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Abstract
Privileged	by	 rapid	 increase	 in	available	epigenomic	data,	epigenome-wide	associa-
tion	studies	(EWAS)	are	to	make	a	profound	contribution	to	understand	the	molecular	
mechanism	of	DNA	methylation	in	cognitive	aging.	Current	statistical	methods	used	
in	EWAS	are	dominated	by	models	based	on	multiple	assumptions,	for	example,	lin-
ear relationship between molecular profiles and phenotype, normal distribution for 
the	methylation	data	 and	phenotype.	 In	 this	 study,	we	applied	 an	assumption-free	
method,	the	generalized	correlation	coefficient	(GCC),	and	compare	it	to	linear	mod-
els,	namely	the	linear	mixed	model	and	kinship	model.	We	use	DNA	methylation	as-
sociated with a cognitive score in 400 and 206 twins as discovery and replication 
samples	respectively.	DNA	methylation	associated	with	cognitive	function	using	GCC,	
linear	mixed	model,	and	kinship	model,	identified	65	CpGs	(p	<	1e-04)	from	discov-
ery sample displaying both nonlinear and linear correlations. Replication analysis suc-
cessfully	replicated	9	of	these	top	CpGs.	When	combining	results	of	GCC	and	linear	
models	to	cover	diverse	patterns	of	relationships,	we	identified	genes	like	KLHDC4, 
PAPSS2, and MRPS18B	as	well	as	pathways	including	focal	adhesion,	axon	guidance,	
and	some	neurological	signaling.	Genomic	region-based	analysis	found	15	methylated	
regions	harboring	11	genes,	with	three	verified	in	gene	expression	analysis,	also	the	
11 genes were related to top functional clusters including neurohypophyseal hormone 
and	maternal	aggressive	behaviors.	The	GCC	approach	detects	valuable	methylation	
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1  |  INTRODUC TION

Cognitive	impairment	refers	to	when	a	person	has	trouble	remem-
bering,	learning	new	things,	concentrating,	or	making	decisions	that	
can	affect	one's	everyday	 life.	Cognitive	 impairment	 in	 the	elderly	
is	costly	and	a	key	issue	for	health	and	social	care	since	aging	is	the	
greatest	risk	factor	for	it.	The	level	of	cognitive	functioning	is	shown	
to decrease with age accompanied by increased variability in twin 
pairs	(McCartney	et	al.,	1990).	Epigenetic	modification	such	as	DNA	
methylation	 is	 a	 promising	marker	 in	 understanding	many	 age-re-
lated	phenotypes	(Bakulski	&	Fallin,	2014).	Despite	the	wide-spread	
performance	of	epigenetic	association	studies,	limited	markers	have	
been	detected.	The	 limitation	 in	marker	detection	might	have	dif-
ferent reasons such as the distribution of the phenotype of interest 
which	is	not	always	normal	and	the	complex	patterns	of	relationship	
between	 epigenetic	markers	 and	 cognition,	 possibly	 involving	 any	
non-random	patterns	not	limited	to	linearity.	The	multiple	assump-
tions in the conventional statistical models could be responsible for 
the	low	replication	and	limited	explanation	in	the	phenotype	varia-
tion	by	the	identified	markers.

Monozygotic	(MZ)	twins	are	valuable	for	controlling	the	genetic	
background	in	identifying	epigenetic	associations,	as	they	share	sim-
ilar	 genetic	makeups.	 In	 addition,	 differences	 in	DNA	methylation	
levels between discordant monozygotic twins associated with men-
tal	disorders	have	been	frequently	discussed	(Castellani	et	al.,	2015).	
However,	modeling	the	correlation	in	dependent	samples	like	twins	
requires additional assumptions concerning covariance structure 
and degree of genetic relatedness.

As	an	alternative,	assumption-free	measurements	of	association	
or	generalized	correlation	coefficient	(GCC)	have	been	proposed	for	
omics	studies	(Murrell	et	al.,	2016;	Reshef	et	al.,	2011).	We	think	that	
this method has advantages to be considered for analyzing epigen-
etic data as the associations between methylation values and cog-
nitive	function	are	expected	to	be	complex	and	more	 importantly,	
this method does not rely on strict assumptions such as normality of 
phenotypes and linear correlation.

In	this	study,	we	aim	at	promoting	the	use	of	GCC	as	a	comple-
mentary	method	along	with	 traditional	 linear	models.	We	here	 in-
vestigate the performances of popular conventional models and the 
GCC	method	in	an	epigenome-wide	association	study	on	cognitive	
function	using	DNA	methylation	data	measured	in	blood	samples	of	
400	MZ	twins	as	a	discovery	sample.	Performing	single	CpG	sites	
differentially	 methylated	 regions	 (DMRs)	 and	 pathway	 analyses.	
Also,	top	single	CpG	sites	and	candidate	regions	in	nearby	genes	are	

replicated	in	cognitive	function	using	an	independent	DNA	methyl-
ation	sample	of	206	twins	(192	MZ	and	14	dizygotic	(DZ)	twins)	and	
verified	in	a	gene	expression	data,	respectively.

2  |  RESULTS

The	descriptive	statistics	of	 the	study	samples	are	shown	 in	Table	
S1.	DNA	methylation	data	for	the	entire	sample	passed	the	quality	
control	 (QC)	were	 explained	 in	 the	method	 section.	We	observed	
significant associations of cognitive measurement scores with age 
and	sex	in	the	middle-aged	Danish	twin	(MADT)	sample	(Pedersen	
et	al.,	2019).	The	cognitive	score	declines	with	age	(p	=	1.9e-05)	and	
is higher in females in comparison to males (p	=	0.003).	Additionally,	
none	of	 the	cell	counts	were	associated	with	cognitive	score.	This	
was	done	by	the	linear	mixed-effect	(LME)	(Bates	et	al.,	2014)	model	
with	cognitive	function	as	outcome	and	age,	sex,	cell	counts	as	fixed	
effects, and twin pairing as a random factor.

Before performing the statistical analyses, we first investigated 
the	performance	of	three	models,	GCC	(Murrell	et	al.,	2016),	LME,	
and	kinship	(Therneau,	2012)	model	by	estimating	their	type	I	error	
rates	using	simulated	random	methylation	data	for	one	marker	based	
on	a	standard	normal	distribution.	Association	of	the	simulated	mo-
lecular	 data	with	 cognitive	 function	 in	 the	MADT	 cohort	 was	 as-
sessed (p	<	0.05	as	significant)	with	type	I	error	rates	estimated	as	
0.052	for	GCC,	0.054	for	LME,	and	0.055	for	kinship	model,	upon	
10,000	 replicates.	 The	 models	 are	 generally	 unbiased,	 although	
the	 two	 linear	models	gave	a	slightly	high	 type	 I	error	 rate	due	to	
non-optimal	adjustment	of	twin	correlation	on	cognition	by	the	lin-
ear models.

2.1  |  Single CpG epigenome-wide 
association studies

We	applied	the	three	models	to	examine	the	correlation	between	
DNA	methylation	 and	 cognitive	 function	 with	 methylation	 data	
in	MADT	cohort	collected	using	the	Infinium	Human	Methylation	
450K	BeadChip.	 After	 performing	QC,	 427,409	CpGs	 remained.	
The	 identified	CpGs	with	p	 <	1e-4	 from	GCC,	Kinship,	 and	LME	
were	42,	24,	and	18.	We	chose	Kinship	results	as	a	 linear	repre-
sentative	model	(because	of	high	consistency	with	LME)	and	GCC	
as	 a	 nonlinear	 method	 and	 combined	 the	 results	 by	 taking	 the	
minimum p-values	 between	 them.	 After	 combining	 GCC	 results	

sites	missed	by	traditional	linear	models.	A	combination	of	methylation	markers	from	
GCC	and	linear	models	enriched	biological	pathways	sensible	in	neurological	function	
that could implicate cognitive performance and cognitive aging.

K E Y W O R D S
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with	 linear	model	 by	 taking	 the	minimum	p-value	between	GCC	
and	 Kinship	 results,	 65	 CpGs	 were	 identified	 with	 p	 <	 1e-04,	
among	them	14	CpGs	with	p	<	1e-05,	1	CpG	with	p	<	1e-06.	No	
site	reached	genome-wide	significance	defined	as	false	discovery	
rate	(FDR)	<	0.05.	Table	1	shows	the	top	30	CpGs	captured	by	GCC	
(20	CpGs)	and	kinship	model	 (10	CpGs).	The	 top	 three	CpGs	are	
cg08734237 mapped to KLHDC4 (p	 =	 8.3871e-07),	 cg17916473	
mapped to PAPSS2 (p	=	1.0173e-06),	and	cg23988749	mapped	to	
MRPS18B (p	=	2.5999e-06).	Table	S2	 shows	 the	 summary	 statis-
tics	 results	 for	 the	CpGs	p	<	0.05	 from	EWAS	analysis.	Figure	1	
shows	density	plots	between	DNA	methylation	M-value	and	cog-
nitive	 function	 for	 the	 top	12	 significant	CpGs.	Only	 two	CpGs,	
cg23988749 and cg16662451, are captured by the linear model, 
while	other	10	CpGs	are	significant	for	their	nonlinear	correlation	
with	cognition.	The	QQ	plot	comparing	the	three	models	 is	 illus-
trated	 in	 Figure	 2a.	We	 see	 that	 the	 upper	 tail	 CpGs	 from	GCC	
deviate clearly from the diagonal line while many of those from 

the linear models were underestimated for their significance, re-
flecting	poor	model	performances.	The	genomic	inflation	factors	
for	GCC,	Kinship,	and	LME	were	0.99,	0.95,	and	0.94,	respectively.	
The	circular	Manhattan	plot	 for	 the	 three	models	 is	displayed	 in	
Figure	2b.	The	top	30	CpGs	captured	by	each	of	the	models	sepa-
rately	are	shown	in	Tables	S3–S5.	GCC	found	more	CpGs	with	low	
p-value	than	the	two	 linear	models.	Most	of	the	CpGs	 in	kinship	
and	LME	had	the	same	order	in	the	top	list,	but	the	kinship	model	
reported lower p-values.	Figure	3	compares	CpGs	p-values	 from	
the	GCC	EWAS	with	CpGs	p-values	from	the	kinship	model	EWAS,	
with	CpGs	(p	<	1e-04)	colored	red	if	identified	by	GCC	and	green	if	
identified	by	the	kinship	(linear)	model.	Similar	comparisons	of	the	
GCC	EWAS	results	with	those	of	the	LME	model	EWAS	are	shown	
in	Figure	S2.	As	the	top	CpGs	from	the	linear	models	and	GCC	do	
not	 overlap,	we	 ranked	 the	 CpGs	 by	 their	 lowest	 p-values	 from	
either	kinship	or	GCC	to	allow	diverse	patterns	of	correlation	with	
cognitive	function	among	top	rank	CpGs.

F I G U R E  1 Density	plot	showing	the	relationship	between	DNA	methylation	M-value	and	cognitive	function	for	the	top	12	significant	
CpGs	in	the	final	model

−0.4

0.0

0.4

0.8

−20 0 20
Cognitive function

D
N

A
 m

et
hy

la
tio

n 
(M

−v
al

ue
)

cg08734237, P = 8.39e−07

0

1

2

−20 0 20
Cognitive function

D
N

A
 m

et
hy

la
tio

n 
(M

−v
al

ue
)

cg17916473, P = 1.02e−06

−4

−3

−2

−1

0

1

−20 0 20
Cognitive function

D
N

A
 m

et
hy

la
tio

n 
(M

−v
al

ue
)

cg23988749, P = 2.60e−06

−1

0

1

2

−20 0 20
Cognitive function

D
N

A
 m

et
hy

la
tio

n 
(M

−v
al

ue
)

cg08594651, P = 2.76e−06

−0.50

−0.25

0.00

0.25

0.50

−20 0 20
Cognitive function

D
N

A
 m

et
hy

la
tio

n 
(M

−v
al

ue
)

cg04817034, P = 3.97e−06

−0.5

0.0

0.5

1.0

−20 0 20
Cognitive function

D
N

A
 m

et
hy

la
tio

n 
(M

−v
al

ue
)

cg16662451, P = 5.65e−06

−0.50

−0.25

0.00

0.25

−20 0 20
Cognitive function

D
N

A
 m

et
hy

la
tio

n 
(M

−v
al

ue
)

cg15322207, P = 6.09e−06 

−0.5

0.0

0.5

1.0

−20 0 20
Cognitive function

D
N

A
 m

et
hy

la
tio

n 
(M

−v
al

ue
)

cg13541769, P = 6.72e−06

−2

−1

0

1

−20 0 20
Cognitive function

D
N

A
 m

et
hy

la
tio

n 
(M

−v
al

ue
)

cg23731089, P = 6.77e−06

−1.0

−0.5

0.0

0.5

1.0

−20 0 20
Cognitive function

D
N

A
 m

et
hy

la
tio

n 
(M

−v
al

ue
)

cg18147395, P = 6.89e−06

−0.4

0.0

0.4

−20 0 20
Cognitive function

D
N

A
 m

et
hy

la
tio

n 
(M

−v
al

ue
)

cg11465226, P = 6.99e−06 

−1.5

−1.0

−0.5

0.0

0.5

1.0

−20 0 20
Cognitive function

D
N

A
 m

et
hy

la
tio

n 
(M

−v
al

ue
)

cg26963367, P = 7.63e−06



    |  5 of 12MOHAMMADNEJAD Et Al.

F I G U R E  2 QQ	plot	and	Manhattan	plot	of	EWAS	on	cognitive	function.	(a)	QQ	plot	comparing	the	performance	of	GCC,	kinship,	and	LME	
models	in	EWAS	data.	(b)	Circular	Manhattan	plot	of	GCC,	Kinship,	and	LME	based.	The	circular	Manhattan	plots	from	inner	to	outer	are	
LME,	Kinship,	and	GCC,	respectively

F I G U R E  3 Scatter	plot	comparing	the	performance	of	CpGs	in	linear	model	to	the	GCC	model.	The	x-axis	and	y-axis	show	−log10	(p-
value)	from	Kinship	and	GCC	models,	respectively
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To	observe	any	difference	in	the	genomic	location	of	the	CpGs	
with p	<	0.05	with	both	positive	(methylated)	or	negative	(demethyl-
ated)	correlation	with	cognitive	function	(as	determined	by	the	linear	
model	estimates),	we	made	a	star	plot	in	Figure	S3a	to	show	the	dis-
tribution	of	methylated	(green)	and	demethylated	(blue)	CpGs	with	
cognitive	function.	Compared	with	the	distribution	of	all	CpGs	in	the	
450k	array	(black),	the	demethylated	CpGs	are	less	distributed	to	the	
promoters.	Figure	S3b	shows	the	frequency	of	CpGs	with	positive	or	
negative	correlations	with	cognition	at	each	gene	region.	High	pro-
portions	of	demethylated	CpGs	are	observed	at	gene	body,	3′	UTR,	
and intergenic regions.

2.2  |  Biological pathway analysis

The	total	number	of	mapped	genes	(p	<	0.05)	was	27,413.	These	
genes	 were	 used	 as	 input	 for	 over-representation	 analysis	 of	
KEGG	 and	 REACTOME	 pathways	 as	 well	 as	 DisGeNET	 (human	
disease)	 implemented	 in	WebGestalt	 (Liao	 et	 al.,	 2019).	 Table	 2	
shows	 the	 top	30	KEGG,	REACTOME,	 and	DisGeNET	pathways	
with	statistical	significance	(FDR	<	5.88e-04).	Among	them,	there	

are	cAMP,	MAPK,	Neurotrophin	signaling	pathways,	Focal	adhe-
sion,	 Axon	 guidance,	 Ion	 homeostasis,	 Membrane	 Trafficking,	
and	signal	 transduction	 from	KEGG	and	REACTOME.	Moreover,	
from	 DisGeNET	 diseases	 and	 phenotypes	 like	 Schizophrenia,	
Intellectual	 Disability,	 Mental	 Retardation,	 Low	 intelligence,	
Mental	 deficiency,	 Poor	 school	 performance,	 Dull	 intelligence,	
and	Cognitive	delay	were	overrepresented.

2.3  |  Analysis of differentially methylated regions

The	 EWAS	 final	 results	 from	 the	 combined	 CpGs	 of	 GCC	 and	
linear	model	were	used	 for	 identification	of	DMRs,	using	comb-
p	 algorithm	 (Pedersen	 et	 al.,	 2012).	 In	 total,	 15	 DMRs	 with	
FDR	<	0.05	were	identified,	which	is	shown	in	Table	S6.	The	DMRs	
pattern	has	been	depicted	in	Figure	S4,	which	among	them	DMRs	
in	 Figure	 S4A–G,	 J	 are	 hyper-methylated	 and	 DMRs	 in	 Figure	
S4H,O,I,K,L,N,	M	are	hypo-methylated	with	 increasing	cognitive	
function.

We	used	the	30	DMRs	with	p < 0.05 from comb-p analysis as 
input in GREAT	 software	 (McLean	 et	 al.,	 2010)	 to	 identify	 their	

TA B L E  2 The	top	30	significant	functional	KEGG,	REACTOME	and	DisGeNET	pathways	in	WebGestalt

Gene set Description Size Expect Ratio p-value FDR

R-HSA-5663202 Diseases	of	signal	transduction 359 234.78 1.2267 2.5600e-10 2.2946e-7

R-HSA-5683057 MAPK	family	signaling	cascades 275 179.85 1.2566 3.3039e-10 2.2946e-7

R-HSA-597592 Post-translational	protein	modification 1268 829.26 1.1167 3.4078e-10 2.2946e-7

R-HSA-422475 Axon	guidance 511 334.19 1.1850 7.6401e-10 3.8583e-7

hsa04024 cAMP	signaling	pathway 189 123.60 1.2945 1.8312e-9 7.3981e-7

R-HSA-5673001 RAF/MAP	kinase	cascade 235 153.69 1.2558 7.3300e-9 2.4678e-6

C0036341 Schizophrenia 944 623.27 1.1295 7.3798e-10 2.5283e-6

hsa04510 Focal	adhesion 188 122.95 1.2769 1.9426e-8 4.9050e-6

hsa01521 EGFR	tyrosine	kinase	inhibitor	resistance 77 50.357 1.4099 3.5265e-8 7.9150e-6

R-HSA-9006934 Signaling	by	receptor	tyrosine	kinases 436 285.14 1.1714 1.5029e-7 3.0358e-5

C3714756 Intellectual	disability 629 415.29 1.1390 1.2056e-7 8.9901e-5

C0025362 Mental	retardation 545 359.83 1.1478 1.8369e-7 8.9901e-5

C0423903 Low	intelligence 545 359.83 1.1478 1.8369e-7 8.9901e-5

C0917816 Mental	deficiency 545 359.83 1.1478 1.8369e-7 8.9901e-5

C1843367 Poor	school	performance 545 359.83 1.1478 1.8369e-7 8.9901e-5

C4020876 Dull	intelligence 545 359.83 1.1478 1.8369e-7 8.9901e-5

C0376634 Craniofacial	abnormalities 136 89.793 1.2919 2.6809e-7 9.5731e-5

C0020534 Orbital	separation	excessive 219 144.59 1.2310 2.9492e-7 9.5731e-5

C1864897 Cognitive	delay 541 357.19 1.1450 3.3871e-7 9.5731e-5

hsa01522 Endocrine resistance 93 60.821 1.3318 1.7661e-6 2.4775e-4

hsa04722 Neurotrophin	signaling	pathway 114 74.555 1.3011 1.8397e-6 2.4775e-4

hsa04015 Rap1 signaling pathway 201 131.45 1.2248 2.8739e-6 3.6014e-4

R-HSA-5578775 Ion	homeostasis 54 35.315 1.4158 3.0309e-6 3.6014e-4

hsa05205 Proteoglycans	in	cancer 193 126.22 1.2280 3.2738e-6 3.6613e-4

R-HSA-2219528 PI3K/AKT	signaling	in	cancer 95 62.129 1.3198 3.4438e-6 3.6613e-4

hsa05211 Renal cell carcinoma 62 40.547 1.3811 5.8214e-6 5.8796e-4
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regulatory	 domain	 of	 the	 human	 genome	 (UCSC	hg19).	 The	Top	
functional clusters of biological process and molecular functions 
with (binomial p	 <	 1e-3)	 are	 shown	 in	 Table	 S7	 and	 for	 a	 better	
visualization	 the	 directed	 acyclic	 graphs	 are	 shown	 in	 Figures	
S5	and	S6.	These	biological	processes	 include	aggressive	behav-
ior, mating, female mating behavior, female receptivity, muscle 
contraction	 of	 the	 hindgut,	 hypermethylation	 of	 CpG	 island,	 as	
well	 as	 some	metabolic	 processes	 such	 as	 alkene	 and	 ethylene.	
Additionally,	 top	two	 identified	molecular	functions	were	neuro-
hypophyseal	hormone	activity	and	oxytocin	receptor	binding.

2.4  |  Replication using Longitudinal Study of Aging 
Danish Twins data

As	an	effort	for	replication,	we	used	the	Longitudinal	Study	of	Aging	
Danish	Twins	(LSADT)	data	to	replicate	the	top	65	identified	CpGs	
with p	 <	 1e-04	 (Table	 S2).	 From	 LSADT,	 9	 CpGs	 were	 replicated	
which	are	shown	in	Table	S8.	Assuming	the	65	discovered	CpGs	are	
random and type 1 error rate of 0.05, based on the binomial test 
the	probability	of	having	≥9	replicates	out	of	65	is	p	=	0.00281.	The	
replication	result	suggests	that	the	identified	65	CpGs	are	extremely	
unlikely	chance	findings.

2.5  |  Further verification using gene 
expression data

Using	gene	expression	data	on	the	same	MADT	samples,	we	found	
11	genes	annotated	 to	 the	15	DMRs	 in	Table	S6	and	 investigated	
association	of	their	expression	levels	with	cognitive	function	using	
the	combined	GCC	method	and	Kinship	model.	Among	the	11	genes,	
3 genes, SMC1B, GABBR1, and HCG16 were confirmed associated 
with cognitive function with p	<	0.05.	In	the	gene	expression	data,	
two probes (p = 0.02, p	=	0.27)	were	mapped	to	GABBR1, one probe 
(p	=	0.02)	to	SMC1B and one probe (p	=	0.04)	to	HCG16.

3  |  DISCUSSION

This	study	of	DNA	methylation	data	 in	twin	samples	 indicates	the	
strength	of	GCC	in	comparison	with	the	traditional	methods	charac-
terized	by	(1)	ability	to	capture	nonlinear	correlation	patterns	missed	
by	the	 linear	models,	 (2)	robustness	 in	handling	EWAS	data	on	re-
lated	samples	such	as	twins,	and	(3)	biologically	meaningful	annota-
tions	of	identified	markers.

Conventionally,	 linear	 relationship	 has	 been	 assumed	 in	 de-
scribing	 the	 association	 between	 a	 molecular	 marker	 and	 a	
phenotype	 of	 interest	 for	 simplicity	 in	 statistical	 modeling.	 In	 a	
genome-wide	 association	 study	 (GWAS),	 this	 assumption	 trans-
lates	 to	 the	 additive	 genetic	 effects.	 The	 linear	 assumption	 suf-
fers intrinsically from low efficiency in handling the biological 
complexity	in	the	molecular	regulation	on	phenotype	expression,	

which	cannot	be	simplified	by	just	a	linear	model.	This	phenome-
non	has	been	clearly	exemplified	 in	 a	published	microarray	 time	
course	experiment	analyzed	using	sophisticated	parametric	mod-
eling	(Murrell	et	al.,	2016;	Reshef	et	al.,	2011).	Instead	of	complex	
modeling,	GCC	provides	an	alternative	assumption-free	approach	
inherently	 capable	 of	 capturing	 patterns	 of	 any	 non-random	 re-
lationship.	Based	on	our	 findings,	 there	were	no	 top	CpGs	over-
lapping	between	GCC	and	linear	models	(Figure	3).	In	fact,	linear	
models	 are	 defined	 and	 coded	 for	 linear	 relationships	 and	 GCC	
has	to	sacrifice	power	for	some	kinds	of	relationships	to	see	other	
kinds.	With	 this	 consideration,	we	 suggest	 that	GCC	 could	with	
advantage be applied as a complement to the linear methods to 
ensure different patterns of correlation be captured with high effi-
ciency.	As	shown	in	Table	1,	the	majority	of	the	CpGs	are	detected	
by	GCC	presumably,	because	GCC	is	not	limited	to	any	predefined	
correlation pattern.

Although	the	single	CpG	EWAS	did	not	 find	genome-wide	sig-
nificant	sites	after	correcting	for	multiple	testing,	the	top	rank	CpGs	
were annotated to biologically meaningful genes and pathways.

In	Table	1,	KLHDC4	mapped	to	the	top	significant	CpG	has	been	
reported	to	be	associated	with	Huntington	Disease-Like	2	(https://
www.genec	ards.org/cgi-bin/cardd	isp.pl?gene=KLHDC4),	 a	 disor-
der	 characterized	partially	 by	 cognitive	 abnormalities.	 The	 second	
top significant PAPSS2 gene is shown to be a novel longevity gene 
by	expression	profiling	of	genes	within	regions	identified	by	a	me-
ta-analysis	 GWAS	 of	 survival	 to	 age	 90	 (Yerges-Armstrong	 et	 al.,	
2016).	 The	 third	 top	 significant	MRPS18B gene is a mitochondrial 
gene.	Mitochondrial	are	vital	in	providing	energy	for	cells	in	the	form	
of	adenosine	triphosphate	(ATP)	through	oxidative	phosphorylation	
(OXPHOS)	(Lunnon	et	al.,	2017).	OXPHOS	dysfunction	can	produce	
reactive	 oxygen	 species	 and	 oxidative	 stress	 leading	 to	 neuronal	
cell	death	in	aging	and	in	Alzheimer's	disease	(AD)	brain	(Devi	et	al.,	
2006).

Among	the	significant	pathways	 in	Table	2,	 it	has	been	reported	
that the disturbance in signal transduction in brain cells causes the 
cognitive	decline	(Lo	Vasco,	2018).	Focal	adhesion	is	involved	in	inte-
grin	 adhesion,	 communication	 between	 the	 extracellular	matrix	 and	
the	 actin	 cytoskeleton,	 and	 the	 regulation	 of	many	 cell	 types.	 Loss	
of cell adhesion can lead to cell death and altered focal signaling has 
been	linked	to	synaptic	loss,	which	may	cause	AD	(Caltagarone	et	al.,	
2007).	There	is	evidence	that	axon	guidance	might	play	a	role	in	some	
brain	 disorders	 such	 as	 Parkinson's	 and	 AD	 (Lesnick	 et	 al.,	 2007).	
MAPK	signaling	pathway	regulates	neuronal	apoptosis,	β-	and	γ-secre-
tase activity, and phosphorylation of APP and tau which has a role in 
the	pathogenesis	of	AD	 (Kim	&	Choi,	2010).	Neurotrophins,	 such	as	
brain-derived	neurotrophic	factor	(BDNF),	are	essential	regulators	of	
neuronal survival and lower level of them are related to etiology of 
Alzheimer's	and	Huntington's	diseases	(Mitre	et	al.,	2017).	In	the	liter-
ature,	there	is	also	evidence	of	a	direct	or	indirect	link	of	Membrane	
trafficking,	Ion	homeostasis	to	cognitive	function	or	other	neurological	
disorders	(Cuomo	et	al.,	2015;	Wang	et	al.,	2013).

Analysis	 of	 DMRs	 based	 on	 the	 joint	 results	 of	 GCC	 and	 linear	
models	had	the	power	to	detect	13	DMRs	with	FDR	<	0.05	and	two	

https://www.genecards.org/cgi-bin/carddisp.pl?gene=KLHDC4
https://www.genecards.org/cgi-bin/carddisp.pl?gene=KLHDC4
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with	0.05	<	FDR	<	0.1.	Among	the	genes	harbored	by	these	DMRs,	
three genes SMC1B, GABBR1, and HCG16 were verified using gene 
expression	 analysis.	 The	GABBR1	 gene	 is	 highly	 expressed	 in	 brain,	
and	it	is	a	main	inhibitory	in	the	central	nervous.	Dysfunctional	GABA	
interneuron could represent a core pathophysiological mechanism 
underlying	cognitive	dysfunction	in	schizophrenia	(Li	et	al.,	2016;	Xu	
&	Wong,	2018).	In	the	processes	of	learning	and	memory,	changes	in	
GABAergic	 function	could	be	an	 important	 factor	 in	both	early	 and	
later	 stages	 of	 AD	 pathogenesis	 (Govindpani	 et	 al.,	 2017).	 The	 two	
other genes SMC1B and HCG16 have not been reported yet to have 
a	direct	 link	 to	cognitive	 function.	Most	 interestingly,	 functional	an-
notation	of	 the	DMRs	by	GREAT	 reported	highly	relevant	GO	terms	
as	shown	in	Table	S7.	Moreover,	functional	gene	annotation	analysis	
using GREAT	from	top	identified	DMRs	revealed	important	biological	
and	molecular	functional	clusters	implicated	in	cognitive	function.	The	
link	of	neurohypophyseal	hormone	and	oxytocin	receptor	binding	with	
memory process and cognitive function has been already discussed 
(Fehm-Wolfsdorf	et	al.,	1984;	Iovino	et	al.,	2018;	Strupp	et	al.,	1983).

Oxytocin	is	produced	in	the	hypothalamus	and	released	into	the	
circulation	 through	 the	 neurohypophyseal	 system	 (Ross	 &	 Young,	
2009).	 It	 is	 shown	 that	 there	 is	 an	 impairing	 influence	of	memory	
by	oxytocin	(Fehm-Wolfsdorf	et	al.,	1984)	and	also	it	modulates	so-
cial	cognition	and	affiliative	behavior	in	both	sexes	(Ross	&	Young,	
2009).	Oxytocin	in	brain	also	regulates	anxiety-behaviors,	which	has	
been shown to correlate the maternal aggressive behavior (Bosch 
et	al.,	2005).

In	women,	the	rate	of	muscle	contraction,	especially	the	rate	of	
velocity	development	(RVD),	is	predominantly	associated	with	cog-
nition,	particularly	in	women	with	low	muscle	strength	(Tian	et	al.,	
2019).

There	is	also	evidence	of	the	role	of	mating,	female	receptivity,	
hypermethylation	of	CpG	island,	and	metabolic	process	in	cognitive	
function	 (Haberman	 et	 al.,	 2012;	 Sharp	 et	 al.,	 2010;	 Smith	 et	 al.,	
2015).

In	Table	S8,	the	9	replicated	CpGs	were	annotated	to	genes	includ-
ing EPHA8, PRDM15, PRR25, GPLD1, SLC1A3, DPYSL2, and NHEJ1.	Gu	
et	al.,	(2005)	reported	that	the	EphA8 receptor is capable of inducing 
a	 sustained	 increase	 in	 MAPK	 activity,	 thereby	 promoting	 neurite	
outgrowth in neuronal cells. PRR25	is	among	the	171	age-related	dif-
ferential	 expression	 genes	 (Lee	&	Lee,	 2017).	GPLD1 gene has been 
reported	to	interact	with	Apolipoprotein	A1	and	APOA4	(Deeg	et	al.,	
2001)	and	Lin	et	al.,	2015	have	shown	that	the	low	levels	of	APOA1, 
APOC3, and APOA4	 are	associated	with	 risk	of	AD.	 Importantly,	 the	
GPLD1	 is	a	candidate	gene	that	modulates	Aβ	production	(Seki	et	al.,	
2020).	Wilmsdorff	et	al.,	(2013)	reported	that	the	increased	SLC1A3	ex-
pression indicates facilitated transport and may result in reduced gluta-
mate	neurotransmission.	The	gene	DPYSL2	is	highly	expressed	in	brain	
and	associated	with	AD	(https://www.genec	ards.org/cgi-bin/cardd	isp.
pl?gene=DPYSL2).

As	an	extra	effort	to	characterize	our	identified	CpGs,	we	tested	
the	proportion	of	CpG-SNPs	in	the	top	CpGs	with	p <	1e-4	and	com-
pare	it	with	the	proportion	of	CpG-SNPs	from	the	whole	450k	array	
using	hypergeometric	test.	The	proportion	of	CpG-SNPs	in	our	study	

is	higher	than	the	proportion	of	CpG-SNPs	 in	the	450k	array	with	
borderline significance (p	 =	 0.05).	 This	 indicates	 that	 DNA	meth-
ylation could be one of the ways that genetic variations influence 
cognitive	 aging	 as	 it	 is	 discussed	 in	 a	 literature	 (Shoemaker	 et	 al.,	
2010).	 Additionally,	 we	 found	 a	 significant	 overlap	 (p	 =	 3.04e-16)	
of	top	genes	in	our	study	with	age-related	genes	including	PAPSS2, 
MRPS18B, USP35, PRDM15, ODZ3, DNHD1, WDR51A, AGTRAP, 
OPCML, FLJ3281, CCDC102B, PRR16, and FGF12	in	the	Lothian	Birth	
Cohorts	(LBC)	reported	by	Li	et	al.,	(2017).	Also,	a	significant	overlap	
(p	=	4.54e-12)	of	genes	KLHDC4, MRPS18B, USP35, EIF2C2, AOAH, 
COBRA1, OPCML, and SLC1A3	with	age-related	genes	in	LSADT	re-
ported	by	Tan	et	al.,	(2016).	The	two	genes	PRDM15 and SLC1A3 are 
also among the list of genes in the replication analysis.

A	limitation	for	the	GCC	method	is	that	its	association	parameter	
has no direction compare to the linear regression models that report 
the	coefficient	regression	with	a	direction	of	effect	(+	or	−).	This	is	
because the direction of effect cannot be determined in the case 
of	nonlinear	relationship.	We	propose	that,	for	any	significant	CpG	
marker,	its	direction	of	effect	be	roughly	determined	by	the	sign	of	
its	coefficient	from	the	linear	model.	This	same	idea	has	been	imple-
mented	in	R	Bioconductor	package	RTN (https://www.bioconductor.
org/packages/release/bioc/html/RTN.html)	 which	 uses	 a	 general-
ized	correlation	coefficient	to	estimate	correlation	between	expres-
sion	of	a	transcription	factor	gene	and	expression	of	a	target	gene,	
but	uses	 the	sign	of	Pearson's	correlation	 (negative	or	positive)	 to	
determine	the	direction	of	correlation.	Another	possible	limitation	of	
this	study	is	the	use	of	DNA	methylation	for	the	whole	blood	rather	
than	a	brain	tissue.	However,	studies	have	shown	whether	blood	can	
be	used	as	a	proxy	in	methylation	studies	as	the	brain	tissue	is	usu-
ally	unavailable.	They	concluded	that	the	methylation	status	of	many	
CpGs	in	the	blood	mirror	those	in	the	brain	(Aberg	et	al.,	2013).

Dependent	samples	can	lead	to	biased	statistical	assessment	if	
not	adjusted	properly	in	association	studies.	In	genome-wide	asso-
ciation	analysis,	 the	sub-grouping	of	samples	 is	 responsible	 for	 in-
flated	statistical	significance	which	can	be	revealed	by	QQ	plots.	In	
this	study,	LME	and	kinship	models	were	applied	to	account	for	the	
correlated	 structure	 in	 our	 twin	 pairs.	As	 shown	by	 the	QQ	plots	
in	Figure	2a,	 the	significance	estimates	by	 linear	models	were	not	
inflated, suggesting that the random effects estimated in the linear 
models	well	captured	the	twin	correlation.	In	practice,	however,	in-
flated significances are frequently observed due to model misspeci-
fication	in	parametric	modeling.	It	is	encouraging	that	the	GCC	as	an	
assumption-free	method	does	not	 require	any	specific	handling	of	
the	correlated	twin	samples	in	achieving	unbiased	assessments.	This	
feature is especially valuable in association analysis of omics data for 
dealing	with	sample	sub-grouping	due	to	population	stratification	or	
batch	effect	from	non-biological	experimental	variations.

4  |  CONCLUSION

Through	applying	both	GCC	and	linear	models	to	EWAS	on	cognitive	
function, we identified more and meaningful genes and pathways as 

https://www.genecards.org/cgi-bin/carddisp.pl?gene=DPYSL2
https://www.genecards.org/cgi-bin/carddisp.pl?gene=DPYSL2
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well	 as	DMRs	 that	 could	 implicate	 the	 cognitive	performance	and	
cognitive aging compared with restricting to the popular linear mod-
els.	The	assumption-free	GCC	 is	also	robust	 in	dealing	with	corre-
lated	samples	as	in	our	twins.	The	intrinsic	features	of	GCC	enabled	
the	 identification	 of	 DNA	methylation	 markers	 displaying	 diverse	
correlation	 patterns	with	 cognitive	 function.	 Our	 results	 promote	
the	use	of	GCC	to	complement	the	traditional	linear	models	in	EWAS	
studies	for	marker	discovery	and	for	biological	interpretation.

5  |  MATERIAL S AND METHODS

5.1  |  Population study

The	study	sample	comprises	400	monozygotic	(MZ)	twins	aged	56–
80,	including	220	male	and	180	female	pairs	(Table	S1)	recruited	by	
the	Danish	Twin	Registry	as	a	part	of	the	middle-aged	Danish	twin	
(MADT)	 study	 (https://pubmed.ncbi.nlm.nih.gov/31544	734/).	 The	
whole	blood	samples	were	collected	during	2008–11	in	a	follow-up	
assessment.	The	mean	and	standard	deviation	of	blood	sampling	age	
of	individuals	were	66.55	and	5.96,	respectively.	The	general	cogni-
tive composite score comprised five cognitive tests, which included 
verbal	fluency,	attention,	and	working	memory	(digits	forward	and	
digits	backward)	and	memory	(immediate	and	delayed	word	recall).	
The	cognitive	test	scores	were	standardized	to	mean	0	and	stand-
ard deviation 1 and were summed to calculate the general cognitive 
composite	scores.	The	cognitive	function	for	each	twin	pair	through	
plotting cognitive scores for twin 1 versus twin 2 is depicted in 
Figure	S1.	The	details	about	sample	collection	have	been	described	
in	detail	elsewhere	(McGue	&	Christensen,	2001).

Blood	 cell	 counts	 from	 blood	 leukocyte	 subtypes	 (monocytes,	
lymphocytes,	 basophils,	 neutrophils,	 eosinophils)	 were	 counted	
using	a	Coulter	LH	750	Hematology	Analyzer	(Beckman	Coulter).

The	replication	sample	includes	206	twins	comprised	of	192	MZ	
twins	and	14	dizygotic	 (DZ)	 twins	 (64	male	and	142	 female	 twins)	
(Table	 S1)	 recruited	 by	 the	Danish	 Twin	 Registry	 as	 a	 part	 of	 the	
Longitudinal	 Study	 of	 Aging	 Danish	 Twins	 (LSADT)	 project.	 The	
mean and standard deviation of age at blood sampling were 79.30 
and 4.01, respectively.

5.2  |  DNA methylation profiling

DNA	 methylation	 profiles	 in	 whole	 blood	 samples	 were	 analyzed	
using	the	Infinium	HumanMethylation450	BeadChips	(Illumina)	con-
taining	485,512	CpG	sites	across	the	human	genome.	The	QC	of	the	
DNA	methylation	data	was	done	based	on	two	R	packages:	MethylAid 
(Van	Iterson	et	al.,	2014)	and	minfi	(Aryee	et	al.,	2014).	Probes	were	
removed from the analysis based on the following thresholds: zero 
signals, low bead count < 3 beads, p-value	detection	>	0.01,	cross-
reactive	probes	defined	by	Chen	et	al.,	2013	and	probes	missing	 in	
>	5%	samples,	and	sex-chromosome	and	SNP	probes	were	removed	
and	 the	 rest	were	 imputed	based	on	 their	median.	This	 resulted	 in	

427,409	CpGs	left	for	analysis.	Data	normalization	was	done	by	func-
tional	normalization	(Fortin	et	al.,	2014).	Before	the	statistical	analy-
sis,	the	methylation	beta	values	were	logit	transformed	to	M	values	
(log2 (β/(1−β)).

5.3  |  Statistical analysis

5.3.1  |  Generalized	correlation	coefficient	and	linear	
regression models

We	tested	by	fitting	two	linear	regression	models	and	GCC	whether	
DNA	methylation	 in	whole	 blood	 is	 associated	with	 cognitive	 func-
tion.	In	the	linear	models,	both	kinship	model	from	kinship2	R	package	
(Therneau,	2012)	and	LME	from	 lme4	R	package	 (Bates	et	al.,	2014)	
were	applied	to	find	the	association	of	DNA	methylation	 levels	with	
cognitive function. Before applying association testing, we adjusted 
for	age,	gender,	and	blood	cell	compositions.	The	kinship	module	cal-
culates	a	kinship	matrix	and	 integrates	 it	 in	the	covariance	matrix	of	
the	methylation	data.	The	LME	model	corrects	for	correlation	between	
twins in a pair by including twin pairing as a random effect in the model.

For	GCC	analysis,	Matie	R	package	was	used	(Murrell	et	al.,	2016),	
which	GCC	was	computed	based	on	a	ratio	of	maximum	likelihoods	
for	the	marginal	distribution	and	maximum	weighted	likelihoods	for	
the joint distribution.

5.3.2  |  Gene-set	enrichment	analysis

The	 identified	 CpGs	with	 p < 0.05 were annotated to genes and 
used	 as	 input	 for	 overrepresentation	 enrichment	 analysis	 (ORA)	
against	the	genes	on	the	450K	array	using	the	WEB-based	GEne	SeT	
AnaLysis	Toolkit	 (WebGestalt).	Gene	 sets	with	FDR	q-value	<	0.05	
were reported as significant.

5.3.3  |  Differentially	methylated	regions

In	 addition	 to	 single	CpG	based	 analysis,	we	 also	 performed	 test-
ing	on	multiple	CpGs	by	extending	our	analysis	to	DMRs	based	on	
the	results	of	single	site	testing.	DMRs	were	detected	using	comb-
p	 tool	 developed	 by	 Pedersen	 et	 al.	 (2012).	 This	 method	 applies	
the	Stouffer–Liptak	approach	 to	combine	p-values	of	 the	adjacent	
CpGs	and	reports	significant	regions	after	FDR	adjustment.	Comb-p 
is	 a	 python	 library	 package	 (https://github.com/brent	p/combi	
ned-pvalues).

5.3.4  |  Genomic	regions	enrichment	analysis	
in	GREAT

To	analyze	the	functional	significance	of	cis-regulatory	regions,	we	
examined	 the	 regulatory	 domain	 of	 functional	 pathways	 from	 30	

https://pubmed.ncbi.nlm.nih.gov/31544734/
https://github.com/brentp/combined-pvalues
https://github.com/brentp/combined-pvalues
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DMRs	p	<	0.05	in	the	Genomic	Regions	Enrichment	of	Annotations	
Tool	(GREAT).

5.3.5  |  Replication	analysis	using	LSADT	data

For	the	detected	top	65	significant	methylation	sites	with	p	<	1e-04,	
we	performed	a	 replication	analysis	using	450K	DNA	methylation	
data	on	an	 independent	Danish	twin	cohort,	 the	LSADT	data.	The	
association	of	DNA	methylation	with	cognitive	 function	was	done	
on	the	GCC,	Kinship,	and	LME	models.	And,	the	results	from	GCC	
and	linear	model	were	combined.	Then,	we	used	the	binomial	distri-
bution	to	estimate	the	probability	of	having	≥n	replicated	CpGs	out	
of	65	CpGs	given	the	type	one	error	rate	of	0.05	and	assuming	the	
identified	CpGs	are	by	chance.

5.3.6  |  Further	verification	by	using	gene	
expression	data	from	MADT

Whole	blood	samples	in	gene	expression	data	from	MADT	were	col-
lected,	 stabilized,	 and	 transported	 in	 PAXgene	Blood	RNA	Tubes.	
Total	 RNA	 was	 extracted	 using	 the	 PAXgene	 Blood	 miRNA	 kit	
(Qiagen).	The	integrity	and	concentration	of	the	isolated	RNA	were	
determined	 by	 the	 RNA	 6000	 Nano	 kit	 and	 a	 Bioanalyzer	 2100	
(Agilent	Technologies).	The	raw	intensity	values	were	extracted	from	
the	scanned	image	files	using	Agilent	Feature	Extraction	Software	v.	
10.7.3.1	(Agilent	technologies).

Gene	 expression	 profiling	 was	 performed	 using	 the	 Agilent	
SurePrint	G3	Human	GE	v2	8	×	60K	Microarray.	Sample	labeling	
and	array	hybridization	were	carried	out	according	 to	 the	 “Two-
Color	 Microarray-Based	 Gene	 Expression	 Analysis–Low	 Input	
Quick	 Amp	 Labeling”	 protocol	 (Agilent	 Technologies).	 Samples	
were	 labeled	with	Cy5,	and	the	reference	consisting	of	a	pool	of	
16	 samples	was	 labeled	with	Cy3.	Hybridization,	washing,	 scan-
ning, and quantification were performed according to the array 
manufacturer's recommendations.

The	 significant	 DMRs	 identified	 in	 comb-p were mapped to 
genes, and these genes were verified in the aforementioned gene 
expression	data	 from	 the	 same	MADT	cohort.	 The	 analysis	was	
done	 by	 GCC,	 Kinship,	 and	 LME	with	 adjustments	 on	 age,	 sex,	
and	cell	counts	information	similar	to	the	methylation	data.	Then,	
the	 final	 assessment	was	 done	based	on	 both	GCC	 and	Kinship	
models.
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