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Diabetes mellitus is estimated to affect up to 700 million people by the year 2045,
contributing to an immense health and economic burden. People living with diabetes
have a higher risk of developing numerous debilitating vascular complications, leading to
an increased need for medical care, a reduced quality of life and increased risk of early
death. Current treatments are not satisfactory for many patients who suffer from impaired
angiogenesis in response to ischaemia, increasing their risk of ischaemic cardiovascular
conditions. These vascular pathologies are characterised by endothelial dysfunction and
abnormal angiogenesis, amongst a host of impaired signaling pathways. Therapeutic
stimulation of angiogenesis holds promise for the treatment of diabetic vascular
complications that stem from impaired ischaemic responses. However, despite
significant effort and research, there are no established therapies that directly stimulate
angiogenesis to improve ischaemic complications such as ischaemic heart disease and
peripheral artery disease, highlighting the immense unmet need. However, despite
significant effort and research, there are no established therapies that directly stimulate
angiogenesis in a clinical setting, highlighting the immense unmet need. MicroRNAs
(miRNAs) are emerging as powerful targets for multifaceted diseases including
diabetes and cardiovascular disease. This review highlights the potential role of
microRNAs as therapeutic targets for rescuing diabetes-impaired angiogenesis, with a
specific focus on miR-181c, which we have previously identified as an important
angiogenic regulator. Here we summarise the pathways currently known to be
regulated by miR-181c, which include the classical angiogenesis pathways that are
dysregulated in diabetes, mitochondrial function and axonal guidance, and describe
how these relate both directly and indirectly to angiogenesis. The pleiotropic actions of
miR-181c across multiple key angiogenic signaling pathways and critical cellular
processes highlight its therapeutic potential as a novel target for treating diabetic
vascular complications.
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INTRODUCTION

Diabetes mellitus (DM) currently affects up to 463 million people
worldwide, imposing significant health and economic (USD 760
billion p.a., 12% of global health expenditure) burden
(International Diabetes Federation, 2019). These numbers will
continue to rise and are expected to reach 700 million people by
the year 2045, making it the fastest growing global health
epidemic (Taylor et al., 2013). The leading cause of morbidity
and mortality in people with diabetes is attributable to its vascular
complications (Abaci et al., 1999). These stem from impaired
vascular function caused by chronic hyperglycaemia. This leads
to higher instances of macrovascular diseases such as
atherosclerosis, which includes coronary artery disease (CAD),
peripheral artery disease (PAD) and cerebrovascular disease.
Microvascular pathologies, including retinopathy, nephropathy,
and neuropathy are also elevated. Patients with atherosclerotic
occlusions also experience poor neovascularisation responses,
which leads to worse clinical outcomes. Cutaneous wound
healing is also impaired (Abaci et al., 1999). Individuals with
type 2 diabetes mellitus (T2DM) have a 2-fold increase in all-
cause mortality and a 3-fold increase in the risk of myocardial
infarction (MI) (Willyard, 2012). Furthermore, when diagnosed
with PAD associated with critical limb ischaemia (CLI),
individuals with T2DM have an 8-fold higher amputation rate
which contributes significantly to patient morbidity (Ware and
Simons, 1997). This leads to an increased burden onmedical care,
reduced quality of life and increased risk of early death. While
therapies that target hyperglycaemia have improved management
of the disease, patients with good glycaemic control still
experience devastating vascular complications. This highlights
the unmet clinical need for the discovery of new targets that
effectively prevent the vascular complications of diabetes.

The micro- or macro-vascular complications of diabetes, while
diverse, are often partly driven by endothelial cell dysfunction
that leads to impaired angiogenic responses. Angiogenesis refers
to the formation of new blood vessels from pre-existing ones. In
different disease states, this process can be dysregulated leading to
increased pathological inflammatory-mediated angiogenesis
(Rezzola et al., 2020) and impaired physiological ischaemia-
driven angiogenesis (Hazarika et al., 2007). Macrovascular
complications are often mediated by a combination of both.
For example, in established atherosclerotic plaques,
inflammatory-driven plaque neovascularisation rapidly
expands plaque size by acting as a conduit for inflammatory
cells, growth factors and cytokines/chemokines. The expanding
lesion restricts blood flow, creating ischaemia in the surrounding
tissues. The neovascularisation response to tissue ischaemia is
then impaired in diabetes. This regenerative ischaemia-driven
angiogenesis response is critical for determining the long-term
prognosis of a patient and will therefore form the focus of this
review. Therapies that augment vessel growth have the potential
to improve tissue perfusion and facilitate tissue repair and
recovery, holding significant promise for the treatment of
diabetic macrovascular complications. Despite showing
positive pre-clinical outcomes, current strategies, which are
often directed towards single gene targets, remain largely

ineffective and have not achieved positive outcomes in a
clinical setting (Ylä-Herttuala et al., 2017; Liew et al., 2020).
This is likely owing to the complexities involved in these
pathologies and because targeted regulation of a single
pathway may be insufficient to overcome the pleiotropic
effects of a diabetic milieu.

MicroRNAs (miRNAs) are small non-coding RNAs. They are
implicated in almost all body systems and regulate the expression
of multiple genes simultaneously through targeted inhibition of
protein translation (O’Brien et al., 2018). miRNAs are emerging
as powerful tools to treat complex diseases as they can target
multiple genes, and regulate the expression of multiple proteins,
therefore orchestrating control over diverse pathways at a
functional level. Targeted regulation of miRNAs therefore
presents as a promising therapeutic approach for diabetic
vascular complications.

This review highlights the potential of microRNAs to be
therapeutic targets that prevent diabetes-impaired ischaemia-
driven angiogenesis. We have a specific focus on miR-181c,
which we first identified as an important angiogenic regulator
(Hourigan et al., 2018). Here we summarise the pathways
currently known to be regulated by miR-181c which include
the classical angiogenesis pathways that are dysregulated in
diabetes, as well as cellular processes, such as axonal guidance
and mitochondrial function. We describe how these relate both
directly and indirectly to angiogenesis, providing the rationale for
its therapeutic potential as a novel target for the rescue of
diabetes-impaired angiogenesis.

ANGIOGENESIS AND ITS IMPAIRMENT IN
DIABETES
Mechanisms of Ischaemia-Driven
Angiogenesis
Angiogenesis is an important process for normal growth and
development during embryogenesis. It is also important for many
physiological processes such as wound healing and for collateral
vessel formation in response to vessel occlusion to help facilitate
adaptive responses to low oxygen supply and injury. Angiogenesis
can occur via twomainmechanisms: sprouting and elongation, or
intussusception. Intussusception is where vessel remodeling
results in the splitting of the existing vessel. Both angiogenic
mechanisms occur concurrently and are critical for tissue
neovascularisation in response to ischaemia (Ware and
Simons, 1997) and wound healing (Tonnesen et al., 2000).
Angiogenesis requires several processes that work in a
transient and overlapping fashion to allow new blood vessel
formation and involves: basement membrane degradation,
followed by endothelial cell (EC) proliferation, invasion and
migration, tip and stalk cell specification, sprouting, elongation
and anastomosis. The final stages involve other cell types such as
smooth muscle cells and pericytes that assist with tissue
remodeling and maturation (Figure 1) (Potente et al., 2011).

The master regulator in these processes is hypoxia inducible
factor-1α (HIF-1α) which is stabilised in response to tissue
ischaemia following, for example, MI or in CLI to increase
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angiogenesis (Fong, 2008). In normal oxygen environments, HIF-
1α is continuously expressed in the cytoplasm and in the presence
of oxygen is rapidly degraded (Fong, 2008). Rapid degradation of
HIF-1α is mediated by prolyl hydroxylase (PHD) proteins. In the
presence of oxygen, PHDs promote hydroxylation of proline
residues on HIF-1α, which allows its recognition by the von
Hippel-Lindau ubiquitin ligase complex (VHL) and subsequently
targets HIF-1α for degradation (Semenza, 2010). In hypoxia,
Siah1 and Siah2 are activated, which mediate PHD protein
degradation, allowing HIF-1α stabilisation and accumulation
in the cytoplasm. This in turn allows translocation of HIF-1α
to the nucleus where it associates with HIF-1β, enabling it to bind
to response elements on DNA. DNA binding induces
transcription of angiogenic and metabolic expression
programs, most notably the expression of vascular endothelial
growth factor A (VEGFA), stromal cell derived factor-1α (SDF-
1α), fibroblast growth factor (FGF), platelet derived growth factor
B (PDGFB) and angiopoietins (Figure 1A) (Fong, 2008; Semenza,
2010).

Sprouting angiogenesis is the most widely investigated form of
angiogenesis and involves the protrusion and elongation of
specified stalk and tip cells from the endothelium towards

angiogenic signaling cues (Figure 1). In the initial stages of
sprouting angiogenesis ECs become activated by angiogenic
mediators, such as VEGFA (Risau, 1997; Potente et al., 2011).
EC activation increases the expression of proteolytic enzymes,
such as matrix metalloproteinases (MMPS), which promote
degradation of the basement membrane and dissolution of
adherent junctions that allow invasion of cells into the
surrounding interstitial matrix (Ferrara and Kerbel, 2005;
Otrock et al., 2007). Following release, ECs, pericytes and
vascular smooth muscle cells (VSMCs) proliferate and migrate
towards chemoattractant signals. VEGFA induces cellular
proliferation and migration through several pathways
including mitogen-activated protein kinase (MAPK),
extracellular signal-regulated kinase (ERK), p38 and c-Jun
N-terminal kinase (JNK).

ECs are then specified into tip and stalk cells, which is
controlled by Notch signaling (Figure 1B). VEGFA stimulates
tip cell induction and filipodia formation via VEGF receptor 2
(VEGFR2), which promotes increased expression of the Notch
ligand, delta-like ligand 4 (DLL4) in tip cells (Patan, 2000; Potente
et al., 2011). Conversely, in adjacent cells, DLL4 promotes
downregulation of VEGFR2, mediating a highly specified

FIGURE 1 | Signaling pathways and cellular processes that mediate ischaemia-driven angiogenesis. Ischaemia-driven angiogenesis involves several processes
that work in a transient and overlapping fashion to allow new blood vessel formation. (A) Early: Endothelial cells (EC) become activated in response to an ischaemic injury.
Under hypoxic conditions, the master regulator hypoxia inducible factor-1α (HIF-1α) is stabilised and protected from ubiquitin labelling by the von Hippel-Lindau (VHL)
complex, preventing subsequent degradation. This allows HIF-1α to accumulate and translocate to the nucleus where it associates with HIF-1β. The HIF-1α/HIF-1β
complex then binds to hypoxia response elements to induce the transcription of pro-angiogenic mediators including vascular endothelial growth factor A (VEGFA),
fibroblast growth factor (FGF), angiopoietins, stromal cell derived factor-1α (SDF-1α) and platelet derived growth factor B (PDGFB). (B) Early-Mid: EC activation reduces
the expression of collagen and increases the expression of proteolytic enzymes such asmatrix metalloproteinases (MMPS), which promote degradation of the basement
membrane and dissolution of adherent junctions that allow invasion of cells into the surrounding interstitial matrix. ECs are then specified into tip and stalk cells, which is
controlled by Notch signaling. VEGFA stimulates tip cell induction and filipodia formation via VEGFR2, which promotes increased expression of the Notch ligand, delta-
like ligand 4 (DLL4) in tip cells. Conversely, in adjacent cells, DLL4 promotes downregulation of VEGFR2, mediating a highly specified negative feedback loop between
VEGFA and Notch to regulate tip and stalk cell formation. Additional signaling pathways including transforming growth factor-β (TGF-β) and phosphoinositide 3-kinase
(PI3K)/Akt are activated to promote endothelial cell migration and survival respectively. (C) Late: As the lumen of the new vessel begins to form and the vessel matures,
there is an increase in apoptosis and decrease in proliferation concomitant with an increase in mature collagen deposition. Created with BioRender.com.
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negative feedback loop between VEGFA and Notch to regulate tip
and stalk cell formation. Tip cells function as a guide for vascular
outgrowth in response to environmental cues which are received
by guidance receptors; their function is analogous to axon growth
(Potente et al., 2011). Stalk cells are more proliferative, forming
tubes and branches which elongate andmature to eventually form
the lumen. Following sufficient neovascularisation, the tissue
enters a remodeling phase in which anti-angiogenic genes are
expressed to reduce EC activation and promote vessel
maturation. Proliferation is reduced and there is an increase in
the expression of apoptosis related genes that allow lumen
formation and vessel maturation. The vessel is then stabilised,
which is aided through mature collagen formation and re-
establishment of tight junctions and the basement membrane
(Figure 1C) (Korn and Augustin, 2015). The process of
ischaemia-mediated angiogenesis is critically regulated and is
important for physiological processes such as collateral vessel
formation in response to vessel occlusion and to facilitate healthy
wound healing, processes which are often impaired by diabetes.

Physiological Angiogenesis is Important for
Collateral Vessel Formation
Vessel occlusions cause chronic imbalances in oxygen supply and
demand. The resulting low levels of cellular oxygen induce
adaptive neovascularisation in the ischaemic tissue. This
facilitates the growth of collateral vessels that redirect blood
supply around the arterial occlusions that occur in CLI and
MI, which prevents tissue necrosis in the affected sites of the
lower leg and heart (Collinson and Donnelly, 2004).

Diabetic patients experience higher rates of PAD and MI and
are more likely to die as a result (Taylor et al., 2013). In addition
to this, recovery post ischaemia is impaired in diabetes, stemming
from an inability to form new collateral vessels, leading to tissue
death and resulting in poor patient recovery and survival (Abaci
et al., 1999). Patients with T2DM experience reduced coronary
collateral formation following vascular occlusion, due to impaired
angiogenesis responses to tissue ischaemia. In cardiomyocytes
following MI, impaired collateral formation can lead to
exacerbated ischaemic injury. This promotes cell death and
resulting in higher rates of patient mortality following MI
(Kalogeris et al., 2012). In CLI, impaired induction of
angiogenesis contributes to higher rates of lower limb
amputation in patients with diabetes. Surgical intervention is a
common treatment for CLI (Shammas, 2007) in which the
occlusions are removed via a number of different procedures.
Unfortunately, some patients with T2DM are not suitable
candidates and have no option other than amputation. This
has a significant impact on quality of life (Ouma et al., 2012).

Physiological Angiogenesis is Critical for
Wound Healing
In addition to poor collateral vessel formation in response to
vessel occlusion, impaired wound healing in diabetes also
contributes significantly to higher rates of lower limb
amputations in these patients. While this process is complex,

it is also characterised by impaired ischaemia-driven
angiogenesis, which is discussed in more detail below.

The wound healing process comprises the cooperation of
distinct yet overlapping phases of inflammation, proliferation,
contraction, and tissue remodeling (Braiman-Wiksman et al.,
2007). Growth factors and other signaling molecules are released
that mediate the response to injury and promote the culmination
of cellular processes of migration, proliferation, and
differentiation to facilitate re-epithelialisation, re-
vascularisation, contraction, nerve innervation, and scar
formation leading to wound repair. Platelet aggregation and
granulation precedes clot formation in response to injury to
ensure rapid haemostasis (Braiman-Wiksman et al., 2007).
Platelets release several growth factors and inflammatory
cytokines which begin the wound healing processes including
PDGF, TGF-β, EGF and FGF (Werner and Grose, 2003).

Hypoxia is essential for normal wound healing, where it drives
the induction of HIF-1α to facilitate transcription of critical
mediators of tissue repair, including angiogenesis (Botusan
et al., 2008). Angiogenesis occurs during all stages of wound
repair to create new microvascular networks (Honnegowda et al.,
2015). In the early stages of wound healing angiogenesis aids in
the recruitment of endothelial progenitor cells, macrophages,
keratinocytes and fibroblasts which facilitate re-
epithelialisation and wound repair (Gurtner et al., 2008;
Johnson and Wilgus, 2014). Keratinocytes migrate across the
wound edge, independent of granulation tissue formation, and
this forms one of the initial steps in the wound healing process
(Braiman-Wiksman et al., 2007). Inflammatory cells like
macrophages are recruited within the granulation tissue and
release additional cytokines and angiogenic factors like
fibroblast growth factor (FGF) and tumour necrosis factor-α
(TNFα) (Gurtner et al., 2008). Following the initial
inflammatory phase, the tissue enters a proliferative phase to
help facilitate wound closure. Proliferation of the epidermal
leading edge composed of both proliferating and migrating
cells like fibroblasts occurs coordinately with differentiation of
the epidermis (Gurtner et al., 2008; Honnegowda et al., 2015).
After the initial phase of proliferation, granulation tissue
formation progresses followed by the final phase in wound
healing: tissue remodeling (Reinke and Sorg, 2012).

Diabetic foot ulcers (DFU) are one of the major causes of
lower limb amputations in patients with diabetes and are
perpetuated by chronic non-healing wounds. These chronic
non-healing wounds precede 85% of limb amputations and
cause significant reductions in the quality of life for patients
(Elgzyri et al., 2013). These issues are further exacerbated in
diabetes due to an impairment in the angiogenic response to
wound ischaemia that significantly delays healing (Järbrink
et al., 2017). In diabetic mice, delayed wound healing is
associated with reduced angiogenesis, which is
characterised by reduced capillary density and delayed
granulation tissue formation (Michaels et al., 2007; Botusan
et al., 2008). This is preceded by reduced stabilisation and
activation of HIF-1α within the wound environment (Botusan
et al., 2008), leading to impaired induction of angiogenesis
signaling molecules, like VEGFA.
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Whilst pre-clinical studies have found that angiogenic
stimulation with VEGFA improves wound healing in diabetic
mice (Galiano et al., 2004), this failed to translate in a Phase II
clinical trial assessing the healing of diabetic foot ulcers (Wietecha
and DiPietro, 2013). This lack of clinical efficacy suggests that the
mechanisms of diabetes-related vascular complications are
complex and not fully understood, emphasising a need for
further research.

The next section will highlight what is currently known about
the mechanisms surrounding diabetes-impaired angiogenesis in
responses that contribute to impaired collateral vessel formation
and poor wound healing.

Mechanisms of Diabetes-Impaired
Angiogenesis in Response to Ischaemia
Physiological ischaemia-driven angiogenesis requires a delicate
balance between pro-angiogenic and anti-angiogenic factors.
Dysregulation of this balance leads to diseased states, such as
that seen in patients with diabetes.

Impaired angiogenic responses to tissue ischaemia are central
to the reduced capacity of diabetic patients to recover following
vascular events and injury (Abaci et al., 1999; Okonkwo and
DiPietro, 2017). While the mechanisms that underpin diabetes-
impaired angiogenesis have not been fully elucidated, current
understanding suggests that this stems from hyperglycaemia-
induced production of advanced glycation end-products (AGEs),
which contribute to endothelial dysfunction (Soro-Paavonen
et al., 2010). This leads to the dysregulation of the classical
angiogenesis pathways and signaling molecules. HIF-1α
stability is reduced in diabetic mice (Mace et al., 2007;
Botusan et al., 2008) and reduced circulating HIF-1α protein
expression is seen in diabetic patients (Pichu et al., 2018). Higher
incidences ofHIF1A gene polymorphisms in diabetic patients are
associated with higher rates of diabetic foot ulcers (Pichu et al.,
2018). Subsequently, decreased VEGFA production and signaling
via VEGFR2 play a central role to reduce blood flow reperfusion
in diabetes (Rivard et al., 1999). This is characterised by reduced
neovascularisation to the ischaemic limbs of diabetic mice
(Rivard et al., 1999). Additionally, endothelial dysfunction in
diabetes leads to impaired metabolic activity (Sas et al., 2016) and
inhibition of endothelial nitric oxide synthase (eNOS) activity
(Lin et al., 2002). Hyperglycaemia triggers accumulation of
reactive oxygen species (ROS) and imbalances to nitric oxide
(NO) bioavailability, leading to reduced eNOS, and abating the
protective effects of NO on vascular tone, thrombosis, immune
responses, and vascular repair mechanisms (Tahergorabi and
Khazaei, 2012). In a hyperglycaemic environment, AGE
accumulation promotes activation of the AGE receptor
(RAGE), which activates ROS-sensitive biochemical pathways
and in turn dysregulates metabolic signaling in addition to
promoting oxidative stress and inflammation via the
transcription factor nuclear factor-κB (NF-κB) (Tahergorabi
and Khazaei, 2012). These impaired systems play a role in the
development of vascular complications in diabetes.

Therapeutic stimulation of angiogenesis holds promise for the
treatment of ischaemic diseases, but current therapies lack clear

clinical efficacy (Ylä-Herttuala et al., 2007). This highlights the
need for the identification of novel treatment targets and the
development of new therapies to overcome these devastating
effects.

MICRORNAS AS THERAPEUTIC TARGETS
FOR DIABETIC VASCULAR
COMPLICATIONS
microRNAs are small non-coding RNAs, 18–22 nucleotides in
length. They were first discovered in 1993 by the Ambros and
Ruvkun laboratories in C.Elegans and since then have
transformed our understanding of gene expression, regulation
and function (Lee et al., 1993; Wightman et al., 1993). During
canonical biogenesis, which is under strict regulatory control,
miRNAs are transcribed by RNA polymerase II into a double-
stranded hairpin primary transcript called pri-miRNA. Pri-
miRNAs are cleaved by the enzyme Drosha generating
precursor miRNA termed pre-miRNA (O’Brien et al., 2018).
Pre-miRNA is exported to the cytoplasm and then undergoes
further processing by the RNase III endonuclease Dicer (O’Brien
et al., 2018). Dicer removes the terminal loop of pre-miRNA
producing mature miRNA duplex strands, termed -5p or -3p.
Either one of these strands can bind with the Argonaute proteins
to form what is referred to as the RNA-induced silencing complex
(RISC) (Khvorova et al., 2003). Once forming RISC, miRNAs
regulate protein translation through complementary base pairing
to the 3’untranslated region (UTR) of their mRNA targets (Ha
and Kim, 2014). This integration of mRNA into the miRNA-
RISC complex facilitates enzymatic cleavage or deadenylation of
the target mRNA promoting its degradation or blocking protein
translation (Vasudevan, 2012).

miRNAs have been shown to play a role in regulating
numerous cellular processes, including angiogenesis and their
dysregulation has been shown to contribute to disease
progression (Yilmaz et al., 2018). miRNAs can control the
regulation of numerous genes simultaneously and have very
context and cell specific roles. These context-specific roles are
thought to be dependent on varying layers of miRNA regulation
(Liu et al., 2008; Jee and Lai, 2014). Given the vast impact of
miRNAs on gene expression, robust control over their regulation
is essential, and this control is often impaired in disease states.
miRNAs can undergo various pre- and post-transcriptional
modifications, but their activity can also be manipulated by
other non-coding RNAs, such as long noncoding RNAs
(lncRNAs) and circular RNAs (cirRNAs) (Zhao, 2018).

The global importance of miRNAs has been well established
and their dysregulation is prominent in numerous diseases.
Global knockout of key miRNA machinery, like Dicer, results
in embryonic lethality in mice (Bernstein et al., 2003) and is also
required for angiogenesis during development (Yang et al., 2005).
Dysregulation of Dicer expression is also prevalent in disease
(Zhang et al., 2014). In diabetes, hyperglycaemia reduces Dicer
expression. Additionally, lack of Dicer1 in beta-cells leads to
impaired insulin signaling and promotes the development of
diabetes (Kalis et al., 2011). During wound repair Dicer is
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transiently regulated to facilitate wound healing. However, in
diabetic mice the timing of Dicer regulation is altered,
contributing to impaired wound repair (Mahdipour and
Hasanzadeh, 2017). These changes in Dicer expression have
significant effects on miRNA function and expression. In
addition to Dicer, many other molecules involved in miRNA
control are dysregulated in disease, including Argonaute proteins
and assembling of the RISC complex (Lewkowicz et al., 2015).
One of themajor determinants of miRNA function are Argonaute
proteins and these are critical for normal cellular function and
survival. These proteins undergo various modifications that
translate to alterations to miRNA activity including
phosphorylation, ubiquitination and PARylation (Jee and Lai,
2014). Argonaute proteins can also undergo modification
induced by hypoxia. Upregulation of hypoxia-inducible prolyl-
4-hydroxylases that promote human Argonaute-2 hydroxylation
promotes increases in miRNA levels and activity (Wu et al.,
2011).

Changes to miRNA expression profiles is highly implicated in
disease and leads to altered functionality of important biological
processes (Solly et al., 2019). In addition, miRNAs have been
shown to be novel targets for mediating pro- or anti-angiogenic
effects (Landskroner-Eiger et al., 2013). For example,
overexpression of the pro-angiogenic miR-27b improves
ischaemia-mediated neovascularisation (Veliceasa et al., 2015)
and wound healing (Wang et al., 2014). Conversely, inhibition of
the anti-angiogenic miR-92a enhanced neovascularisation in
mouse models of hindlimb ischaemia and MI (Bonauer et al.,
2009). Targeted modulation of miRNAs is clinically feasible and
may be more effective because the orchestration of a host of
complex factors may be required to therapeutically stimulate
angiogenesis in a diabetic setting. Currently, miRNAs are in
Phase I and II clinical trials for the treatment of scleroderma,
cancer and hepatitis C virus (Mellis and Caporali, 2018) in which
they are showing promising results. This highlights the great
potential of miRNAs as therapeutic targets for complex
multifaceted diseases. Due to the pleiotropic action of miRNAs
their modulation may offer more promising therapeutic benefits
for diabetic vascular complications.

MICRORNA-181 FAMILY

The miR-181 family consists of four members that are highly
conserved across vertebrates: miR-181a, -181b, -181c and -181d
(Dostie et al., 2003; Lagos-Quintana et al., 2003; Lim et al., 2003;
miRBase, 2018). MiR-181a/b cluster together at two different
genomic locations on chromosome 1 (miR-181a1/b1) and
chromosome 9 (miR-181a2/b2) and miR-181c/d cluster
together on chromosome 19 (Dostie et al., 2003; Lagos-
Quintana et al., 2003; Lim et al., 2003). miRNA transcripts are
often transcribed in tandem with key genes involved in their
regulation or function. However, within the chromosomal
regions of the miR-181 transcripts no other protein coding
regions are found, indicating that these miRNAs are
transcribed independently (Dostie et al., 2003; Lagos-Quintana
et al., 2003; Lim et al., 2003). The -3p and -5p strands of each

miR-181 family member differ from each other and have
modestly varying seed sequences (Dostie et al., 2003; Lagos-
Quintana et al., 2003; Lim et al., 2003). The sequences of the
-5p strands differ by only a few nucleotides across the different
family members. However, these share identical seed regions.
Despite this similarity, each member exhibits distinct gene
targets, which confers varied functionality and context-specific
functions. miR-181 family members have been highly implicated
in inflammation and several cancers, often having both oncogenic
and tumour suppressive properties depending on specific cancer
types (Sun et al., 2014; Pop-Bica et al., 2018). miR-181c
expression has been shown to be dysregulated in several
cancers including inflammatory breast cancer (Zhang and
Zhang, 2015), gastric cancer (Hashimoto et al., 2010),
pancreatic cancer (Chen et al., 2015), brain cancer (Tominaga
et al., 2015), lung cancer (Zhang et al., 2017) and colon cancer
(Yamazaki et al., 2017). Dysregulation of miR-181c has vast
effects on tumourigenesis, affecting the proliferative, survival
and migratory capacity of cancer cells (Li et al., 2014; Ruan
et al., 2015).

We have identified, for the first time, that miR-181c has anti-
angiogenic properties (Hourigan et al., 2018). We will discuss
some of the pathways by which miR-181c regulates angiogenesis
and highlight why it is a promising targeting for treating diabetes
impaired-angiogenesis (Figure 2).

THE ROLE OF MICRORNA-181C IN
DIABETES-IMPAIRED ANGIOGENESIS

As previously discussed, impaired angiogenesis underpins the
development of vascular complications and impaired wound
healing in diabetes. This arises due to hyperglycaemia-induced
endothelial dysfunction and the impairment of signaling
pathways and molecules in response to high glucose.
Dysregulation of miR-181c by hyperglycaemia may contribute
to these effects. Expression of miR-181c has been shown to be
dysregulated in human umbilical vein endothelial cells
(HUVECs) in response to high glucose exposure (Zitman-Gal
et al., 2014; Shen et al., 2018), which is meant to mimic a diabetic-
like environment in vitro. Overexpression of miR-181c
significantly increased ROS production in HUVECs treated
with high glucose and enhanced high glucose-induced
oxidative stress and cell death (Shen et al., 2018). Increases in
ROS production contribute to endothelial activation and precede
vascular dysfunction in diabetes, suggesting that dysregulation of
miR-181c in response to high glucose may contribute to
hyperglycaemia-induced endothelial cell damage. This may
also play a contributing role in diabetes-impaired angiogenesis
responses, which will now be discussed in more detail.

Tubule Formation and the Expression of
Critical Angiogenesis Mediators
The role of miR-181c in angiogenesis is complex and currently
not well understood. We were the first to show that miR-181c has
anti-angiogenic properties (Hourigan et al., 2018). We found that
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overexpression of miR-181c in endothelial cells inhibited
endothelial vascular network formation and inhibited protein
levels of the pro-angiogenic mediator VEGFA (Hourigan et al.,
2018). Conversely, miR-181c inhibition promoted tubule
formation and VEGFA expression (Hourigan et al., 2018).
While there has not been a direct link between miR-181c and
diabetes-impaired angiogenesis to date, we have previously
shown that inhibition of miR-181c may mediate the pro-
angiogenic effects of high-density lipoproteins (HDL) in
diabetes (Hourigan et al., 2018). We have shown that HDL
rescues diabetes-impaired angiogenesis via the classical HIF-
1α/VEGFA signaling axis (Castelli et al., 1986; Vickers et al.,
2011; Tan et al., 2014). Furthermore, we have demonstrated that
the pro-angiogenic effects of HDL in diabetes may be mediated,
in part, through its interaction with miR-181c (Hourigan et al.,
2018). Infusions of HDL into diabetic mice significantly reduced
miR-181c levels in the tissue early post-ischaemia when
angiogenic responses are important. This was associated with
improved blood flow reperfusion to the ischaemic hindlimb
(Hourigan et al., 2018). This suggests that miR-181c inhibition
may mediate the pro-angiogenic action of HDL and provide an
alternate strategy to rescue diabetes-impaired angiogenic
responses to ischaemia.

HDL can also carry endogenous miRNAs, transporting them
to specific tissues in the body to impart functional effects (Castelli
et al., 1986; Vickers et al., 2011; Tan et al., 2014). Circulating
miRNAs have been found to correlate with diabetes-associated
microvascular complications (Wang et al., 2016). Low HDL levels
are an independent risk factor for the development of T2DM (von

Eckardstein et al., 2000) and are associated with an increased risk
of diabetes-associated microvascular complications (Morton
et al., 2018). We recently found that HDL-bound miR-181c
levels are strikingly elevated in Indigenous Australian males
with diabetes-associated peripheral artery disease, a population
that is disproportionately impacted by diabetic vascular
complications (Morrison et al., 2021). HDL becomes
dysfunctional in a diabetic environment, losing its vasculo-
protective properties and becoming pro-atherogenic (Femlak
et al., 2017). Treatment of HCAECs with extracted HDL from
these individuals resulted in impaired tubule formation and an
inability to induce HIF-1α expression (Morrison et al., 2021).
This suggests that higher naturally occurring amounts of HDL-
boundmiR-181cmay result in dysfunctional HDL and contribute
to the loss of its pro-angiogenic effects in diabetes.

miR-181c has also been shown to be divergently regulated by
hypoxia in culture (Hourigan et al., 2018; Deng et al., 2020). In
human coronary artery endothelial cells (HCAECs), hypoxia
reduced miR-181c expression (Hourigan et al., 2018), whereas
in eye vascular endothelial cells (VECs) miR-181c levels were
increased in response to hypoxia exposure (Deng et al., 2020). We
showed that miR-181c inhibition increased tubule formation of
HCAECs by promoting increased VEGFA protein expression; a
well-established pro-angiogenic growth factor and HIF-1α
inducible gene (Hourigan et al., 2018). In addition,
stabilisation of the master regulator HIF-1α can be mediated
by miR-181c. In breast cancer cells exposed to hypoxia,
overexpression of miR-181c suppressed HIF-1α stabilisation
and this led to a reduction in hypoxia-inducible glycolysis

FIGURE 2 | The proposed role of miR-181c action in diabetes-impaired angiogenic responses to ischaemia. Numerous studies have shown that miR-181c targets
many signaling pathways and cellular processes that are critical in diabetes-impaired angiogenic responses to ischaemia. This includes (A) HIF-1α stabilisation and VEGFA
expression in the early phase; (B) TGF-β signaling (via TGFβR1, TGFβR2 and SMAD7) to inhibit cell migration, BCL-2 and its family members BCL-2L11 and MCL-1 which
drive cell survival and MMPs and uPA in the early-mid phase; and (C) PTEN and dysregulation of collagen in the late phase. Created with BioRender.com.
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related enzymes (Lee et al., 2019). Conversely, in eye vascular ECs
(VECs) which are prone to inflammatory-driven angiogenesis in
diabetes, miR-181c was shown to promote stabilisation of HIF-1α
in these cells (Deng et al., 2020).

These studies demonstrate that miR-181c has divergent roles
in response to hypoxia in diabetes, which are largely dependent
on the cell type. In cells more prone to increased inflammatory-
driven angiogenesis in diabetes, miR-181c promotes
angiogenesis. Whereas, in cells that experience decreased
ischaemia-driven angiogenesis in diabetes, the opposite effect
is seen, and miR-181c reduces angiogenesis in this context. The
divergent regulation of miR-181c in response to hypoxia and high
glucose in different cell types and the varying effects of miR-18c
on HIF-1α stabilisation and subsequently tubule formation
highlights the context specific role of this miRNA under
varying conditions. [deleted text] While the role of miR-181c
on ischaemia-driven angiogenesis in diabetes is yet to be fully
determined, these studies suggest that miR-181c targets
ischaemia-mediated genes that play a crucial role in this
process. Functionally, in vitro, in vivo and ex vivo experiments
suggest an important role for miR-181c in tubule formation and
that targeting this miRNA rescues diabetes-impaired responses in
different contexts.

In addition to these critical regulators and the formation of
endothelial tubules, there are multiple facets that contribute
to the process of angiogenesis that may also be regulated by
miR-181c. These include basement membrane degradation,
cellular proliferation, invasion and migration, apoptosis, cell
survival and mitochondrial function as well as tissue
remodeling and maturation (Figure 2). These processes are
orchestrated in a cohesive manner to facilitate effective blood
vessel growth and function (Potente et al., 2011). The
potential role of miR-181c in these important processes
that help to facilitate ischaemia-driven angiogenesis is
discussed in more detail below.

Basement Membrane Degradation, Tissue
Remodeling and Maturation
An important first step in angiogenesis is an increase in EC
permeability via dissolution of tight junctions and degradation of
the basement membrane to allow invasion and escape of cells into
the interstitial matrix. Integral to these processes are MMPs
which facilitate breakdown of these components (Potente
et al., 2011). In addition to promoting extracellular matrix
(ECM) degradation, MMPs also facilitate the release of ECM-
bound angiogenic signaling cues and contribute to the formation
of angiogenic concentration gradients within the matrix (Löffek
et al., 2011). MMPs facilitate detachment of pericytes allowing
vascular plasticity and growth (Rundhaug, 2005), but also
contribute to a vast extracellular signaling network (Löffek
et al., 2011). In the later stages of angiogenesis and wound
healing, synthesis of the ECM promotes tissue remodeling and
maturation of vessels through coordinated regulation from pro-
and anti-fibrosis related cytokines (Löffek et al., 2011). miR-181c
has been reported to play an important role in a number of these
processes.

Urokinase type plasminogen activator (uPA) regulates
angiogenesis and vascular permeability through proteolytic
degradation of the ECM but can also act as a transcription
factor that regulates VEGFR2 transcription (Stepanova et al.,
2016). miR-181c inhibition increased uPA expression as well as
the matrix protein MMP1 in hypertrophic scars (Li et al., 2015).
However, inhibition of miR-181c has no effect on MMP1
expression under normal conditions, highlighting that miR-
181c can target matrix genes that are involved in angiogenesis
(Stepanova et al., 2016). This indicates that coordinated
regulation of miR-181c activity may be important for
containing an appropriate balance of matrix protein
expression during angiogenesis. Inhibition of miR-181c also
resulted in decreased collagen 1 (COL1) expression (Li et al.,
2015). Excessive collagen deposition can lead to hypertrophic scar
formation and impair the wound healing process (Xue and
Jackson, 2015). In the early stages of wound healing collagen
formation is premature and non-structured. However, in the later
stages collagen matures into well organised fibers, facilitating
normal wound closure (Xue and Jackson, 2015). As inhibition of
miR-181c reduced collagen expression in hypertrophic scars, this
suggest that miR-181c may also play a role in dysregulating
collagen maturation in wounds, which can severely impede
wound closure.

In addition to targeting genes that promote ECM destruction
in the skin, miR-181c is excreted from brain cancer cells within
extracellular vesicles that promote blood-brain barrier
destruction. These vesicles have been implicated in facilitating
abnormal actin localisation (Tominaga et al., 2015). This occurs
through miR-181c-induced degradation of 3-phosphoinositide-
dependent protein kinase-1 (PDPK1), which dysregulates actin
organisation. Breakdown of this blood-brain barrier is conducive
to brain metastasis and highlights a role for miR-181c in the
breakdown of endothelial cell layers, facilitating cellular
migration, and in cancer, may promote metastasis.

These studies highlight a potential role for miR-181c in the
initial phases of angiogenesis and wound healing (Figure 2).
These demonstrate its potential for the breakdown of endothelial
cell layers, which aid in the release of ECs, pericytes and VSMC
into the interstitial space, facilitating budding and extension of
sprouting vessels through the ECM. Additionally, miR-181c may
also contribute to the final stages of angiogenesis and wound
healing by mediating mature collagen deposition and tissue
remodeling.

Cellular Proliferation, Apoptosis and
Survival
Both proliferation and apoptosis are essential processes that
contribute to angiogenesis. Early cellular proliferation is
important in facilitating budding and extension of cells from
existing vessels into the surrounding interstitial space (Potente
et al., 2011). Apoptosis, or programmed cell death, is inherently a
survival response but is also regulated by physiological processes
to ensure normal cell growth. There are two main pathways of
apoptosis, the extrinsic or death receptor pathway, and the
intrinsic or mitochondrial pathway (Elmore, 2007). Apoptosis
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and proliferation are transiently regulated to facilitate processes
such as angiogenesis. In the early stages of angiogenesis apoptosis
is reduced to support cell growth and proliferation of budding
cells, but upon vessel maturation there is an increase in apoptosis
related genes which aid in inhibiting angiogenesis when it is no
longer required. Several angiogenesis signaling molecules can
inhibit apoptosis and promote cell survival including VEGFA,
angiopoietin 1, and FGF, which occurs primarily through
activation of the PI3K/Akt pathway (Alon et al., 1995; Gerber
et al., 1998; Fujio andWalsh, 1999; Hayes et al., 1999; Kwak et al.,
1999; Papapetropoulos et al., 2000). Dysregulation of apoptosis
and proliferation are hallmarks of many cancers, which
contributes to cell immortalisation but also aids in facilitating
tumour angiogenesis. Additionally, apoptosis becomes
dysregulated in diseases like diabetes, where it is associated
with high glucose-induced cell death of beta-cells. In HCAECs,
high glucose-induced apoptosis involves the upregulation of
death receptors like tumor necrosis factor receptor 1 (TNFR1)
and Fas (Kageyama et al., 2011). In the vasculature dysregulated
apoptosis plays a role in atherosclerosis and induces cell death in
response to ischaemia reperfusion injury following myocardial
infarction.

In the rat myocardium, miR-181c levels are increased in
response to ischaemia-reperfusion injury (Ge et al., 2019).
Overexpression of miR-181c in cultured cardiomyocytes
promotes increased expression of apoptosis related genes
including caspsase-3 and bax/Bcl-2, leading to an increase in
apoptosis (Ge et al., 2019). In inflammatory breast cancer, miR-
181c is overexpressed and acts as an oncogene, promoting
proliferation and cell survival by inhibiting the tumour
suppressor gene PTEN (Zhang and Zhang, 2015). PTEN
negatively regulates the PI3K/Akt pathway to inhibit
proliferation. miR-181c has also been shown to target PTEN
in endometrial cancer (Zhuang et al., 2019), potentiating cell
survival through reduced apoptosis. In response to hypoxia,
suppression of miR-181c promoted cardiomyocyte survival by
increasing phosphorylation of Akt and also upregulating the cell
survival mediator, Bcl-2 (Li X. et al., 2020). An increase in Bcl-2
protein expression was also seen in HUVECs following miR-181c
inhibition and resulted in reduced high glucose-induced
apoptosis (Shen et al., 2018). In addition to Bcl-2, miR-181c
was also shown to directly target other Bcl-2 family members in
astrocytes, including Bcl-2L11 and Mcl-1 (Ouyang et al., 2012).

These studies demonstrate a regulatory role for miR-181c in
both apoptotic and cell survival related genes (Figure 2). miR-
181c can mediate the coordinated expression of pro- and anti-
apoptotic genes, and additionally regulates one of the main
proliferative pathways perturbed in cancer and diabetes: PI3K/
Akt. The ability of miR-181c to mediate cellular survival and
death may contribute to its pleiotropic effects on impaired
angiogenesis in diabetes.

Cellular Invasion and Migration
Cellular migration is integral to adequate angiogenesis as it
supports sprouting of tip and stalk cells through the ECM,
which forms the new vessel (Lamalice et al., 2007). In several
cancers alterations in miR-181c levels have been shown to

regulate cellular migration through regulation of Notch and
TGF-β1 signaling (Li et al., 2014; Ruan et al., 2015; Fu et al., 2019).

The TGF-β pathway has been extensively implicated in
regulating numerous cellular functions including actin
polymerisation, cell adhesion, angiogenesis, ECM neogenesis,
immunosuppression, apoptosis induction, as well as cell cycle
and differentiation (Derynck and Zhang, 2003; Vander Ark et al.,
2018). Active TGF-β ligands bind to TGF-β receptor type I
(TGFβR1) and II (TGFβR2) promoting receptor
phosphorylation. This promotes activation of the SMAD
pathway. SMAD proteins act as transcription factors that
mediate gene expression. R-Smads are phosphorylated, which
then bind to common Smad mediators (SMAD4) to form
R-Smad/Co-Smad complexes. These are then able to
translocate into the nucleus and promote gene expression
through DNA binding. R-Smad/Co-Smad DNA binding
induces transcription of genes involved in several important
cellular processes (Vander Ark et al., 2018). Crosstalk between
TGF-β and a myriad of signaling pathways involved in
angiogenesis, wound healing and axon development implicates
TGF-β prominently as a mediator of diabetes-impaired
responses. There is strong evidence to suggest that TGF-β is
one of the major molecules contributing to diabetic kidney
disease (Zhao et al., 2020). TGF-β dysregulation in diabetes
may also alter wound healing. Improved remodeling of
wounds was found to be associated with reduced TGF-β
expression in the late stages of healing (Fekrazad et al., 2018).
miR-181c has been implicated as a regulator of the TGF- β
pathway.

Reduced expression of miR-181c was identified in
glioblastoma (He et al., 2016) and osteosarcoma (Fu et al.,
2019) and is associated with poor clinical prognosis of these
cancers (Mori et al., 2015). TGFβR1 and -2 were identified as
putative miR-181c targets (He et al., 2016). Overexpression of
miR-181c reduced TGF-β signaling through TGFβR1 and
TGFβR2, reducing cell migration (He et al., 2016).
Dysregulation of miR-181c also contributes to the
aggressiveness of osteosarcoma and regulation of TGF-β
signaling through targeting SMAD family member 7
(SMAD7), which negatively regulates TGF-β (Fu et al., 2019).
This subsequently promoted epithelial mesenchymal transition
(EMT) of tumour cells, affecting cell plasticity and facilitating the
initial phase of tumour cell migration.

In addition, the transcription of miR-181c itself has also been
found to be regulated in a negative feedback fashion by the main
TGF-β transcription factors, SMAD2/3 (Redshaw et al., 2013).
Transcription of pri-miR-181c/d was shown to be dependent on
SMAD2/3 activation in embryonic mouse stem cells and early
embryos (Redshaw et al., 2013). This indicates a strong negative
feedback relationship between miR-181c and TGF-β signaling
that could have many implications in diabetes-impaired
responses due to the vast and multifaceted reach of this
signaling pathway. The regulation of miR-181c and its control
over TGF-β intermediates and signaling molecules is yet to be
investigated in the context of diabetes-impaired angiogenesis but
may offer a novel treatment paradigm for vascular complications
in diabetes (Figure 2).
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Mitochondrial Function and Metabolism
Studies have shown that while the HIF-1α/VEGFA signaling axis
is important, cellular pathways that drive endothelial dysfunction
including cellular metabolism, mitochondrial function and
oxidative stress, also contribute to diabetic vascular
complications (Kolluru et al., 2012). T2DM is known as a
metabolic disorder, characterised by insulin sensitivity and an
inability to appropriately uptake and metabolise glucose. Cellular
metabolism is important in maintaining the energy requirements
of the cell. The control of metabolic homeostasis requires a
balance between the generation of adenosine triphosphate
(ATP) via aerobic versus anaerobic respiration and the
regulation of pathways that consume ATP (Zhang et al.,
2009). While there are several biological pathways that control
metabolic homeostasis, of particular interest in T2DM is the
master metabolic regulator adenosine monophosphate-activated
protein kinase (AMPK), which is activated in response to low
cellular energy levels (Shrikanth and Nandini, 2020). Its
activation promotes upregulation of ATP producing processes
(fatty acid oxidation and glycolysis) and downregulation of ATP
consuming processes (protein synthesis) (Zhang et al., 2009).
AMPK is activated in response to a variety of stress stimuli,
including hypoxia, oxidative stress and low energy levels. In
hyperglycaemia AMPK activation is impaired and has been
shown to play a causative role in the development of
microvascular complications in diabetes by increasing
oxidative stress and glycogen synthesis and by decreasing
mitochondrial function (Shrikanth and Nandini, 2020).

Mitochondrial function is crucial in mediating aerobic
respiration through oxidative phosphorylation of the main
glycolysis products, pyruvate and NADH (Maechler and
Wollheim, 2001). This drives the energy requirements of the
cell and is critical for regulation of cellular functions, such as
proliferation, migration and survival. In response to hypoxia,
mitochondrial complex III generates mitochondrial ROS to
stabilise HIF-1α and promote expression of angiogenic stimuli,
such as VEGFA (Reichard and Asosingh, 2019). Additionally,
mitochondrial DNA-deficient cells have reduced capacity to
upregulate VEGFA (Satoh et al., 2011). In diabetes,
mitochondrial function is impaired, and this is thought to be
due to a reduction in mitochondrial biogenesis (Sivitz and Yorek,
2010).

miR-181c has also been shown to target genes involved in
cellular metabolism, mitochondrial function and oxidative stress
(Das et al., 2017). COX-2, a mitochondrial enzyme and
downstream target of miR-181c, is induced by hypoxia and
mediates VEGFA-induced angiogenesis (Wu et al., 2006).
miR-181 family members are expressed in heart mitochondria
(Das et al., 2012) and in cardiomyocytes miR-181c regulates the
mitochondrial gene cytochrome c oxide subunit 1(mt-COX1)
(Das et al., 2014). miR-181c regulation of mt-COX1 in
cardiomyocytes promotes remodeling of mitochondrial
complex IV, increasing ROS, while having no significant effect
on mitochondrial function (Das et al., 2014). Additionally, miR-
181c/d knockout reduced the infarct size following MI in mice
(Das et al., 2014). Furthermore, breast cancer cell metabolism was
altered by miR-181c in hypoxia (Lee et al., 2019). Induction of the

glycolysis related enzymes, glucose transporter-1, hexokinase-2,
pyruvate dehydrogenase kinase-1 and lactate dehydrogenase A,
which are involved at various points in glucose metabolism, were
impaired by miR-181c in response to hypoxia (Lee et al., 2019).

Taken together, these studies suggest that miR-181c may
contribute to cardiomyocyte propensity for heart failure
through regulation of mitochondrial genes and may alter the
expression of enzymes important for metabolism. However, the
role of miR-181c on mitochondrial function in endothelial cells
and in the context of diabetes remains to be investigated.

AXON GUIDANCE AND ANGIOGENESIS: A
DUAL ROLE FOR MICRORNA-181C

Axon guidance cues are important for mediating axon and
neuron maturation and promoting effective signal transfer
across synapses. These guidance cues may also play a role in
blood vessel navigation, facilitating the extension of blood vessels
throughout coordinated networks in the body (Autiero et al.,
2005; Adams and Eichmann, 2010). The spatial organisation of
blood vessels throughout the body is optimised for effective
delivery and removal of nutrients and waste products to and
from cells (Adams and Eichmann, 2010). Nerves and blood
vessels, while having extremely different functions, share
anatomical similarity and are regulated, in some instances, by
overlapping mechanisms (Carmeliet and Tessier-Lavigne, 2005).
Precise coordination of neurovascular co-patterning and nerve
formation is essential for differentiation of arteries in skin
(Mukouyama et al., 2005), suggesting that these processes
work together to facilitate normal nerve and blood vessel
formation. Axons navigate towards target cells to form
synapses through coordinated action, both locally and
distantly, between attractive and repellent guidance cues and
their corresponding receptors. Axons express guidance receptors
at the tip of the growth cone, which is the site of elongation
(Stoeckli, 2018). miR-181c is highly expressed in the brain and
has been shown to target axon guidance molecules to facilitate
axon and dendrite extensions (Kos et al., 2016; Chen et al., 2017).
Taken together, this suggests that there may be a link between
axon guidance and angiogenesis that could provide some insights
into miR-181c action.

Neuropilin-1 (NRP1) is a transmembrane receptor that has a
dual role in axon guidance and blood vessel navigation
(Lampropoulou and Ruhrberg, 2014). NRP1 mediates axon
extension within the spinal cord and brain and contributes to
blood vessel navigation by interacting with VEGFA, promoting
migration of endothelial cells during angiogenesis. This is
mediated through dual expression of NRP1 and VEGFR2
(Lampropoulou and Ruhrberg, 2014). Retinal ganglion axons
and endothelial cells require NRP1 for normal axon organisation
and vascular co-patterning (Erskine et al., 2017). NRP1 interacts
with semaphorins, (SEMA) -A, -B, -C, -D, -F and can act as a
VEGF receptor in both endothelial cells and neurons. NRP1 can
also interact with VEGF receptors, VEGFR1 and VEGFR2, as well
as other angiogenic signaling molecules, such as PDGF. This
increases the binding affinity of VEGF to VEGFR2 by acting as a
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co-receptor, resulting in increased signal transduction and
endothelial cell chemotaxis (Herzog et al., 2011).

Semaphorins are repulsive axon guidance molecules that
activate NRP1 as well as other guidance receptors, such as
plexins (Nasarre et al., 2014). The 3’UTR of SEMA4 contains
a miR-181c binding site, and recently has been confirmed as a
target for miR-181c (Chen et al., 2017). The functional
implications of this, however, are yet to be explored.
Semaphorins are extremely important during development of
the central nervous system, and their knockdown results in severe
defects (Pasterkamp and Verhaagen, 2006). Semaphorins and
their receptors are re-expressed upon skin injury and may play a
role in promoting nerve regeneration and angiogenesis during
wound healing. During wound healing newly formed vasculature
also acts as a scaffold for the projecting axons, which in
conjunction with guidance cues such as VEGFA and HIF-1α,
that are upregulated in response to hypoxia in the wound
environment, guide nerve innervation within the healing
wound. This highlights some of the potential consequences of
miR-181c regulation of SEMAs on the regulatory networks that
exist during wound healing. However, this needs further
investigation.

Studies have shown that knockdown of these guidance
molecules or their receptors results in vascular defects that are
characterised by changes in vascular growth, size, function, and
patterning during development (Autiero et al., 2005). These
findings suggest that the formation of nerves and blood vessels
is a coordinated process. Functionally impaired or damaged
neural circuits are thought to lie at the center of
neurodegenerative diseases like Parkinson’s Disease and
Alzheimer’s Disease (AD) (Stoeckli, 2018). Neurodegenerative
diseases are characterised by damage to the central nervous
system caused by inflammation (Friese et al., 2014) or
impaired clearance of intracellular inclusion bodies (Park
et al., 2020). It has become increasingly evident that impaired
angiogenesis underlies the pathophysiology of many
neurodegenerative diseases (Zacchigna et al., 2008). We
therefore postulate that the crosstalk between angiogenic
signaling, and axon guidance cues may be important for
understanding the mechanisms surrounding these diseases and
could provide alternative targets for therapeutic intervention or to
predict disease progression.

Levels of miR-181c were shown to be dysregulated in the
brains of patients with AD and other neurological conditions that
are characterised by damaged neural circuits, impaired
angiogenesis, and neuron death (Cogswell et al., 2008;
Martinez and Peplow, 2020). Changes to circulating miR-181c
levels are also seen in the serum of patients with AD (Manzano-
Crespo et al., 2019), suggesting that altered miR-181c regulation
in the brain may contribute to neurodegenerative diseases, or
perhaps is a resulting effect of the disease itself. miR-181c is
highly expressed in the cerebellar cortex and is thought to play an
important role in neuron and axon development (Kos et al.,
2016). Much like what we have previously shown in mouse
hindlimbs, miR-181c is also transiently regulated in response
to ischaemia in the brain. In response to ischaemic stroke, miR-
181c levels are rapidly increased in the serum of patients (Ma

et al., 2016). Additionally, miR-181c negatively regulates
neuroinflammation of microglia through the toll-like receptor
4 (TLR4) in response to ischaemia (Zhang et al., 2015). This
suggests that transient modulation of miR-181c is important for
mediating acute survival responses to hypoxia in the brain.

Following an ischaemic event there is an immediate
upregulation of genes triggered by these imbalances in
oxygen supply and demand. These genes converge on
signaling pathways that promote re-oxygenation of the
ischaemia site through angiogenesis (Liu, 2015) but also
promote new axon growth to re-form any damaged
neuronal circuits in the brain (Hinman, 2014). Sequencing
studies of the brain have revealed that miR-181c may target
several genes that are important in these processes (Kos et al.,
2016). Upon inhibition of miR-181c in neurons, neurite
sprouting is increased (Kos et al., 2016). This is
attributable to not only an increase in branch number but
to the development of higher-order branches that are
characterised by longer axon length and more intersecting
dendrites, giving rise to more complex neurite networks.
Additionally, overexpression of miR-181c resulted in
neuron death in response to cerebral ischaemia by reducing
expression of c-Fos and downstream targets AP-1 and
NFATc1 (Meng et al., 2020). Indicating that miR-181c
regulation may contribute to downstream hypoxia-
responsive cellular process that mediate axonal guidance
and cell survival in the brain.

Tripartite Motif Containing 2 (TRIM2), a ubiquitin ligase that
contributes to normal brain function, is dysregulated in AD and
other neurodegenerative diseases and knockdown of TRIM2 in
mice results in severe neurodegeneration (Li J. J. et al., 2020).
TRIM2 has been identified as a putative miR-181c target in the
brain (Schonrock et al., 2012). Interestingly, in a study conducted
using rats that had undergone carotid artery ligation, TRIM2
levels were upregulated in the hippocampus following cerebral
hypoperfusion (Fang et al., 2017). The expression of TRIM2 was
inverse to miR-181c expression which was reduced in response to
hypoperfusion in the hippocampus, suggesting an inverse
relationship between miR-181c and TRIM2 regulation in
response to hypoxia (Fang et al., 2017). Furthermore, miR-
181c overexpression increased dendrite branching and spine
density leading to an improvement in cognitive impairment
that was attributed to miR-181c-mediated inhibition of
TRIM2. TRIM2 may also have a prominent role in
angiogenesis. Knockdown of TRIM2 impaired both
inflammatory-driven and ischaemia-mediated tubule formation
of HCAECs (Wong et al., 2018).

Collectively, these studies suggest a complex role for miR-181c
in the formation of axonal and dendrite projection suggesting
divergent roles that are highly dependent on location and
intracellular environment. These studies show that miR-181c
targets molecules involved in angiogenesis and cell survival
within the brain in response to hypoxia and that dysregulation
of miR-181c may contribute to neurodegenerative diseases that
are often associated with impaired angiogenesis. Highlighting a
potential role for miR-181c in angiogenesis across multiple
disease pathologies.
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CONCLUSION

We have previously identified a novel anti-angiogenic role for
miR-181c and in this review have highlighted how this miRNA
may be dysregulated in diabetes. miR-181c expression is altered
in response to hypoxia, suggesting that its regulation may be
important for mediating ischaemia-driven angiogenesis in
diabetes. We have highlighted some of the pathways and
molecular targets that miR-181c has been shown to regulate
that are important for angiogenesis. These include either direct
or indirect regulation of critical angiogenesis mediators, such as
HIF-1α and VEGA, as well as molecules involved in processes
such as basement membrane degradation, cellular proliferation,
invasion and migration, mitochondrial function as well as tissue
remodeling and maturation. These processes work in a time-
dependent and cohesive manner to facilitate normal blood vessel
growth in response to hypoxia.

In addition, miR-181c is dysregulated in diseases in which
angiogenesis becomes dysfunctional, such as in cancer and
neurodegenerative diseases such as AD. In these varying
cellular contexts, miR-181c expression is also regulated by
hypoxia and, in the brain, miR-181c targets molecules that
have dual roles in axon guidance and blood vessel growth and
navigation. Additionally, circulating levels of miR-181c may be
predictive of severe diabetic macrovascular complications in
different populations and could be used to inform therapeutic

intervention in these patients. Taken together, this evidence
highlights that miR-181c may be an important mediator of
ischaemia-driven angiogenesis in diabetes and that it may be a
beneficial therapeutic target for orchestrating the multiple factors
required for adequate stimulation of angiogenesis in a clinical
setting.
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