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Abstract
Privileged by rapid increase in available epigenomic data, epigenome-wide associa-
tion studies (EWAS) are to make a profound contribution to understand the molecular 
mechanism of DNA methylation in cognitive aging. Current statistical methods used 
in EWAS are dominated by models based on multiple assumptions, for example, lin-
ear relationship between molecular profiles and phenotype, normal distribution for 
the methylation data and phenotype. In this study, we applied an assumption-free 
method, the generalized correlation coefficient (GCC), and compare it to linear mod-
els, namely the linear mixed model and kinship model. We use DNA methylation as-
sociated with a cognitive score in 400 and 206 twins as discovery and replication 
samples respectively. DNA methylation associated with cognitive function using GCC, 
linear mixed model, and kinship model, identified 65 CpGs (p < 1e-04) from discov-
ery sample displaying both nonlinear and linear correlations. Replication analysis suc-
cessfully replicated 9 of these top CpGs. When combining results of GCC and linear 
models to cover diverse patterns of relationships, we identified genes like KLHDC4, 
PAPSS2, and MRPS18B as well as pathways including focal adhesion, axon guidance, 
and some neurological signaling. Genomic region-based analysis found 15 methylated 
regions harboring 11 genes, with three verified in gene expression analysis, also the 
11 genes were related to top functional clusters including neurohypophyseal hormone 
and maternal aggressive behaviors. The GCC approach detects valuable methylation 
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1  |  INTRODUC TION

Cognitive impairment refers to when a person has trouble remem-
bering, learning new things, concentrating, or making decisions that 
can affect one's everyday life. Cognitive impairment in the elderly 
is costly and a key issue for health and social care since aging is the 
greatest risk factor for it. The level of cognitive functioning is shown 
to decrease with age accompanied by increased variability in twin 
pairs (McCartney et al., 1990). Epigenetic modification such as DNA 
methylation is a promising marker in understanding many age-re-
lated phenotypes (Bakulski & Fallin, 2014). Despite the wide-spread 
performance of epigenetic association studies, limited markers have 
been detected. The limitation in marker detection might have dif-
ferent reasons such as the distribution of the phenotype of interest 
which is not always normal and the complex patterns of relationship 
between epigenetic markers and cognition, possibly involving any 
non-random patterns not limited to linearity. The multiple assump-
tions in the conventional statistical models could be responsible for 
the low replication and limited explanation in the phenotype varia-
tion by the identified markers.

Monozygotic (MZ) twins are valuable for controlling the genetic 
background in identifying epigenetic associations, as they share sim-
ilar genetic makeups. In addition, differences in DNA methylation 
levels between discordant monozygotic twins associated with men-
tal disorders have been frequently discussed (Castellani et al., 2015). 
However, modeling the correlation in dependent samples like twins 
requires additional assumptions concerning covariance structure 
and degree of genetic relatedness.

As an alternative, assumption-free measurements of association 
or generalized correlation coefficient (GCC) have been proposed for 
omics studies (Murrell et al., 2016; Reshef et al., 2011). We think that 
this method has advantages to be considered for analyzing epigen-
etic data as the associations between methylation values and cog-
nitive function are expected to be complex and more importantly, 
this method does not rely on strict assumptions such as normality of 
phenotypes and linear correlation.

In this study, we aim at promoting the use of GCC as a comple-
mentary method along with traditional linear models. We here in-
vestigate the performances of popular conventional models and the 
GCC method in an epigenome-wide association study on cognitive 
function using DNA methylation data measured in blood samples of 
400 MZ twins as a discovery sample. Performing single CpG sites 
differentially methylated regions (DMRs) and pathway analyses. 
Also, top single CpG sites and candidate regions in nearby genes are 

replicated in cognitive function using an independent DNA methyl-
ation sample of 206 twins (192 MZ and 14 dizygotic (DZ) twins) and 
verified in a gene expression data, respectively.

2  |  RESULTS

The descriptive statistics of the study samples are shown in Table 
S1. DNA methylation data for the entire sample passed the quality 
control (QC) were explained in the method section. We observed 
significant associations of cognitive measurement scores with age 
and sex in the middle-aged Danish twin (MADT) sample (Pedersen 
et al., 2019). The cognitive score declines with age (p = 1.9e-05) and 
is higher in females in comparison to males (p = 0.003). Additionally, 
none of the cell counts were associated with cognitive score. This 
was done by the linear mixed-effect (LME) (Bates et al., 2014) model 
with cognitive function as outcome and age, sex, cell counts as fixed 
effects, and twin pairing as a random factor.

Before performing the statistical analyses, we first investigated 
the performance of three models, GCC (Murrell et al., 2016), LME, 
and kinship (Therneau, 2012) model by estimating their type I error 
rates using simulated random methylation data for one marker based 
on a standard normal distribution. Association of the simulated mo-
lecular data with cognitive function in the MADT cohort was as-
sessed (p < 0.05 as significant) with type I error rates estimated as 
0.052 for GCC, 0.054 for LME, and 0.055 for kinship model, upon 
10,000 replicates. The models are generally unbiased, although 
the two linear models gave a slightly high type I error rate due to 
non-optimal adjustment of twin correlation on cognition by the lin-
ear models.

2.1  |  Single CpG epigenome-wide 
association studies

We applied the three models to examine the correlation between 
DNA methylation and cognitive function with methylation data 
in MADT cohort collected using the Infinium Human Methylation 
450K BeadChip. After performing QC, 427,409 CpGs remained. 
The identified CpGs with p  < 1e-4 from GCC, Kinship, and LME 
were 42, 24, and 18. We chose Kinship results as a linear repre-
sentative model (because of high consistency with LME) and GCC 
as a nonlinear method and combined the results by taking the 
minimum p-values between them. After combining GCC results 

sites missed by traditional linear models. A combination of methylation markers from 
GCC and linear models enriched biological pathways sensible in neurological function 
that could implicate cognitive performance and cognitive aging.

K E Y W O R D S
Cognitive function, epigenetics, generalized correlation coefficient, linear regression, twins



    |  3 of 12MOHAMMADNEJAD et al.

TA
B

LE
 1
 
Su
m
m
ar
y 
st
at
is
tic
 o
f t
he
 to
p 
30
 C
pG
s 
fr
om
 E
W
A
S 
of
 c
og
ni
tiv
e 
fu
nc
tio
n 
in
 fi
na
l m
od
el
 fr
om
 b
ot
h 
G
CC
 m
et
ho
d 
an
d 
K
in
sh
ip
 m
od
el

Cp
G

A
sc

or
e

p-
va

lu
e 

G
CC

Co
ef

p-
va

lu
e 

K
in

sh
ip

G
en

e
BP

 (h
g1

9)
G

en
om

ic
 fe

at
ur

e
p-

va
lu

e
FD

R

cg
08

73
42

37
0.

16
16

8.
38
71
e-
07

−0
.0
05
0

.0
00

2
KL

H
D

C4
16

:8
77

44
94

8
Bo
dy
, S
_S
ho
re

8.
38
71
e-
07

0.
21

74

cg
17

91
64

73
0.

16
05

1.
01
73
e-
06

0.
00

17
.2

81
6

PA
PS

S2
10

:8
94

19
37

3
TS
S2
00
, I
sl
an
d

1.
01
73
e-
06

0.
21

74

cg
23

98
87

49
0

0.
28

32
0.

01
00

2.
59
99
e-
06

M
RP

S1
8B

6:
30

58
52

93
TS
S2
00
, I
sl
an
d

2.
59
99
e-
06

0.
27

16

cg
08

59
46

51
0.

15
42

2.
75
54
e-
06

−0
.0
04
1

.1
28

4
N
A

11
:4

74
15

39
7

N
A
, N
_S
ho
re

2.
75
54
e-
06

0.
27

16

cg
04

81
70

34
0.

15
19

3.
96
80
e-
06

0.
00

10
.3

50
2

U
SP

35
11

:7
79

20
57

7
Bo
dy
, N
_S
ho
re

3.
96
80
e-
06

0.
27

16

cg
16

66
24

51
0.

03
28

0.
12

38
−0
.0
07
0

5.
64
59
e-
06

FB
XW

10
17

:1
86

47
50

7
5'
U
TR
, N
A

5.
64
59
e-
06

0.
27

16

cg
15

32
22

07
0.

14
91

6.
09
41
e-
06

−0
.0
00
08

.9
22

1
N
A

1:
21

16
89

08
7

N
A
, I
sl
an
d

6.
09
41
e-
06

0.
27

16

cg
13

54
17

69
0.

14
84

6.
72
41
e-
06

−0
.0
03
8

.0
17

6
PR

D
M

15
21

:4
32

21
68

4
Bo
dy
, I
sl
an
d

6.
72
41
e-
06

0.
27

16

cg
23

73
10

89
0.

14
84

6.
76
82
e-
06

0.
00

40
.0

99
9

EI
F2

C2
8:

14
15

99
20

8
Bo
dy
, N
A

6.
76
82
e-
06

0.
27

16

cg
18

14
73

95
0.

14
82

6.
89
1e
-0
6

−0
.0
02
1

.2
67

5
N
A

13
:3

05
79

10
0

N
A
, N
A

6.
89
05
e-
06

0.
27

16

cg
11

46
52

26
0.

14
81

6.
98
91
e-
06

−0
.0
00
9

.2
58

2
PR

R7
5:

17
68

82
86

9
Bo
dy
, I
sl
an
d

6.
98
91
e-
06

0.
27

16

cg
26

96
33

67
0.

14
76

7.
62
79
e-
06

−0
.0
03
2

.1
99

4
N
A

15
:8

91
57

84
1

N
A
, N
A

7.
62
79
e-
06

0.
27

17

cg
04

46
52

01
0.

14
68

8.
50
29
e-
06

0.
00

35
.0

00
9

EI
F2

S2
20

:3
26

99
02

5
Bo
dy
, N
_S
ho
re

8.
50
29
e-
06

0.
27

59

cg
20

49
72

12
0.

14
64

9.
03
72
e-
06

0.
00

12
.3

10
5

AO
AH

7:
36

67
26

87
Bo
dy
, N
A

9.
03
72
e-
06

0.
27

59

cg
20

48
23

34
0.

01
27

0.
23

05
−0
.0
06
8

1.
32
45
e-
05

FA
SN

17
:8

00
48

53
1

Bo
dy
, N
_S
ho
re

1.
32
45
e-
05

0.
28

32

cg
00

74
46

56
0.

14
38

1.
33
10
e-
05

−0
.0
00
2

.8
89

9
FO

XA
1

14
:3

80
63

56
4

Bo
dy
, N
_S
ho
re

1.
33
10
e-
05

0.
28

32

cg
01

27
31

25
0.

14
11

1.
94
38
e-
05

−0
.0
02
1

.3
76

7
CO

BR
A1

9:
14

01
49

67
5

TS
S2
0,
 Is
la
nd

1.
94
38
e-
05

0.
28

32

cg
20

64
42

53
0.

07
36

0.
01

62
0.

00
82

2.
15
48
e-
05

KI
A

A0
89

2
19

:1
94

31
40

7
TS
S1
5,
 Is
la
nd

2.
15
48
e-
05

0.
28

32

cg
18

19
14

18
0.

14
02

2.
20
55
e-
05

0.
00

43
.0

34
8

N
A

3:
12

83
36

57
9

N
A
, I
sl
an
d

2.
20
55
e-
05

0.
28

32

cg
01

18
20

76
0.

03
45

0.
28

32
−0
.0
08
9

2.
29
68
e-
05

O
D

Z3
4:

18
36

01
69

7
Bo
dy
, N
A

2.
29
68
e-
05

0.
28

32

cg
16

12
60

79
0.

13
90

2.
62
57
e-
05

−0
.0
00
7

.5
57

4
D

N
H

D
1

11
:6

51
83

22
TS
S1
50
0,
 N
A

2.
62
57
e-
05

0.
28

32

cg
14

10
01

84
0.

04
33

0.
08

03
0.

00
95

2.
63
25
e-
05

G
N

G1
3

16
:8

51
29

8
TS
S1
50
0,
 S
_S
ho
re

2.
63
25
e-
05

0.
28

32

cg
10

23
81

45
0.

13
87

2.
74
06
e-
05

−0
.0
00
4

.8
04

0
N
A

2:
11

46
44

20
7

N
A
, N
_S
he
lf

2.
74
06
e-
05

0.
28

32

cg
07

68
36

36
0.

13
83

2.
87
00
e-
05

−0
.0
01
8

.1
31

7
N

H
EJ

1
2:

21
99

40
97

7
3'
U
TR
, N
A

2.
87
00
e-
05

0.
28

32

cg
00

84
83

94
0.

04
07

0.
08

98
0.

00
47

3.
06
61
e-
05

W
D

R5
1A

3:
52

18
87

68
TS
S2
00
, I
sl
an
d

3.
06
61
e-
05

0.
28

32

cg
07

53
70

95
0.

13
77

3.
15
49
e-
05

0.
00

06
.7

69
4

N
A

11
:1

16
22

89
57

N
A
, N
A

3.
15
49
e-
05

0.
28

32

cg
14

99
40

60
0.

00
64

0.
26

27
−0
.0
04
5

3.
19
38
e-
05

N
A

5:
13

43
76

48
9

N
A
, I
sl
an
d

3.
19
38
e-
05

0.
28

32

cg
04

94
12

78
0.

00
85

0.
25

23
−0
.0
08
5

3.
22
85
e-
05

N
A

12
:3

56
60

96
N
A
,N
A

3.
22
85
e-
05

0.
28

32

cg
09

19
04

08
0.

13
72

3.
36
43
e-
05

−0
.0
03
1

.0
31

6
PP

P1
CA

11
:6

71
70

61
0

TS
S1
50
0,
S_
Sh
or
e

3.
36
43
e-
05

0.
28

32

cg
21

11
24

85
0.

10
79

0.
00

11
−0
.0
07
2

3.
52
09
e-
05

AG
TR

AP
1:

11
80

84
13

Bo
dy
, N
A

3.
52
09
e-
05

0.
28

32

A
bb
re
vi
at
io
ns
: A
sc
or
e,
 a
ss
oc
ia
tio
n 
sc
or
e;
 F
D
R,
 fa
ls
e 
di
sc
ov
er
y 
ra
te
.



4 of 12  |     MOHAMMADNEJAD et al.

with linear model by taking the minimum p-value between GCC 
and Kinship results, 65 CpGs were identified with p  <  1e-04, 
among them 14 CpGs with p < 1e-05, 1 CpG with p < 1e-06. No 
site reached genome-wide significance defined as false discovery 
rate (FDR) < 0.05. Table 1 shows the top 30 CpGs captured by GCC 
(20 CpGs) and kinship model (10 CpGs). The top three CpGs are 
cg08734237 mapped to KLHDC4 (p  =  8.3871e-07), cg17916473 
mapped to PAPSS2 (p = 1.0173e-06), and cg23988749 mapped to 
MRPS18B (p = 2.5999e-06). Table S2 shows the summary statis-
tics results for the CpGs p < 0.05 from EWAS analysis. Figure 1 
shows density plots between DNA methylation M-value and cog-
nitive function for the top 12 significant CpGs. Only two CpGs, 
cg23988749 and cg16662451, are captured by the linear model, 
while other 10 CpGs are significant for their nonlinear correlation 
with cognition. The QQ plot comparing the three models is illus-
trated in Figure 2a. We see that the upper tail CpGs from GCC 
deviate clearly from the diagonal line while many of those from 

the linear models were underestimated for their significance, re-
flecting poor model performances. The genomic inflation factors 
for GCC, Kinship, and LME were 0.99, 0.95, and 0.94, respectively. 
The circular Manhattan plot for the three models is displayed in 
Figure 2b. The top 30 CpGs captured by each of the models sepa-
rately are shown in Tables S3–S5. GCC found more CpGs with low 
p-value than the two linear models. Most of the CpGs in kinship 
and LME had the same order in the top list, but the kinship model 
reported lower p-values. Figure 3 compares CpGs p-values from 
the GCC EWAS with CpGs p-values from the kinship model EWAS, 
with CpGs (p < 1e-04) colored red if identified by GCC and green if 
identified by the kinship (linear) model. Similar comparisons of the 
GCC EWAS results with those of the LME model EWAS are shown 
in Figure S2. As the top CpGs from the linear models and GCC do 
not overlap, we ranked the CpGs by their lowest p-values from 
either kinship or GCC to allow diverse patterns of correlation with 
cognitive function among top rank CpGs.

F I G U R E  1 Density plot showing the relationship between DNA methylation M-value and cognitive function for the top 12 significant 
CpGs in the final model
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F I G U R E  2 QQ plot and Manhattan plot of EWAS on cognitive function. (a) QQ plot comparing the performance of GCC, kinship, and LME 
models in EWAS data. (b) Circular Manhattan plot of GCC, Kinship, and LME based. The circular Manhattan plots from inner to outer are 
LME, Kinship, and GCC, respectively

F I G U R E  3 Scatter plot comparing the performance of CpGs in linear model to the GCC model. The x-axis and y-axis show −log10 (p-
value) from Kinship and GCC models, respectively
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To observe any difference in the genomic location of the CpGs 
with p < 0.05 with both positive (methylated) or negative (demethyl-
ated) correlation with cognitive function (as determined by the linear 
model estimates), we made a star plot in Figure S3a to show the dis-
tribution of methylated (green) and demethylated (blue) CpGs with 
cognitive function. Compared with the distribution of all CpGs in the 
450k array (black), the demethylated CpGs are less distributed to the 
promoters. Figure S3b shows the frequency of CpGs with positive or 
negative correlations with cognition at each gene region. High pro-
portions of demethylated CpGs are observed at gene body, 3′ UTR, 
and intergenic regions.

2.2  |  Biological pathway analysis

The total number of mapped genes (p < 0.05) was 27,413. These 
genes were used as input for over-representation analysis of 
KEGG and REACTOME pathways as well as DisGeNET (human 
disease) implemented in WebGestalt (Liao et al., 2019). Table 2 
shows the top 30 KEGG, REACTOME, and DisGeNET pathways 
with statistical significance (FDR < 5.88e-04). Among them, there 

are cAMP, MAPK, Neurotrophin signaling pathways, Focal adhe-
sion, Axon guidance, Ion homeostasis, Membrane Trafficking, 
and signal transduction from KEGG and REACTOME. Moreover, 
from DisGeNET diseases and phenotypes like Schizophrenia, 
Intellectual Disability, Mental Retardation, Low intelligence, 
Mental deficiency, Poor school performance, Dull intelligence, 
and Cognitive delay were overrepresented.

2.3  |  Analysis of differentially methylated regions

The EWAS final results from the combined CpGs of GCC and 
linear model were used for identification of DMRs, using comb-
p algorithm (Pedersen et al., 2012). In total, 15 DMRs with 
FDR < 0.05 were identified, which is shown in Table S6. The DMRs 
pattern has been depicted in Figure S4, which among them DMRs 
in Figure S4A–G, J are hyper-methylated and DMRs in Figure 
S4H,O,I,K,L,N, M are hypo-methylated with increasing cognitive 
function.

We used the 30 DMRs with p < 0.05 from comb-p analysis as 
input in GREAT software (McLean et al., 2010) to identify their 

TA B L E  2 The top 30 significant functional KEGG, REACTOME and DisGeNET pathways in WebGestalt

Gene set Description Size Expect Ratio p-value FDR

R-HSA-5663202 Diseases of signal transduction 359 234.78 1.2267 2.5600e-10 2.2946e-7

R-HSA-5683057 MAPK family signaling cascades 275 179.85 1.2566 3.3039e-10 2.2946e-7

R-HSA-597592 Post-translational protein modification 1268 829.26 1.1167 3.4078e-10 2.2946e-7

R-HSA-422475 Axon guidance 511 334.19 1.1850 7.6401e-10 3.8583e-7

hsa04024 cAMP signaling pathway 189 123.60 1.2945 1.8312e-9 7.3981e-7

R-HSA-5673001 RAF/MAP kinase cascade 235 153.69 1.2558 7.3300e-9 2.4678e-6

C0036341 Schizophrenia 944 623.27 1.1295 7.3798e-10 2.5283e-6

hsa04510 Focal adhesion 188 122.95 1.2769 1.9426e-8 4.9050e-6

hsa01521 EGFR tyrosine kinase inhibitor resistance 77 50.357 1.4099 3.5265e-8 7.9150e-6

R-HSA-9006934 Signaling by receptor tyrosine kinases 436 285.14 1.1714 1.5029e-7 3.0358e-5

C3714756 Intellectual disability 629 415.29 1.1390 1.2056e-7 8.9901e-5

C0025362 Mental retardation 545 359.83 1.1478 1.8369e-7 8.9901e-5

C0423903 Low intelligence 545 359.83 1.1478 1.8369e-7 8.9901e-5

C0917816 Mental deficiency 545 359.83 1.1478 1.8369e-7 8.9901e-5

C1843367 Poor school performance 545 359.83 1.1478 1.8369e-7 8.9901e-5

C4020876 Dull intelligence 545 359.83 1.1478 1.8369e-7 8.9901e-5

C0376634 Craniofacial abnormalities 136 89.793 1.2919 2.6809e-7 9.5731e-5

C0020534 Orbital separation excessive 219 144.59 1.2310 2.9492e-7 9.5731e-5

C1864897 Cognitive delay 541 357.19 1.1450 3.3871e-7 9.5731e-5

hsa01522 Endocrine resistance 93 60.821 1.3318 1.7661e-6 2.4775e-4

hsa04722 Neurotrophin signaling pathway 114 74.555 1.3011 1.8397e-6 2.4775e-4

hsa04015 Rap1 signaling pathway 201 131.45 1.2248 2.8739e-6 3.6014e-4

R-HSA-5578775 Ion homeostasis 54 35.315 1.4158 3.0309e-6 3.6014e-4

hsa05205 Proteoglycans in cancer 193 126.22 1.2280 3.2738e-6 3.6613e-4

R-HSA-2219528 PI3K/AKT signaling in cancer 95 62.129 1.3198 3.4438e-6 3.6613e-4

hsa05211 Renal cell carcinoma 62 40.547 1.3811 5.8214e-6 5.8796e-4
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regulatory domain of the human genome (UCSC hg19). The Top 
functional clusters of biological process and molecular functions 
with (binomial p  <  1e-3) are shown in Table S7 and for a better 
visualization the directed acyclic graphs are shown in Figures 
S5 and S6. These biological processes include aggressive behav-
ior, mating, female mating behavior, female receptivity, muscle 
contraction of the hindgut, hypermethylation of CpG island, as 
well as some metabolic processes such as alkene and ethylene. 
Additionally, top two identified molecular functions were neuro-
hypophyseal hormone activity and oxytocin receptor binding.

2.4  |  Replication using Longitudinal Study of Aging 
Danish Twins data

As an effort for replication, we used the Longitudinal Study of Aging 
Danish Twins (LSADT) data to replicate the top 65 identified CpGs 
with p  <  1e-04 (Table S2). From LSADT, 9 CpGs were replicated 
which are shown in Table S8. Assuming the 65 discovered CpGs are 
random and type 1 error rate of 0.05, based on the binomial test 
the probability of having ≥9 replicates out of 65 is p = 0.00281. The 
replication result suggests that the identified 65 CpGs are extremely 
unlikely chance findings.

2.5  |  Further verification using gene 
expression data

Using gene expression data on the same MADT samples, we found 
11 genes annotated to the 15 DMRs in Table S6 and investigated 
association of their expression levels with cognitive function using 
the combined GCC method and Kinship model. Among the 11 genes, 
3 genes, SMC1B, GABBR1, and HCG16 were confirmed associated 
with cognitive function with p < 0.05. In the gene expression data, 
two probes (p = 0.02, p = 0.27) were mapped to GABBR1, one probe 
(p = 0.02) to SMC1B and one probe (p = 0.04) to HCG16.

3  |  DISCUSSION

This study of DNA methylation data in twin samples indicates the 
strength of GCC in comparison with the traditional methods charac-
terized by (1) ability to capture nonlinear correlation patterns missed 
by the linear models, (2) robustness in handling EWAS data on re-
lated samples such as twins, and (3) biologically meaningful annota-
tions of identified markers.

Conventionally, linear relationship has been assumed in de-
scribing the association between a molecular marker and a 
phenotype of interest for simplicity in statistical modeling. In a 
genome-wide association study (GWAS), this assumption trans-
lates to the additive genetic effects. The linear assumption suf-
fers intrinsically from low efficiency in handling the biological 
complexity in the molecular regulation on phenotype expression, 

which cannot be simplified by just a linear model. This phenome-
non has been clearly exemplified in a published microarray time 
course experiment analyzed using sophisticated parametric mod-
eling (Murrell et al., 2016; Reshef et al., 2011). Instead of complex 
modeling, GCC provides an alternative assumption-free approach 
inherently capable of capturing patterns of any non-random re-
lationship. Based on our findings, there were no top CpGs over-
lapping between GCC and linear models (Figure 3). In fact, linear 
models are defined and coded for linear relationships and GCC 
has to sacrifice power for some kinds of relationships to see other 
kinds. With this consideration, we suggest that GCC could with 
advantage be applied as a complement to the linear methods to 
ensure different patterns of correlation be captured with high effi-
ciency. As shown in Table 1, the majority of the CpGs are detected 
by GCC presumably, because GCC is not limited to any predefined 
correlation pattern.

Although the single CpG EWAS did not find genome-wide sig-
nificant sites after correcting for multiple testing, the top rank CpGs 
were annotated to biologically meaningful genes and pathways.

In Table 1, KLHDC4 mapped to the top significant CpG has been 
reported to be associated with Huntington Disease-Like 2 (https://
www.genec​ards.org/cgi-bin/cardd​isp.pl?gene=KLHDC4), a disor-
der characterized partially by cognitive abnormalities. The second 
top significant PAPSS2 gene is shown to be a novel longevity gene 
by expression profiling of genes within regions identified by a me-
ta-analysis GWAS of survival to age 90 (Yerges-Armstrong et al., 
2016). The third top significant MRPS18B gene is a mitochondrial 
gene. Mitochondrial are vital in providing energy for cells in the form 
of adenosine triphosphate (ATP) through oxidative phosphorylation 
(OXPHOS) (Lunnon et al., 2017). OXPHOS dysfunction can produce 
reactive oxygen species and oxidative stress leading to neuronal 
cell death in aging and in Alzheimer's disease (AD) brain (Devi et al., 
2006).

Among the significant pathways in Table 2, it has been reported 
that the disturbance in signal transduction in brain cells causes the 
cognitive decline (Lo Vasco, 2018). Focal adhesion is involved in inte-
grin adhesion, communication between the extracellular matrix and 
the actin cytoskeleton, and the regulation of many cell types. Loss 
of cell adhesion can lead to cell death and altered focal signaling has 
been linked to synaptic loss, which may cause AD (Caltagarone et al., 
2007). There is evidence that axon guidance might play a role in some 
brain disorders such as Parkinson's and AD (Lesnick et al., 2007). 
MAPK signaling pathway regulates neuronal apoptosis, β- and γ-secre-
tase activity, and phosphorylation of APP and tau which has a role in 
the pathogenesis of AD (Kim & Choi, 2010). Neurotrophins, such as 
brain-derived neurotrophic factor (BDNF), are essential regulators of 
neuronal survival and lower level of them are related to etiology of 
Alzheimer's and Huntington's diseases (Mitre et al., 2017). In the liter-
ature, there is also evidence of a direct or indirect link of Membrane 
trafficking, Ion homeostasis to cognitive function or other neurological 
disorders (Cuomo et al., 2015; Wang et al., 2013).

Analysis of DMRs based on the joint results of GCC and linear 
models had the power to detect 13 DMRs with FDR < 0.05 and two 

https://www.genecards.org/cgi-bin/carddisp.pl?gene=KLHDC4
https://www.genecards.org/cgi-bin/carddisp.pl?gene=KLHDC4
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with 0.05 < FDR < 0.1. Among the genes harbored by these DMRs, 
three genes SMC1B, GABBR1, and HCG16 were verified using gene 
expression analysis. The GABBR1 gene is highly expressed in brain, 
and it is a main inhibitory in the central nervous. Dysfunctional GABA 
interneuron could represent a core pathophysiological mechanism 
underlying cognitive dysfunction in schizophrenia (Li et al., 2016; Xu 
& Wong, 2018). In the processes of learning and memory, changes in 
GABAergic function could be an important factor in both early and 
later stages of AD pathogenesis (Govindpani et al., 2017). The two 
other genes SMC1B and HCG16 have not been reported yet to have 
a direct link to cognitive function. Most interestingly, functional an-
notation of the DMRs by GREAT reported highly relevant GO terms 
as shown in Table S7. Moreover, functional gene annotation analysis 
using GREAT from top identified DMRs revealed important biological 
and molecular functional clusters implicated in cognitive function. The 
link of neurohypophyseal hormone and oxytocin receptor binding with 
memory process and cognitive function has been already discussed 
(Fehm-Wolfsdorf et al., 1984; Iovino et al., 2018; Strupp et al., 1983).

Oxytocin is produced in the hypothalamus and released into the 
circulation through the neurohypophyseal system (Ross & Young, 
2009). It is shown that there is an impairing influence of memory 
by oxytocin (Fehm-Wolfsdorf et al., 1984) and also it modulates so-
cial cognition and affiliative behavior in both sexes (Ross & Young, 
2009). Oxytocin in brain also regulates anxiety-behaviors, which has 
been shown to correlate the maternal aggressive behavior (Bosch 
et al., 2005).

In women, the rate of muscle contraction, especially the rate of 
velocity development (RVD), is predominantly associated with cog-
nition, particularly in women with low muscle strength (Tian et al., 
2019).

There is also evidence of the role of mating, female receptivity, 
hypermethylation of CpG island, and metabolic process in cognitive 
function (Haberman et al., 2012; Sharp et al., 2010; Smith et al., 
2015).

In Table S8, the 9 replicated CpGs were annotated to genes includ-
ing EPHA8, PRDM15, PRR25, GPLD1, SLC1A3, DPYSL2, and NHEJ1. Gu 
et al., (2005) reported that the EphA8 receptor is capable of inducing 
a sustained increase in MAPK activity, thereby promoting neurite 
outgrowth in neuronal cells. PRR25 is among the 171 age-related dif-
ferential expression genes (Lee & Lee, 2017). GPLD1 gene has been 
reported to interact with Apolipoprotein A1 and APOA4 (Deeg et al., 
2001) and Lin et al., 2015 have shown that the low levels of APOA1, 
APOC3, and APOA4 are associated with risk of AD. Importantly, the 
GPLD1 is a candidate gene that modulates Aβ production (Seki et al., 
2020). Wilmsdorff et al., (2013) reported that the increased SLC1A3 ex-
pression indicates facilitated transport and may result in reduced gluta-
mate neurotransmission. The gene DPYSL2 is highly expressed in brain 
and associated with AD (https://www.genec​ards.org/cgi-bin/cardd​isp.
pl?gene=DPYSL2).

As an extra effort to characterize our identified CpGs, we tested 
the proportion of CpG-SNPs in the top CpGs with p < 1e-4 and com-
pare it with the proportion of CpG-SNPs from the whole 450k array 
using hypergeometric test. The proportion of CpG-SNPs in our study 

is higher than the proportion of CpG-SNPs in the 450k array with 
borderline significance (p  =  0.05). This indicates that DNA meth-
ylation could be one of the ways that genetic variations influence 
cognitive aging as it is discussed in a literature (Shoemaker et al., 
2010). Additionally, we found a significant overlap (p  =  3.04e-16) 
of top genes in our study with age-related genes including PAPSS2, 
MRPS18B, USP35, PRDM15, ODZ3, DNHD1, WDR51A, AGTRAP, 
OPCML, FLJ3281, CCDC102B, PRR16, and FGF12 in the Lothian Birth 
Cohorts (LBC) reported by Li et al., (2017). Also, a significant overlap 
(p = 4.54e-12) of genes KLHDC4, MRPS18B, USP35, EIF2C2, AOAH, 
COBRA1, OPCML, and SLC1A3 with age-related genes in LSADT re-
ported by Tan et al., (2016). The two genes PRDM15 and SLC1A3 are 
also among the list of genes in the replication analysis.

A limitation for the GCC method is that its association parameter 
has no direction compare to the linear regression models that report 
the coefficient regression with a direction of effect (+ or −). This is 
because the direction of effect cannot be determined in the case 
of nonlinear relationship. We propose that, for any significant CpG 
marker, its direction of effect be roughly determined by the sign of 
its coefficient from the linear model. This same idea has been imple-
mented in R Bioconductor package RTN (https://www.bioconductor.
org/packages/release/bioc/html/RTN.html) which uses a general-
ized correlation coefficient to estimate correlation between expres-
sion of a transcription factor gene and expression of a target gene, 
but uses the sign of Pearson's correlation (negative or positive) to 
determine the direction of correlation. Another possible limitation of 
this study is the use of DNA methylation for the whole blood rather 
than a brain tissue. However, studies have shown whether blood can 
be used as a proxy in methylation studies as the brain tissue is usu-
ally unavailable. They concluded that the methylation status of many 
CpGs in the blood mirror those in the brain (Aberg et al., 2013).

Dependent samples can lead to biased statistical assessment if 
not adjusted properly in association studies. In genome-wide asso-
ciation analysis, the sub-grouping of samples is responsible for in-
flated statistical significance which can be revealed by QQ plots. In 
this study, LME and kinship models were applied to account for the 
correlated structure in our twin pairs. As shown by the QQ plots 
in Figure 2a, the significance estimates by linear models were not 
inflated, suggesting that the random effects estimated in the linear 
models well captured the twin correlation. In practice, however, in-
flated significances are frequently observed due to model misspeci-
fication in parametric modeling. It is encouraging that the GCC as an 
assumption-free method does not require any specific handling of 
the correlated twin samples in achieving unbiased assessments. This 
feature is especially valuable in association analysis of omics data for 
dealing with sample sub-grouping due to population stratification or 
batch effect from non-biological experimental variations.

4  |  CONCLUSION

Through applying both GCC and linear models to EWAS on cognitive 
function, we identified more and meaningful genes and pathways as 

https://www.genecards.org/cgi-bin/carddisp.pl?gene=DPYSL2
https://www.genecards.org/cgi-bin/carddisp.pl?gene=DPYSL2
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well as DMRs that could implicate the cognitive performance and 
cognitive aging compared with restricting to the popular linear mod-
els. The assumption-free GCC is also robust in dealing with corre-
lated samples as in our twins. The intrinsic features of GCC enabled 
the identification of DNA methylation markers displaying diverse 
correlation patterns with cognitive function. Our results promote 
the use of GCC to complement the traditional linear models in EWAS 
studies for marker discovery and for biological interpretation.

5  |  MATERIAL S AND METHODS

5.1  |  Population study

The study sample comprises 400 monozygotic (MZ) twins aged 56–
80, including 220 male and 180 female pairs (Table S1) recruited by 
the Danish Twin Registry as a part of the middle-aged Danish twin 
(MADT) study (https://pubmed.ncbi.nlm.nih.gov/31544​734/). The 
whole blood samples were collected during 2008–11 in a follow-up 
assessment. The mean and standard deviation of blood sampling age 
of individuals were 66.55 and 5.96, respectively. The general cogni-
tive composite score comprised five cognitive tests, which included 
verbal fluency, attention, and working memory (digits forward and 
digits backward) and memory (immediate and delayed word recall). 
The cognitive test scores were standardized to mean 0 and stand-
ard deviation 1 and were summed to calculate the general cognitive 
composite scores. The cognitive function for each twin pair through 
plotting cognitive scores for twin 1 versus twin 2 is depicted in 
Figure S1. The details about sample collection have been described 
in detail elsewhere (McGue & Christensen, 2001).

Blood cell counts from blood leukocyte subtypes (monocytes, 
lymphocytes, basophils, neutrophils, eosinophils) were counted 
using a Coulter LH 750 Hematology Analyzer (Beckman Coulter).

The replication sample includes 206 twins comprised of 192 MZ 
twins and 14 dizygotic (DZ) twins (64 male and 142 female twins) 
(Table S1) recruited by the Danish Twin Registry as a part of the 
Longitudinal Study of Aging Danish Twins (LSADT) project. The 
mean and standard deviation of age at blood sampling were 79.30 
and 4.01, respectively.

5.2  |  DNA methylation profiling

DNA methylation profiles in whole blood samples were analyzed 
using the Infinium HumanMethylation450 BeadChips (Illumina) con-
taining 485,512 CpG sites across the human genome. The QC of the 
DNA methylation data was done based on two R packages: MethylAid 
(Van Iterson et al., 2014) and minfi (Aryee et al., 2014). Probes were 
removed from the analysis based on the following thresholds: zero 
signals, low bead count < 3 beads, p-value detection > 0.01, cross-
reactive probes defined by Chen et al., 2013 and probes missing in 
> 5% samples, and sex-chromosome and SNP probes were removed 
and the rest were imputed based on their median. This resulted in 

427,409 CpGs left for analysis. Data normalization was done by func-
tional normalization (Fortin et al., 2014). Before the statistical analy-
sis, the methylation beta values were logit transformed to M values 
(log2 (β/(1−β)).

5.3  |  Statistical analysis

5.3.1  |  Generalized correlation coefficient and linear 
regression models

We tested by fitting two linear regression models and GCC whether 
DNA methylation in whole blood is associated with cognitive func-
tion. In the linear models, both kinship model from kinship2 R package 
(Therneau, 2012) and LME from lme4 R package (Bates et al., 2014) 
were applied to find the association of DNA methylation levels with 
cognitive function. Before applying association testing, we adjusted 
for age, gender, and blood cell compositions. The kinship module cal-
culates a kinship matrix and integrates it in the covariance matrix of 
the methylation data. The LME model corrects for correlation between 
twins in a pair by including twin pairing as a random effect in the model.

For GCC analysis, Matie R package was used (Murrell et al., 2016), 
which GCC was computed based on a ratio of maximum likelihoods 
for the marginal distribution and maximum weighted likelihoods for 
the joint distribution.

5.3.2  |  Gene-set enrichment analysis

The identified CpGs with p  <  0.05 were annotated to genes and 
used as input for overrepresentation enrichment analysis (ORA) 
against the genes on the 450K array using the WEB-based GEne SeT 
AnaLysis Toolkit (WebGestalt). Gene sets with FDR q-value < 0.05 
were reported as significant.

5.3.3  |  Differentially methylated regions

In addition to single CpG based analysis, we also performed test-
ing on multiple CpGs by extending our analysis to DMRs based on 
the results of single site testing. DMRs were detected using comb-
p tool developed by Pedersen et al. (2012). This method applies 
the Stouffer–Liptak approach to combine p-values of the adjacent 
CpGs and reports significant regions after FDR adjustment. Comb-p 
is a python library package (https://github.com/brent​p/combi​
ned-pvalues).

5.3.4  |  Genomic regions enrichment analysis 
in GREAT

To analyze the functional significance of cis-regulatory regions, we 
examined the regulatory domain of functional pathways from 30 

https://pubmed.ncbi.nlm.nih.gov/31544734/
https://github.com/brentp/combined-pvalues
https://github.com/brentp/combined-pvalues
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DMRs p < 0.05 in the Genomic Regions Enrichment of Annotations 
Tool (GREAT).

5.3.5  |  Replication analysis using LSADT data

For the detected top 65 significant methylation sites with p < 1e-04, 
we performed a replication analysis using 450K DNA methylation 
data on an independent Danish twin cohort, the LSADT data. The 
association of DNA methylation with cognitive function was done 
on the GCC, Kinship, and LME models. And, the results from GCC 
and linear model were combined. Then, we used the binomial distri-
bution to estimate the probability of having ≥n replicated CpGs out 
of 65 CpGs given the type one error rate of 0.05 and assuming the 
identified CpGs are by chance.

5.3.6  |  Further verification by using gene 
expression data from MADT

Whole blood samples in gene expression data from MADT were col-
lected, stabilized, and transported in PAXgene Blood RNA Tubes. 
Total RNA was extracted using the PAXgene Blood miRNA kit 
(Qiagen). The integrity and concentration of the isolated RNA were 
determined by the RNA 6000 Nano kit and a Bioanalyzer 2100 
(Agilent Technologies). The raw intensity values were extracted from 
the scanned image files using Agilent Feature Extraction Software v. 
10.7.3.1 (Agilent technologies).

Gene expression profiling was performed using the Agilent 
SurePrint G3 Human GE v2 8 × 60K Microarray. Sample labeling 
and array hybridization were carried out according to the “Two-
Color Microarray-Based Gene Expression Analysis–Low Input 
Quick Amp Labeling” protocol (Agilent Technologies). Samples 
were labeled with Cy5, and the reference consisting of a pool of 
16 samples was labeled with Cy3. Hybridization, washing, scan-
ning, and quantification were performed according to the array 
manufacturer's recommendations.

The significant DMRs identified in comb-p were mapped to 
genes, and these genes were verified in the aforementioned gene 
expression data from the same MADT cohort. The analysis was 
done by GCC, Kinship, and LME with adjustments on age, sex, 
and cell counts information similar to the methylation data. Then, 
the final assessment was done based on both GCC and Kinship 
models.
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