion index 
compared to CD44-/ CD133− cells (p-value 0.007, Tukey 
post-hoc test), (Figure 4C). CD44+/ CD133+ GSPCs were 
more sensitive to temozolomide, in contrast to cells that 
expressed CD44 or CD133 alone (p-value 0.041, Tukey 
post-hoc test), (Figure 4D). 

As proliferation and invasion are the phenotypes 
predicted by GSEA for CD44-M and CD133-M, the 
functional examination of CD44 and CD133 expressing 
cells in vitro, (Figure 4) validates the targeted coexpression 

approach to computationally assess cell surface markers 
used for flow cytometry. 

Examining the relationship between coexpression 
module signature and genomic alterations

To further investigate the molecular differences 
between CD133-M and CD44-M classified patients, 
exome sequencing data was used to compare the overall 
number of somatic mutations between the 2 groups. In 
contrast to previously published findings [39], there was 
no difference in the total number of mutations for the 
CD133-M subtype compared to the CD44-M subtype 
(Figure S5A). 

Pairwise testing for mutated genes enriched in each 
subgroup revealed that the CD133-M subtype was strongly 
enriched for IDH1 mutation with an odds ratio (OR) of 
10.9, (p-value 5.91e-05, Fisher’s exact test), (Figure S5B). 
TP53 mutations were also enriched (OR 2.60, p-value 
0.0127). The NF1 gene which is characteristic of the MES 
subtype, was slightly above the threshold for statistical 
significance in the CD44-M subtype (OR 2.94, p-value 
0.059). There was no other significant difference in genes 
commonly mutated in GBM, including PTEN, PIK3CA, 
PDGFRA and EGFR. 

As epigenome status is intimately linked to gene 
expression, the relationship between the coexpression 
module subtypes and promoter methylation was examined. 
The CD44-M subtype was significantly associated with 
the M1 subtype (p-value 0.021, binomial test with FDR 
[False Discovery Rate] correction). This is consistent with 
the M1/ MES molecular subtype enrichment previously 
described [5]. The CD133-M subtype was significantly 
enriched in the G-CIMP and M6 subtypes, methylation 
subgroups that are hyper and hypo- methylated 
respectively (p-value 10e-4 for both G-CIMP and M6 
). There was also a subtle but significant enrichment of 
CD133-M subtype in M3 (p-value 0.041) and CD44-M 
subtype in M2 (p-value 0.049). However, there was 
no difference in the methylation status of the MGMT 
promoter between the two groups (Figure S5B). 

It has previously been reported that CD133 mRNA 
expression is negatively associated with IDH1 mutation 
and the G-CIMP group of Proneural GBMs [40]. Our 
analyses confirm this observation (p- value 0.006, t-test) 
(Figure S5C). However it is interesting that there was 
no significant difference in CD133-M between G-CIMP 
patients and non G-CIMP patients. This indicates that 

Table 3: Hazard ratios for CD133-M and CD44-M GBM subtypes by treatment
Subtype Treatment Hazard ratio (95% CI) p-value

CD133-M Temozolomide 0.722 (0.474 to 1.097) 0.127
CD133-M Radiation 0.287 (0.173 to 0.477) 1.36e-6
CD44-M Temozolomide 0.615 (0.416 to 0.908) 0.0145
CD44-M Radiation 0.512 (0.298 to 0.880) 0.154
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Figure 4: Functional validation of the coexpression module and pathway analysis. (A) FACS analysis of the expression of 
surface protein markers using a panel of GSPCs. Cells were labeled with CD15, CD44 and CD133 antibodies. Expression of CD44 and 
CD133 is represented in the center panel. The expression of CD15 is shown separately for CD44+ cells (top) and CD133+ cells (bottom). 
(B) Repopulation ability is highest for CD44/ CD133 double positive GSPCs. Limiting dilutions of cells ranging from 50 to 1 cell per 
well were sorted into plates and scored for sphere formation after 7 days. Sphere forming efficiency was estimated by ELDA. Error bars 
represent sem of three independent GSPC lines. (C) CD44 expressing GSPCs are a more invasive subpopulation. The surface area of the 
sorted GSPCs was quantified 7 days after the administration of extracellular matrix. Mean invasion is represented relative to the CD44-/ 
CD133- subpopulation. Error bars represent sem of five independent GSPC lines. (D) Temozolomide sensitivity of sorted GSPCs was 
measured 7 days after sorting. 50μM of temozolomide was applied daily. Mean temozolomide sensitivity is presented relative to the CD44-/ 
CD133- subpopulation. Error bars represent sem of five independent GSPC lines.
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G-CIMP patient tumors share a gene expression profile 
similar to CD133-expressing tumors overall, despite a lack 
of CD133 mRNA expression. 

Overall, the relationship between somatic mutations, 
methylation and coexpression subtype remains consistent 
with the notion that CD133-M is a marker of the PN 
molecular subtype and CD44-M identifies the MES 
subtype.

CD44 and CD133 coexpression signatures predict 
temozolomide and radiation response

Due to the observed overlap between CD133-M 
and the PN subtype and CD44-M and CD15-M with the 
MES subtype, we investigated the utility of a dichotomous 
CD133-M/ CD44-M classification to predict survival. As 
the number of genes coexpressed with both CD44 and 
CD15 was 30.4% (p-value 2.95e-144, hypergeometric 
test), we decided to focus on CD133 and CD44 
coexpression module signatures in the survival analyses. 
Patients were classified as belonging to either CD133-M 
or CD44-M subtypes based on their gene set signature 
scores as computed by GSVA [41] (see methods). For the 
set of GBM patients assayed on the RNAseq platform, 
(TCGA) CD133-M subtype patients had a significant 
survival advantage compared to CD44-M subtype patients 
(p-value 0.016, log-rank test) (Figure 5A). 

However there was no statistically significant 
difference in survival between CD133-M and CD44-M 
patients in either the Agilent cohort or the Rembrandt 
cohort of patients (Figure 5B) and (Figure S6). We 
could not identify any factors to explain the difference 
in survival between RNAseq and Agilent platforms 
aside from the timeframe within which the samples were 
collected (1989 - 2011 for Agilent microarray) and (1998 
- 2011 for RNAseq). That there was no overall survival 
difference between CD44-M and CD133-M patients in 
Agilent and Rembrandt datasets is not unexpected as 
G-CIMP samples aside, there is no long-term difference in 
survival for the 4 major molecular subtypes of GBM [5]. 

There were however, differences in response to 
therapy for CD133-M and CD44-M classified patients 
in the Agilent cohort (Figure 5C - F). To investigate 
these factors further, a Cox proportional hazards model 
was constructed separately for CD133-M and CD44-M 
patients, incorporating age, G-CIMP status and exposure 
to radiotherapy and temozolomide (Table 3). CD133-M 
patients had significantly improved survival from 
radiotherapy treatment (95% CI hazard ratio 0.173 - 0.477) 
but no significant benefit from temozolomide (HR 0.474 
- 1.097). In contrast, CD44-M patients received a greater 
survival benefit from temozolomide treatment (HR 0.416 
to 0.908) and a greatly reduced benefit from radiotherapy 
(HR 0.298 to 0.880), compared to CD133-M patients. 

DISCUSSION

This study is the first to demonstrate an association 
between cell surface markers and molecular subtype 
using gene expression profiles derived from large patient 
cohorts. Both TCGA and Rembrandt patient cohorts, 
as well as RNAseq and microarray technical platforms 
identified this association. Coexpression modules 
associated with putative cancer stem cell markers were 
identified and related to recognized molecular subtypes 
of GBM and clinical outcome. There was a significant 
overlap of CD133-M with the PN subtype and conversely 
CD44-M with the MES subtype. Association of these cell 
surface markers with these molecular subtypes has been 
previously demonstrated in both cell cultures and patient 
specimens using FACS and IHC [22, 23].

GSEA predicted DNA replication and cellular 
growth pathways as enriched in CD133-M subtype 
tumors and invasion and migration pathways as enriched 
in CD44-M tumors. This was validated functionally 
using a panel of GSPCs with CD44+ cells being more 
invasive and CD44+/ CD133+ cells being more sensitive 
to temozolomide.

Coexpression module analysis of Pax6 and nestin 
showed enrichment of the Notch and Hedgehog pathways 
respectively, supporting the use of these markers for 
identifying stem/ progenitor cells and validating the 
targeted coexpression approach for predicting phenotypes 
associated with markers of interest. However, a limitation 
of using FACS for functional characterization of marker 
expressing cells is the requirement for localization of 
the epitope at the cell surface; both Pax6 and nestin are 
nuclear proteins and cannot be used for live cell sorting by 
antibody based methods.

A limitation of our study is the use of mRNA as a 
surrogate for the expression of cancer stem cell markers. 
It has recently been demonstrated that there is only a 
modest correlation between mRNA abundance and protein 
expression for TCGA tumor specimens [42]. CD133 also 
undergoes extensive mRNA splicing, generating at least 
28 isoforms [43]. The CD133 antibodies used to identify 
cancer stem cell subpopulations are raised against the 
glycosylated epitope, which is susceptible to changes in 
cell cycle phase and oxygen tension [44]. Likewise for 
CD44, multiple isoforms and glycoslyation states exist 
[45, 46]. The CD44v isoform is particularly associated 
with cancer and metastasis [45]. It is primarily expressed 
on epithelial cells, during embryonic and hemopoietic 
development [47]. CD44v is also upregulated in GBM 
[48]. The microarray measurements used to generate 
the coexpression signatures do not capture isoform 
information. Isoform level classification of GBM into 
molecular subtypes has been demonstrated to improve the 
power to resolve differences in survival [49]. 

Although the original description of PN and MES 
molecular subtypes indicated a survival advantage for 
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PN tumors, the discovery of the G-CIMP subgroup of 
GBM revealed that G-CIMP negative PN tumors had 
the worst survival of all GBM subgroups [4, 5, 50]. The 
observation that CD133-M patients receive more benefit 
from radiotherapy and CD44-M patients receive greater 
benefit from temozolomide, independent of G-CIMP 
status is interesting. That CD133 coexpressed genes 
were involved in cell cycle and DNA replication suggests 
CD133-M patients would be more susceptible to therapies 
targeted to highly proliferative cells. The observation that 
CD133-M patients receive less benefit from temozolomide 
suggests more complicated mechanisms are involved. 
Tumors associated with high CD44 expression are known 
to be more invasive, therefore it is not surprising that it is 
more difficult to target these tumor cells by radiotherapy. 
Coexpression analysis indicates that CD15-M is a MES 

marker. In contrast, functional experiments indicate that 
CD15 protein expressing cells behave like PN cells [26]. 

Our study is the first to report triple FACS labeling 
of GSPCs and did not clarify the relationship of CD15 
surface protein expression with CD44 and CD133. Given 
the small size of our dataset it is difficult to integrate CD15 
surface protein expression in the PN-MES spectrum, in the 
3 GPSC lines analyzed there was a strong genotypic effect 
with respect to CD15 expression (Figure 4A)

Therefore the utility of CD15 as a PN or MES 
marker remains open for further investigation. 

It is interesting to note that in our computational 
analysis of CD133 and CD44 makers there was significant 
mutual exclusivity in coexpression module signatures. The 
gene expression measurements in the TCGA represent the 
average of the tumor population, therefore the mutual 

Figure 5: Differential response to therapy for CD44-M and CD133-M classified patients in the TCGA Agilent cohort. 
(A) Survival advantage for CD133-M classified patients in the TCGA RNAseq cohort. (B) Survival analysis of the TCGA Agilent microarray 
GBM dataset. CD133-M patients receive greater benefit from radiotherapy. CD133-M classified patients in the Agilent cohort were 
stratified on the basis of receiving temozolomide (C) or radiotherapy (D). All other covariates are set to the mean of the dataset. CD44-M 
patients receive greater benefit from temozolomide. CD44-M classified patients were stratified on the basis of receiving temozolomide (E) 
or radiotherapy (F).
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exclusivity of the CD133-M/ CD44-M signature we have 
described may be an over simplification. We have not 
taken into account in our analysis the presence of alternate 
minor molecular subtypes in a GBM tumor [51, 52]. 

This may be the reason why there was greater 
cellular heterogeneity with respect to surface protein 
expression of CD133, CD44 and CD15 (Figure 4A).

Given that the cancer stem cell theory suggests 
that stem cells are a rare subpopulation, it is possible that 
measurements we have used to generate the coexpression 
signatures do not capture the transcriptome of the GSPCs 
in vivo. 

It has recently been established that in GBM, the 
PN subtype is the original or ground-state subtype and the 
other molecular subtypes, including MES are descended 
from a genetic lineage that arises by clonal evolution. 
Upon clinical presentation there is generally a dominant 
subclone which contributes the majority of the gene 
expression signal [53]. This may be the reason for the 
mutually exclusive nature of the coexpression subtypes. 

The analysis and data generated in this study suggest 
that CD133 is a marker that enriches for the subpopulation 
of PN cells that reside in GBMs. PN tumors have been 
shown to grow more efficiently in vitro and have a greater 
sphere forming ability [26] and (Figure 4B). In contrast 
to these more aggressive in vitro characteristics, PN cells 
form more circumscribed tumors in vivo. MES cells grow 
more slowly in vitro but are more invasive and vascular 
in vivo (Figure 4C) and [24]. Therefore the original 
observations of CD133 expressing cells suggest stem-
like properties but may in fact represent the selective 
advantage these cells have for in vitro conditions. MES 
cells are more aggressive in vivo, therefore therapies need 
to target both these infiltrating cells and the progenitor-like 
PN cells. 

The results presented here can assist in the design 
of phenotypic marker panels for deciphering the cellular 
heterogeneity inherent in GBM. This study also provides 
evidence of the utility of molecular subtyping of GBMs 
along an axis of PN and MES using the expression of 
CD133 and CD44 protein, thereby providing a technically 
simple and economical approach for subtyping patient 
GBM specimens.

METHODS

Source data

The analyses performed in this study are in part 
based upon data generated by the TCGA Research 
Network [4, 5]. Level 3 RNAseq and Agilent microarray 
data was obtained from the UCSC cancer genome browser 
on May 14 2014 [54]. The Cancer browser in turn 
obtains processed data from the Broad Institute Firehose 

pipeline at http://gdac.broadinstitute.org/. Patients that  
were profiled on both RNAseq and Agilent platforms 
were removed from the Agilent and retained in the 
RNAseq dataset. An independent GBM data set was 
accessed from the Rembrandt database on May 21 2014 
[55]. Molecular subtype per patient was assigned by 
GSVA using established molecular signatures [4]. The 
source data from Bhat et al 2013 was downloaded from 
the Gene Expression Omnibus (GEO) accession number 
GSE49009, Gunther et al. from GSE8049, Shats et al. 
from GSE24716 and Rath et al. from GSE63037 [26, 30, 
31, 33]. Raw affymetrix CEL files were normalized by the 
RMA algorithm [56]. Probes values were summarized to 
a single gene measurement by the average reps function 
in limma (Linear Models for Microarray Data) [57]. The 
methylation subgroup was retrieved from the TCGA 
GBM Oct 2012 data freeze, https://tcga-data.nci.nih.gov/
docs/publications/gbm_2013/TCGA_GBM_dnameth_
scores_20120112_ver3.txt. G-CIMP, IDH1 and MGMT 
status was obtained from table S7 of Brennan et al. [5]. 
For all TCGA data the mBatch tool, http://bioinformatics.
mdanderson.org/tcgambatch/ was used to inspect for any 
batch effects. No significant batch effects were observed 
for the datasets used in this study. 

FACS marker coexpression module signature 
discovery

The ‘corAndPvalue’ function from the weighted 
gene coexpression network analysis package was used 
to compute the Pearson correlation and p-value under the 
null hypothesis of the correlation being 0 [58]. Pearson 
and Spearman correlation derived highly similar results; 
therefore Pearson correlation was used to compute pair-
wise gene correlation (Figure S1G and S1H). A cutoff of 2 
standard deviations above the mean correlation value and 
FDR corrected p-value less than 0.05 was used to select 
the genes for each coexpression module.

Coexpression module signature score computation 
per patient

To assign a sample specific score based on 
enrichment of the derived coexpression modules, the 
GSVA algorithm was used [41]. GSVA is a non-parametric 
gene set enrichment method that computes a sample level 
statistic based on the Kolmogorov-Smirnov random walk 
statistic. The enrichment score was calculated using the 
magnitude of the difference between the largest positive 
and negative random walk deviations. This approach 
favors genes in pathways that are concordantly activated 
in one direction only, ie overexpressed relative to the 
remainder of genes not in the set, as is the case for the 
standard GSEA algorithm. The coexpression module 
subtype was designated on a individual patient basis 
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by comparing the enrichment scores for CD133-M and 
CD44-M and assigning a subtype based on the greater 
value (Figure S1F).

Gene set enrichment of coexpressed genes

Gene set enrichment analysis was carried out 
with the java based GUI version 2.2.0.13 [34]. Genes 
coexpressed with extracellular markers were ranked 
by the Pearson correlation value and analyzed in pre-
ranked mode. Gene set permutation was used to assess 
statistical significance. The MolSigDB pathway databases 
interrogated were C2: Canonical Pathways (KEGG, 
Reactome, Biocarta and PID) for a total of 4722 gene sets.

Cell culture and FACS sorting

The use of human glioblastoma tissue samples and 
cell cultures were conducted in accordance with protocols 
approved by Melbourne Health Human Research and 
Ethics Committee (HREC number 2009.016). Cells 
were maintained in DMEM/ F12 (Gibco) supplemented 
with 10ng/L EGF (bdBiosciences), 10 ng/L FGF 
(bdBiosciences), 1x B27 without vitamin A (Gibco) and 
1x Penicillin/ Streptomycin (Gibco). For flow cytometry 
sorting and analysis, cells were dissociated with accutase 
(BD Biosciences) and labeled with CD44-FITC (clone 
DB105, #130-098-210, Miltenyi-Biotec), CD133-
APC (clone AC133, #130-098-829, Miltenyi-Biotec) 
and CD15-PE (SSEA-1, clone MC-480, #13-8813-82, 
eBioscience) along with the relevant isotype controls for 
gating (Figure S4A). Cells were sorted on a BD FACSAria 
III and analyzed on a BD LSRFortessa.

Cell biology assays

For sphere forming assays, 50, 10, 5, 3 and 1 cells 
per well were plated into flat bottom, ultra low attachment 
96 well plates (Corning). A minimum of 6 replicates per 
cellular dilution was used. Sphere forming efficiency was 
estimated by limiting dilution analysis using ELDA, [62].

For cell invasion assays, 1000 cells were directly 
sorted onto round bottom, ultra low attachment 96 well 
plates (Corning) containing 100 μL media. 24 hours 
later an equal volume of Cultrex BME invasion matrix 
(Trevigen) was added and incubated for 1 hour at 37 
◦C. An hour later 2 volumes of media was overlaid 
onto the invasion matrix. 7 days later the spheres were 
photographed and analyzed by ImageJ version 1.48. 
Briefly, a manual threshold was applied to mask cells, the 
image was segmented and the surface area occupied by 
cells quantified (Figure S4B). Surface area is represented 
relative to a media only sample to control for proliferation. 

Temozolomide sensitivity was measured by sorting 

1000 cells directly into flat bottom, ultra low attachment 
96 well plates (Corning) containing 100 μL media. After 
24 hours to allow sphere formation cells were dosed 
daily with 50 μM temozolomide (Sigma-Alrich) with 
a 50% media change [63]. Cell number after 7 days of 
drug exposure was measured by Resazurin assay (R & D 
systems). After addition of 10% v/v Resazurin, cells were 
incubated for 4 hours at 37 ◦C. Cell number was estimated 
by fluorescence using an Enspire plate reader at 544 nm/ 
590 nm excitation/ emission.

Statistical analyses

All analyses were conducted in R version 3.0.3 
unless otherwise stated [59]. The survival package in R 
was used to construct a Kaplan Meier plot and build a Cox 
proportional hazards model [60]. The coin package was 
used to test for survival differences using a log ranked test 
[61].
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