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Both acute and chronic hepatic inflammation likely result from an imbalance in the TH1/
TH2 cell response and can lead to liver fibrosis and end-stage liver disease. More recently,
a novel CD4+ T helper cell subset was described, characterized by the production of IL-17
and IL-22. These TH17 cells 50were predominantly implicated in host defense against
infections and in autoimmune diseases. Interestingly, studies over the last 10 years
revealed that the development of TH17 cells favors pro-inflammatory responses in almost
all tissues and there is a reciprocal relationship between TH17 and TReg cells. The balance
between TH17and TReg cells is critical for immune reactions, especially in injured liver
tissue and the return to immune homeostasis. The pathogenic contribution of TH17 and
TReg cells in autoimmunity, acute infection, and chronic liver injury is diverse and varies
among disease etiologies. Understanding the mechanisms underlying TH17 cell
development, recruitment, and maintenance, along with the suppression of TReg cells,
will inform the development of new therapeutic strategies in liver diseases. Active
manipulation of the balance between pathogenic and regulatory processes in the liver
may assist in the restoration of homeostasis, especially in hepatic inflammation.

Keywords: TH17 cells, TReg cells, TH17/TReg balance, liver, autoimmune diseases, viral infection
INTRODUCTION

CD4 T cells play a central role in mediating the host immune response to pathogens and in
autoimmunity, cancer, and chronic inflammation. They maintain and enhance CD8 T cell
responses, interact with B cells to induce antibody development, regulate the function of
monocytes/macrophages, and orchestrate the immune response to pathogens. CD4+ T cells also
modulate immune homeostasis by suppressing pro-inflammatory immune responses, build
immunologic memory, and control autoimmunity (Zhu et al., 2010). These functions are
achieved through the differentiation of naïve CD4+ T cells into subsets of effector, memory, and
regulatory T cells.

T cell activation and differentiation rely on different stimuli, and differentiation is initiated by a
cognate antigen presented by specialized antigen-presenting cells (APCs) or other immune cells.
Fragmented antigens are presented on major histocompatibility complex 2 (MHC-2) molecules and
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recognized by the T cell receptor (TCR). Various co-stimulatory
receptors and cytokines are essential for T cell activation and
determine the direction of T cell differentiation.

Distinct subpopulations of CD4 T cells originating from a
common precursor were first described in 1986: in mouse T cell
clones, Mosmann and Coffman found that two types of T helper
cells could be distinguished by their cytokine production,
lymphokine activity, and transcription factor and surface
marker expression (Mosmann et al., 1986). The authors
defined type 1 T helper cells (TH1) by their secretion of
interferon-g (IFN-g), interleukin-2 (IL-2) and tumor necrosis
factor-a (TNF-a). Type 2 T helper cells (TH2) were
characterized by the expression of IL-4, IL-5, and IL-13.
Interestingly, the cytokines secreted by each mature T helper
cell subset directly antagonize the development and
differentiation of the corresponding opposite T helper cell
subtype, thereby sustaining lineage-specific immune responses.

This profile has since been refined. Intensive studies of the
complex cytokine milieu and transcription factor networks
involved in the differentiation of CD4 T helper cell subsets
originating from the same naïve CD4 T cell precursor
identified many more T helper cell subsets. The potentially
distinct T cell lineages include not only TH1, TH2, TH17, and
peripheral regulatory T cells (pTReg) cells, but also TH9, TH22,
regulatory type 1 (Tr1), and follicular helper T cells (TFH)
(Saravia et al., 2019). CD4+ T cell lineages are now understood
to be a plastic and flexible network. One CD4+ subset cannot
differentiate from only one distinct precursor cell, but rather
Frontiers in Pharmacology | www.frontiersin.org 2
differentiates from different subsets depending on the
environmental milieu (Figure 1).

In this review, we discuss developmental differences between
TH17 and TReg cells and their roles in health and disease, with a
focus on liver disease. The fragile balance between these two cell
types was recently found to play a crucial role in maintaining
immune homeostasis. A shift of this balance drives pro-
inflammatory immune responses, especially in chronic
inflammatory diseases, cancer and autoimmunity. Here, we
highlight the intrahepatic effects of this balance in acute and
chronic inflammation as well as in liver cancer and autoimmunity.
TH17 CELLS IN HEALTH AND DISEASE

A T helper cell subset of IL-17 producing TH17 cells defends against
fungal and extracellular bacterial infection and are integral in tissue
inflammation and autoimmune diseases (Tesmer et al., 2008).
While it was first believed that these cells are an inflammatory
subset within the TH1 lineage, it was later determined that TH17
cells are an independent T helper cell lineage (Aarvak et al., 1999).

TH17 Cell Development
The discovery of a new T helper cell subset with pro-
inflammatory properties, referred to as TH17 cells because of
their expression of IL-17A, revolutionized the understanding of
the adaptive immune system in the early 2000s (Park et al.,
2005). TH17 cell differentiation in secondary lymphoid organs
FIGURE 1 | After activation of the T cell receptor by antigen stimulation and co-stimulation, immature CD4+ naïve T cells proliferate and can differentiate into
different effector T cells depending on the cytokine milieu. IL-21 stimulation promotes the TH1 subpopulation accompanied with T-bet/STAT4 expression and effector
function against intracellular pathogens. TH2 cell populations develop after IL-4 stimulation with GATA3/STAT6 upregulation and supporting anti-parasite immune
response and humoral activity. TGF-b in the presence of pro-inflammatory cytokines promotes TH17 cell differentiation. TH17 cells support the immune response
against fungi and extracellular bacteria, whereas TReg cells have an immune tolerant function by producing anti-inflammatory cytokines and inhibiting TFH function.
Although these specific cytokines are important for CD4+ T cell subpopulation development, the differentiation is a plastic and flexible network.
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depends on an inflammatory cytokine milieu consisting of IL-23,
TGF-b, IL-6, IL-1b, and IL-21 to activate the expression of the
lineage-specific transcription factor RORgt, fostering TH17 cell
generation. The role of RORgt was described by Ivanov et al. in
2006, who found this transcription factor to be expressed by IL-
17 producing T helper cells in the lamina propria; in RORgt-
deficient mice, IL-17+ cells were absent (Ivanov et al., 2006).

TH17 cells expand in the periphery and at the tissue site of
inflammation and secrete a distinct group of effector molecules
such as IL-17A, IL-17F, IL-21, IL-22, and IL-6 and express IL-23
receptor (IL-23R) on their surface (Bettelli et al., 2006; Mangan
et al., 2006). Human TH17 cells originate from a CD161+ (the
human equivalent to NK1.1) precursor in the thymus and
umbilical cord blood and express CCR4 and CCR6 but not
CXCR3 (Cosmi et al., 2008; Maggi et al., 2010).

Autocrine- and paracrine-derived TGF-b plays an interesting
role during TH17 cell polarization. During the induction of
RORgt expression, TGF-b synergizes with IL-6. TGF-b and IL-
6 typically have opposing effects, but in this setting these proteins
amplify the maturation of TH17 cells. In an autocrine
amplification loop, TGF-b is further able to synergize with IL-
21, which is predominantly produced by TH17 cells. This synergy
promotes and enhances TH17 cell differentiation and pro-
inflammatory immune responses (Gutcher et al., 2011). High
concentrations of TGF-b in the absence of pro-inflammatory
cytokines can lead to the inhibition of RORgt expression.

TGF-b can also induce the surface expression of IL-23R on
differentiating TH17 cells, along with IL-6/IL-21, making the cells
responsive to the inflammatory cytokine IL-23. IL-23 is a
member of the IL-12 cytokine family and is mainly produced
by APCs. It enhances the activation of STAT3, which together
with RORgt stabilizes TH17 cell function. Therefore, IL-23 is not
only important for TH17 cell generation and thereby the
activation and maintenance of inflammatory responses at the
tissue site of inflammation, but also promotes persistent chronic
inflammation by supporting the proliferation of TH17 cells
within the activated memory T cell pool (Aggarwal et al., 2003;
Zhou et al., 2007; McGeachy et al., 2009).

In 2007, McGeachy et al. and Korn et al. described “classical”
and “alternative”modes of TH17 cell activation that were further
supported by a study from Ghoreschi et al. in 2010 (Korn et al.,
2007; McGeachy et al., 2007; Ghoreschi et al., 2010). The
different modes are driven by the availability of IL-23 and
TGF-b. “Classical” TH17 cells, which arise from naïve CD4 T
cells in the presence of TGF-b and IL-6 and the relative lack of
IL-23, act through nonpathogenic expression of IL-10. Absence
of expression of the TGF-b RII prevents the formation of TH17
cells that mediate the development of experimental autoimmune
encephalomyelitis (EAE) (Veldhoen et al., 2006). The idea of a
nonpathogenic TH17 cell subtype is further underlined by the
fact that in homeostasis, TH17 cells are present in the intestine
without detrimental effects. “Alternative” TH17 cells mature in
the presence of IL-23 and are the pathogenic TH17 subtype.
Overall, the development of TH17 cells is driven by a complex
equilibrium of cytokine milieu, which influences many fine-
tuning processes and a spectrum of effector functions.
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The secretion of cytokines from either terminally
differentiated TH1 (IFN-g) or TH2 (IL-4) cells antagonizes the
expansion of other T helper cell subtypes to sustain a lineage-
specific immune response during infection. The differentiation of
TH17 cells is negatively regulated by IFN-g and IL-4 via the
inhibition of IL-23 and by TReg cells via retinoic acid and IL-2.
Opposingly, IL-17 and IL-23 hamper the development of TH1
cells (Harrington et al., 2005; Nakae et al., 2007). Interestingly,
another IFN-g and IL-4 independent pathway controls the
development of TH17 cells. This process is driven by an
additional member of the IL-12 family, IL-27. Like IL-12 and
IL-23, IL-27 is secreted by APCs and acts independently of IFN-
gR, IL-6R, and T-Bet but requires STAT1. Batten et al. and
Stumhofer et al. found that a lack of IL-27 signaling lead to an
increase in TH17 cells in autoimmune encephalomyelitis and
chronic encephalitis (Batten et al., 2006; Stumhofer et al., 2006).

Unlike TH1 and TH2 cells, TH17 cells have an unstable
cytokine memory and convey a surprising capacity of late-
stage plasticity in their polarization status to adapt to a
changing microenvironment. Because TH17 cells express low
levels of IL-12R, they influence a phenotype shift after IL-12
stimulation that downregulates IL-17 and makes the cells
susceptible to polarizing into a TH1-, but not a TH2-, like
phenotype (Lee et al., 2009). This plasticity and the synergy
between TH1 and TH17 cells is important for host defense
mechanisms, as shown in a mouse model of Mycobacterium
tuberculosis infection in which an early TH17 immune response
recruited TH1 cells to the site of inflammation and promoted the
development of T cell memory (Khader et al., 2007). It can also
be a driving mechanism in autoimmunity and cancer.

TH17 Cells in Host Defense and
Autoimmunity
Until 1996, it was assumed that autoimmune diseases are the
consequence of a dysregulation of TH1 responses. A study by
Ferber et al. showed that loss of IFN-g did not prevent the
development of EAE but rather worsened disease progression
(Ferber et al., 1996). Based on those findings, Oppmann and
colleagues described IL-23 as new cytokine secreted by dendritic
cells (DCs) that can induce the production of IFN-g and IL-17
(Oppmann et al., 2000). Antibody-mediated blockade of IL-23
and generation of IL-23 deficient mice highlighted its
involvement in the development of Crohn’s disease, psoriasis,
EAE, and collagen-induced arthritis and the experimental
animals either showed delayed and reduced disease severity or
never developed autoimmune disease (Cua et al., 2003; Murphy
et al., 2003; Mannon et al., 2004; Krueger et al., 2007). Clinical
trials using monoclonal antibodies interfering with IL-12 and IL-
23, such as ustekinumab, showed promising results in the
improvement of psoriasis and psoriatic arthritis symptoms. In
chronic ulcerative colitis patients, blockade of the interaction of
IL-12 and IL-23 and their specific receptors on TH1 and TH17
cells also showed beneficial effects (Sands et al., 2019). Other
antibodies, such as secukinumab, specifically targeting IL-17A
were also highly effective in psoriasis patients (Sanford and
McKeage, 2015).
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Additionally, blockade of IL-17 or the loss of the regulatory
mediators RORgt and IL-6 resulted in comparable outcomes via
a lack of infiltration of TH17 cells into the tissue sites of
inflammation, pointing to a crucial role for these cells in the
development and progression of autoimmune diseases. Finally,
experiments performing an adoptive transfer of TH17 cells
clearly showed that these cells, but not TH1 cells, modulate
autoimmune conditions in mice. This finding was supported in
human patients with multiple sclerosis, rheumatoid arthritis, and
psoriasis, in whom increased levels of IL-17 and IL-23 were
observed (Ziolkowska et al., 2000; Cho et al., 2004; Vaknin-
Dembinsky et al., 2006). Although an increasing body of
evidence points to a dominant role of TH17 cells as inducers of
autoimmunity, it is important to note that TH1 cells are also
crucial in the development of autoimmunity. Each target tissue
of inflammation actively participates in the formation of a site-
specific cytokine milieu through its cellular composition.

The gut is an especially interesting organ to investigate the
plasticity of TH17 cells. In homeostasis, the intestine is the
primary site of TH17 cell differentiation, and the gut
microbiota heavily influences its regulation. The TCR of
intestinal TH17 cells has a distinct specificity for antigens
coming from segmented filamentous bacteria, suggesting that
these bacteria are critical for the induction of gut-resident TH17
maturation (Huber et al., 2012). The function of these cells under
non-pathogenic conditions is to protect against microbial
invasion and maintain intestinal barrier function as well as to
maintain other barrier sites of the body such as the lung
epithelium or the skin. Non-pathogenic characteristics of these
cells can specifically be found in the small intestine, where they
limit inflammation in response to bacterial or parasitic infections
via the secretion of IL-10. The fragile and complexly controlled
phenotype of TH17 cells can easily shift to an activated state in
which cells attain pathogenicity and induce tissue inflammation
that often leads to autoimmunity in the intestine and in other
distant organs (Wu et al., 2010). In Peyer’s Patches, TH17 cells
transition into a phenotype similar to TFH cells producing IL-21
and Bcl-6 that can induce the production of IgA antibodies by
germinal center B cells (Hirota et al., 2013). Upon bacterial
infection in the colon, TH17 cells can transform into cells
producing IL-17 and IFN-g simultaneously in an IL-23
dependent manner and further develop into a TH1-like cell
type. Transferring this cell type can lead to a TH17/TH1 cell-
induced transfer-colitis (Morrison et al., 2013; Harbour
et al., 2015).

In humans, T cells expressing IL-17 and IFN-g were found in
peripheral blood and the gut lamina propria of patients with
inflammatory bowel disease (Globig et al., 2014). TH17/TH1 cells
are present at the organ site of inflammatory responses in
different models of autoimmune diseases, such as in the colon
in chronic colitis or as revealed by single-cell RNA-sequencing
analysis in experimental autoimmune encephalitis (EAE), which
serves as model for human multiple sclerosis (Neurath et al.,
2002; Gaublomme et al., 2015). Hirota and colleagues
demonstrated that these cells derive from TH17 rather than
from TH1 cells (Hirota et al., 2011). This was further
Frontiers in Pharmacology | www.frontiersin.org 4
supported by a study from Bettelli et al. who showed that
animals deficient for the transcription factor T-bet were
protected against the development of EAE (Bettelli et al., 2004).

These findings suggest that T cells expressing IL-17 and IFN-
g, also known as double producers, are highly pathogenic and
predominantly involved in autoimmune diseases and tissue
inflammation. However, it is not fully understood whether the
production of IFN-g by TH17 cells serves to limit TH17 cell-
induced inflammation or rather promotes inflammation.
REGULATORY T CELLS (TREG) IN HEALTH
AND DISEASE

TReg Development
Regulatory T cells (TReg) balance host defense against foreign
pathogens, foster immune tolerance, and orchestrate immune
homeostasis. The two main TReg subsets are natural TReg cells
(nTReg), which provide central tolerance against self-antigens,
and peripheral TReg cells (pTReg), which develop extrathymically
from conventional T cells and recognize non-self-antigens
(Sakaguchi, 2004). T cells maintain peripheral tolerance by
regulating inflammatory responses against the microbiota,
commensals, and pathogens (Hadis et al., 2011; Lathrop et al.,
2011) (Figure 2).

Natural TReg Development
nTRegs develop during the neonatal period during thymocyte
maturation (Liston et al., 2008). Stable nTReg development
requires a complex network of antigen presenting cells (APCs)
and 1) TCR-dependent recognition of self-antigens, 2) cytokine
stimulation (IL-2, IL-15, and IL-7), and 3) other costimulatory
signals (Bayer et al., 2005). The TCR repertoire of nTReg cells
varies from the effector T cell repertoire with only minor overlap
(Wong et al., 2007). The recognition affinity of self-antigens by
nTReg cells is crucial for nTReg development and must fall
between positive and negative selection (Maloy and Powrie,
2001). In addition to affinity to the MHC self-antigen complex,
the expression level on the APC is important for optimal nTReg

maturation. Cytokine stimulation by IL-2, IL-15, and IL-7
promote nTReg development, function, and homeostasis (Vang
et al., 2008). Costimulatory signals through CD28 stimulation are
also essential to maintain nTReg survival and to avoid defective
nTReg development (Tai et al., 2005). Thus, costimulatory signals
function as expansion, rather than as selective, signals.

During thymic differentiation of nTReg cells, immature single-
positive CD4+ T cells express the IL-2 receptor a chain (CD25)
(Setoguchi et al., 2005). CD25 has high IL-2 affinity, is
continuously expressed on TReg cells, and benefits TReg

responsiveness in comparison to effector cells when IL-2
concentrations are low. CD25 deficiency is related to defective
TReg development, function, and an imbalanced immune system
(Goudy et al., 2013). After differentiation, nTReg cells stabilize
their lineage specific transcription factor forkhead box protein 3
(FOXP3) and gain suppressive functions (Fontenot et al., 2017).
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They further exhibit a specific CpG hypomethylation at three
conserved non-coding DNA sequences (CNS) at the FOXP3
promotor, influencing the overall transcriptional activity of the
cell (Toker et al., 2013). These epigenetic modifications are
obligatory for TReg lineage stability, because they influence the
activity of central signaling pathways like NF-kB, NFAT, STAT5,
mTOR, and the binding of transcription factors to the FOXP3
promotor (Zheng et al., 2010). Further, TReg-specific
demethylation regions (TSDRs) contribute to a specific
demethylation signature abundant in TReg function-defining
genes (e.g., CTLA-4, IL-2RA, IKzf4) which regulate the overall
transcriptional activity, development, and function of TReg cells.

Although FOXP3 is interrelated with TReg function, its
expression is not exclusive for TReg cells as it can be transiently
Frontiers in Pharmacology | www.frontiersin.org 5
upregulated in activated T cells and likewise several TReg specific
genes are FOXP3 independent. However, FOXP3 is necessary
but not sufficient to induce TReg cells (Hill et al., 2007).

Peripheral TReg Development
In contrast to nTReg cells, pTReg cells develop in the peripheral
tissue from naïve CD4+ T cells across the lifespan of an
individual. pTReg cells also have a slightly different TCR
repertoire and prevent an overwhelming immune response
from occurring in response to microbiota, commensals, and
pathogens (Hadis et al., 2011; Lathrop et al., 2011). pTReg and
nTReg cells share the expression of the lineage defining molecules
CD25 and FOXP3. Although, the frequency of pTReg cells is low,
their percentage can be enriched in different tissues under
FIGURE 2 | Natural TReg cells (nTReg) maturate in the thymus. Their development requires the interplay of TCR-dependent recognition of self-antigen, a specific
cytokine milieu (including TGF-b, IL-2, IL-7, IL-15) and the presence of co-stimulatory factors. They then infiltrate into the periphery. In the lymph node, T cells
encounter a specific antigen from antigen presenting cells and become activated. Depending on the strength of the TCR binding and the presence or absence of co-
stimulatory factors, cells either differentiate and proliferate into effector cells or undergo apoptosis. Peripheral TReg (pTReg) cells develop predominately in the periphery
from naïve CD4+ T cells. However, nTReg and pTReg cells share the lineage markers CD25 and FoxP3 which are highly expressed in effector TReg cells (eTReg). eTReg
cells suppress antigen presenting cells (APC) and effector T cells (Teff) and are thereby very efficient in inhibiting the pro-inflammatory immune response. Furthermore,
TReg cells express CD39 on the cell surface to convert extracellular ATP (eATP) to adenosine and prevent a pro-inflammatory immune response. Follicular helper T
(TFH) cells suppress the germinal center B cell reaction. Importantly, TRegs also inhibit Teff in the circulation. TH17 cells secret pro-inflammatory cytokines and attract
neutrophils to the inflammation site, while TH1 cells promote macrophage development and function and TH2 cells lead to plasma, eosinophil, and mast cell
differentiation and generate a pro-inflammatory immune response.
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inflammatory conditions (Curotto de Lafaille et al., 2008). Like
nTReg cells, the promotion of pTReg differentiation is driven by
TCR signaling, TGF-b, and IL-2 and costimulatory signals (Chen
et al., 2003). The importance of TGF-b signaling was
demonstrated in mice, when TGF-b deficiency prevented pTReg

differentiation and FOXP3 stabilization (Marie et al., 2005)
suggesting that specific demethylation at the FOXP3 promotor
is important for pTReg differentiation, function, and lineage
stability (Takimoto et al., 2010).

pTReg development can differ by tissue. The process is highly
induced in the intestine because of the special immune demands
at this site. Primarily, mucosal DCs support pTReg development
by producing TGF-b and retinoic acid (Coombes et al., 2007).
The latter supports FOXP3 stabilization by CNS1 (Mucida et al.,
2009). In addition, pTReg differentiation is enhanced by
metabolites produced by the microbiota in the intestine, along
with chromatin structure and FOXP3 stabilization facilitated by
short chain fatty acids (Arpaia et al., 2013). Fascinatingly, a high
percentage of the pTReg population in the intestine co-expresses
RORgt and FOXP3 while preserving the overall epigenetic and
genetic signature and function of TReg cells (Yang et al., 2016).

The peripheral FOXP3+ cell population is very heterogenous
and can be divided into different subpopulations according to
FOXP3, CD25, and CD45RA expression profiles reflecting their
activation, cytokine expression, and manifestation of epigenetic
changes. CD45RA+FOXP3lowCD25low are defined as resting or
naïve TReg cells. CD45RA-FOXP3highCD25high are described as
effector TReg cells (eTReg), and CD45RA-FOXP3lowCD25low cells
are non TReg cells and represent activated conventional T cells. The
CD45RA+FOXP3lowCD25low subpopulation is further characterized
by the expression of naïve T cell markers, the majority of which
express CD31, a thymic emigrant marker, and the TSDR is widely
conserved. The CD45RA-FOXP3highCD25high subpopulation, in
contrast, exhibits a highly suppressive and proliferative capacity
and is profoundly demethylated (Miyara et al., 2009).

The Role of TReg Cells in Immune
Homeostasis and Inflammation
TReg cells balance the immune response in homeostasis and
inflammation. These cells orchestrate the immune response of
effector T cells (Teff) and initiate anti-inflammatory mechanisms.

Basic Mechanism of TReg Function
TReg cells influence the immune response by producing anti-
inflammatory cytokines such as IL-10 and TGF-b. IL-10 has a
potent immunosuppressive function by inhibiting the
production of pro-inflammatory chemokines and cytokines
and establishing immune balance in response to a pathogen,
autoimmune disease, and allergy (O’Garra et al., 2004). IL-10
directly inhibits co-stimulation via CD28 and ICOS and
indirectly by the downregulation of co-stimulatory molecules
on APCs (Taylor et al., 2007). In addition, IL-10 produced by
TReg cells orchestrates antibody production in allergies from IgE
toward IgG4. IgG4 and IL-10 production is upregulated in a
course of allergen-specific immunotherapies and inhibits IgE-
mediated anaphylaxis (Epp et al., 2018).
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Interestingly, TRegs producing TGF-b may not be required for
complete TReg function and influence overall TReg differentiation
(Piccirillo, 2008). Numerous studies revealed the importance of
TGF-b mediated TReg function and the upregulation of TGF-b to
amend their suppressive function. TGF-b represses the cytolytic
function of effector CD8+ cells by downregulating cytolytic genes
(e.g., Fas ligand, perforin, granzyme A, B and IFN-g) in
autoimmune diseases and cancer (Thomas and Massague, 2005).
In addition, TGF-b produced by TReg cells inhibits natural killer
cell function and contributes to the overall anti-inflammatory
effects of TGF-b (Cortez et al., 2017). Furthermore, TReg-
mediated TGF-b can suppress naïve T cell activation and
differentiation and can function as a self-regulating stimulus to
maintain TReg development (Tran, 2012). Although the role of
TGF-b in direct suppressive TReg function remains controversial,
this cytokine seems important but not obligatory.

Another anti-inflammatory cytokine that complements the
inhibitory repertoire of TReg cells is IL-35. IL-35 plays a
suppressive role in autoimmune diseases, allergies, and cancer
models. In addition to TReg cells, IL-35 is secreted by BReg cells and
CD8+ cells. Thus, this cytokine prevents effector T cell expansion,
cytokine production, and TH17 differentiation (Collison et al.,
2007; Niedbala et al., 2007). IL-35 also supports TReg and BReg
expansion and activation by influencing the immune response in
autoimmunity (Dambuza et al., 2017). In sum, cytokines
fundamentally contribute to suppressive TReg function.

TReg cells express various inhibitory receptors on the cell surface.
One of the most important and well-studied inhibitory receptors is
the cytotoxic T lymphocyte antigen-4 (CTLA-4), which is
functionally and structurally related to CD28 and can bind B7
with a 50–100-fold higher affinity. CTLA-4 is upregulated in
activated and exhausted T cells but continuously expressed on
TReg cells and supports their inhibitory function. By binding to B7,
CTLA-4 inhibits T cell activation, proliferation, and cytokine
production including IL-2 (Krummel and Allison, 1996). CTLA-4
further leads to the removal of costimulatory receptors on APCs
(Sansom, 2015). A defect in CTLA-4 function, for example by non-
sense mutation in the gene encoding CTLA-4, leads to defective
TReg function and is accompanied by complex autoimmune
disorder and immunodeficiency in humans. Interestingly,
patients had a higher TReg abundancy but decreased CTLA-4
expression on the TReg cell surface. Patients with the inherited
heterozygous loss of function mutation develop systemic
autoimmune disorders like type 1 diabetes, autoimmune thyroid
disease, systemic lupus erythematosus, and inflammatory bowel
disease (Kuehn et al., 2014; Schubert et al., 2014).

TReg cells also express the inhibitory receptors programmed
cell death protein 1 (PD-1) and lymphocyte-activation gene
function 3 (LAG-3). PD-1 and FOXP3 work collaboratively to
maintain immune tolerance, with PD-1 important to
maintaining the activation balance between effector T cells and
TReg cells (Zhang B. et al., 2016). In a course of anti-PD-1 therapy
in cancer, PD-1+ TReg cells were amplified and mediated cancer
growth (Kamada et al., 2019). LAG-3 contributes to
immunosuppressive TReg function in a tumor environment and
promotes maternal tolerance during pregnancy (Camisaschi
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et al., 2010; Zhang and Sun, 2020). Hence, LAG-3 inhibits DC
maturation and function. Thus, inhibitory receptors play a
fundamental role in TReg function but remain poorly understood.

In addition to cytokines and inhibitory receptors, TReg cells
use metabolic disruption to influence the immune response. IL-2
is one of the most important cytokines for T cell expansion and is
mandatory for TReg function and differentiation (Davidson et al.,
2007). TReg cells express the high-affinity IL-2 receptor CD25 on
their surface and could have a metabolic advantage in
comparison to effector T cells, especially in a milieu where the
IL-2 concentration is low. Accordingly, cytokine deprivation by
TReg cells induced apoptosis in effector T cells (Pandiyan et al.,
2007). In contrast, IL-2 consumption was not required for TReg

suppression (Oberle et al., 2007). Nevertheless, modern low-dose
IL-2 therapies in various diseases could demonstrate a
preferential TReg expansion and thereby have a positive effect
on patient outcome (Hartemann et al., 2013; Matsuoka et al.,
2013; He et al., 2016).

TReg cells use the membrane-bound ectonucleotidases CD73
and CD39 to generate adenosine from extracellular ATP to
influence the immune response. Extracellular ATP usually
promotes inflammation, whereas adenosine leads to anti-
inflammatory effects. CD39 is abundant on TReg cells, whereas
CD73 is intracellularly enriched in human TReg cells and
upregulated after TReg activation (Schuler et al., 2014). TReg cells
are sensitive to extracellular ATP, and the upregulation of CD39 is
accompanied by remission of inflammatory bowel disease (Gibson
et al., 2015). Thus, CD39 signaling is primarily a mechanism to
suppress TH17 function and development. Adenosine leads to
CTLA-4 and PD-1 upregulation in TReg cells and promotes TReg

suppression of DC function (Ring et al., 2015).
The first indication that cytolytic mechanisms play a role in

TReg function came from studies of granzyme B. In particular,
granzyme B is upregulated in activated TReg cells and mediates
suppression of B cell function, and granzyme B deficiency
reduces TReg suppression. Granzyme B-expressing TReg cells
are enriched in human colorectal cancer and potent
suppressors of effector T cells. Further, TReg cells protect
themselves from granzyme B-mediated killing by upregulating
serine protease inhibitor 6 (Azzi et al., 2013; Sun et al., 2020).

TReg Function in Autoimmunity
Defects in molecules important for TReg function can lead to
autoimmune diseases, underlying the importance of TReg effector
proteins in pathophysiology. For example, the inherited
IPEX syndrome (X- l inked auto immune syndrome
immunodysregulation polyendocrinopathy enteropathy X-linked)
is caused by different loss offunctionmutations in the FOXP3 gene.
These defects can further lead to the development of autoimmune
diseases like diabetes type 1, autoimmune colitis, or hepatitis (Le
Bras andGeha, 2006). IL-2RAmutations cause a phenotype similar
to IPEX syndrome and CD25 deficiency can increase the
vulnerability to viral infection (Goudy et al., 2013). In addition to
these monogenetic TReg diseases, TReg dysfunction appears in other
immune deficient syndromes. Autoimmune diseases like type 1
diabetes, multiple sclerosis, systemic lupus erythematosus,
Frontiers in Pharmacology | www.frontiersin.org 7
myasthenia gravis, and rheumatoid arthritis are associated with
altered TReg quantity or quality (Wakabayashi et al., 2006; Lapierre
et al., 2013).

The direction of TReg alteration is controversial. Different
studies show either an increase or decrease in TReg cell numbers
based on the stage of the disease and the heterogeneous use of
TReg-defining molecules. In addition, as explained above, TReg

defining molecules can be upregulated after general T cell
activation in humans (Pillai et al., 2007). Nevertheless, TReg

cells are an important target for therapy of autoimmune
diseases and remission can partly reverse the defective TReg

function (Hartemann et al., 2013; Humrich et al., 2015;
Rosenzwajg et al., 2015; He et al., 2016). Treatment with
tocilizumab in patients with rheumatoid arthritis, for example,
increased TReg frequency and restored TReg function (Kikuchi
et al., 2015). Another therapeutic approach is the adoptive
transfer of in vitro-expanded TReg cells. This strategy was
beneficial in mouse models and is now being tested in humans
(Morgan et al., 2005; Mathew et al., 2018).

Tumor tissue is especially challenging for the immune system.
TReg cells impair the immune response against tumor antigens by
effector T cells that evolve from potential self-reactive cells. In
general, a TReg-enriched tumor tissue with decreased abundancy of
CD8+ cells is associated with poor prognosis, metastasis, and
reduced survival (Mougiakakos et al., 2010). Tumor-infiltrating
TReg cells are primarily effector TReg cells (CD45RA-
FOXP3highCD25high), which are active and proliferative.
Furthermore, these cells differ in the expression of activation
markers, TReg markers, and inhibitory receptors on their cell
surface. Tumor-infiltrating TReg cells also express several
chemokine receptors such as CCR4 and CCR8 (De Simone et al.,
2016). In the tumor, TReg cells interact with immune cells, cancer
cells, and fibroblasts to influence tumor immunity. Tumor-
associated fibroblasts promote tumor progression and positively
regulate TReg function and frequency (Kato et al., 2018).
Furthermore, TReg cells and cancer cells bidirectionally support
their growth and function. Immunosuppressive TReg function
enables tumor progression, while cancer cells secrete TGF-b,
IDO, and COX-2 to promote TReg trafficking and differentiation
(Costa et al., 2018). Adenosine is produced by cancer cells and TReg

cells and functions as a mediator, encouraging cancer cell growth,
angiogenesis, and metastasis (Chimote et al., 2018). In addition to
cancer cell effects, TReg cells have a tremendous impact on tumor-
infiltrating immune cells. They reciprocally promote nonclassical
monocytes, BReg differentiation, andMDSCs trafficking to create an
immunosuppressive cell composition. Furthermore, TReg cells
inhibit proinflammatory immune cells such as NK cells and
cytotoxic lymphocytes to prevent an effective anti-tumor immune
response (Chang et al., 2016; Sarhan et al., 2018). Modern
immunotherapies use anti-CTLA-4 and anti-PD-1, which mainly
target the TReg immune response (Ha et al., 2019).

An important cell subpopulation that balances the immune
response in the course of pathogen infection and vaccination are
follicular regulatory T cells (TFR). TFR cells affect the humoral
immune response by influencing B cell maturation in the
germinal center (GC). During this process, B cells undergo
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somatic hypermutation to establish a high affinity and effective
humoral immune response. This development is supported by
TFH cells and is tightly regulated by TFR to prevent autoimmunity
and an imbalanced immune response (Wollenberg et al., 2011).
TFR influence TFH frequency and function and in addition B cells
directly by inhibiting their activation. Interestingly, TFR express a
distinct TCR repertoire for foreign antigens and potential self-
antigens. TFR resemble TFH cells in CXCR5, ICOS, and BCL-
6 expression but TFR also express CD28, FOXP3, and
Blimp1 (Chung et al., 2011). TFR cells differentiate from CD25
+FOXP3+ cells and function as an effector TReg subpopulation
(Linterman et al., 2011). CTLA-4 is the most important mode of
TFR-mediated immune cell regulation, but PD-1 also contributes
to full TFR function (Sage et al., 2014). TFR and TFH influence one
another reciprocally, and the interaction can be influenced by the
microenvironment. In a recently published study, different
adjuvants balanced TFR frequency and function during
vaccination (Bartsch et al., 2020). The TFR function was
affected by IL-6 signaling and the altered TFR cell frequency
influenced antibody glycosylation and the overall humoral
immune response (Bartsch et al., 2020).

In addition to the GC reaction, TFR can be detected in the
blood even at low frequency. Circulating TFR cells have a
memory-like phenotype and fine tune the secondary response
to an antigen by influencing reactivation of DCs to GC and
cytokine production, antibody class-switching, and B cell
activation (Sage et al., 2014). TFR dysfunction can be associated
with autoimmune diseases, graft versus host reactions, and
allergies (He et al., 2013). Overall, TReg cells play an important
role in orchestrating the immune response in health and disease.
THE TH17/TREG CELL BALANCE IN
THE LIVER

The liver is an immunogenetic organ exposed to a variety of
antigens and pathogens from the digestive tract and is essential to
building an effective immune response. Interestingly, and in
contrast to the blood, the CD4/CD8 ratio is reversed in the liver
(Doherty and O’Farrelly, 2000). The liver is naturally enriched
with innate immune cells, namely, macrophages (Kupffer cells),
natural killer (NK) cells, and NK T cells. Especially during
fibrogenesis, infiltrating monocytes are important for continuous
inflammation and the activation of extracellular matrix producing
hepatic stellate cells (HSCs). The adaptive immune system also
plays a critical role in these processes. The intrahepatic TReg

frequency can differ from 1% to 5% among all intrahepatic
lymphocytes (Oo et al., 2012). The expression of IL-17RA was
observed on parenchymal and non-parenchymal cells including
hepatocytes, HSCs, Kupffer cells, and endothelial cells, all of which
exacerbate inflammatory reactions upon injury. In two different
mouse models of hepatic fibrosis (bile duct ligation and carbon
tetrachloride), the deletion of IL-17A, IL-23, and IL-17RA
inhibited HSC activation and fibrosis development. This finding
implies a direct functional link between IL-17A mediated
stimulation of HSCs by activation of STAT3-dependent
Frontiers in Pharmacology | www.frontiersin.org 8
signaling (Meng et al., 2012). Further, isolation experiments in
primary liver-resident cells revealed IL-17 production and IL-17
signal transmission by almost all liver-resident cell types. Kupffer
cells especially express high levels of IL-17 and show significant
upregulation of IL-17 and IL-1b upon stimulation. mRNA
expression of IL-17RA and IL-17RC could additionally be found
in hepatocytes, Kupffer cells, HSCs, and liver endothelial cells.
Despite IL-17RA expression, hepatocytes and liver endothelial
cells do not express IL-17 themselves (Zenewicz et al., 2007).
Another study using a cell transplantation model pointed to a
direct interaction between HSCs and TReg cells. Jiang et al. found
that upon transplantation, HSCs in allogeneic recipients convey
the selective expansion of CD4+CD25+FoxP3+ cells in an IL-2-
dependent fashion to protect parenchymal cells from rejection
(Jiang et al., 2008).

In contrast, CD4+ and CD8+ T cells, NK T cells, gdT cells,
neutrophils, and macrophages do express IL-17 in the liver. The
equilibrium of TH17 and TReg cells is regulated not only by
differentiation but also at the epigenetic level. Interestingly,
recent studies show that in the presence of IL-1b, IL-2, IL-21,
and IL-23, IL-17 producing cells can also develop from TReg cells
due to a differentiation switch that removes their suppressive
function (Koenen et al., 2008; Deknuydt et al., 2009).

TReg and TH17 cells are also often significantly increased in
chronic inflammatory liver diseases and are important to balance
the persisting pro-inflammatory immune response. Interestingly,
a reciprocal relationship between TH17 and TReg cells exists in
their differentiation as in their effector function (Figure 3).

TReg and TH17 cells can co-express the lineage defining
transcription factors RORgt and FOXP3. Environmental
conditions such as the tissue-specific cytokine milieu at the site
of infection can influence this expression and influence the
balance by fostering either TReg or TH17 cell development by
simultaneous inhibition of the other cell type. TGF-b, for
example, is required for the differentiation of both subsets; the
absence or presence of proinflammatory cytokines defines
whether a TH17 or TReg cell develops (Yang et al., 2008;
Hammerich et al., 2011). In contrast, TH17 cells express IL-10
receptor a, which can convey a TReg-induced decrease in TH17
cells in an IL-10-dependent manner (Huber et al., 2011). Recent
studies point to a delicate balance between TH17 and TReg cells
crucial to maintaining tissue homeostasis. In addition to IL-6,
other factors such as retinoic acid, rapamycin, or cytokines (e.g.,
IL-2 and IL-27) influence this balance significantly. TReg cells are
assigned a decisive role in hepatic immunity. Results obtained in
mouse models of acute and chronic liver disease also point to a
major involvement of TH17 and TReg cells in a variety of human
inflammatory liver diseases. For example, in a cancer milieu,
glucose consumption by tumor cells preferentially promotes TReg

differentiation and decreases TH17 cell development thereby
supporting the immune escape strategy of tumor cells. Another
important ubiquitous environmental condition during chronic
and acute infection is hypoxia. Hypoxia can induce the hypoxia
inducible factor 1a (HIF-1a) as an adaptive mechanism of the
cells to low oxygen concentration. HIF-1a stabilization supports
RORgt and IL-17 production while targeting FOXP3 to
October 2020 | Volume 11 | Article 588436

https://www.frontiersin.org/journals/pharmacology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/pharmacology#articles


Drescher et al. TH17/TReg Cells—It’s All About the Balance
proteasomal degradation. Manipulation of the balance between
pathogenic and regulatory processes in the liver are believed to
allow the focused restoration of homeostasis especially during
hepatic inflammation.
Frontiers in Pharmacology | www.frontiersin.org 9
The detailed analysis of TH17 cells in human liver remains
difficult because the cell frequency is low and cells can only be
analyzed after their in vitro activation with phorbol 12-myristate
13-acetate (PMA) and ionomycin. This in vitro activation is
interesting but must be critically considered because the extent to
which it reflects the in vivo situation and cell status upon
isolation is unknown.

Autoimmune Diseases
One example of specific immune change in the liver is
autoimmune hepatitis (AIH). Although the cause of AIH is not
fully understood, T cell mediated liver tissue destruction is involved
and AIH could be associated with genetic and environmental
alterations. AIH leads to chronic liver inflammation, circulating
autoantibodies, and elevated liver enzymes (Tait et al., 1989). Zhao
et al. showed that patients with AIH have increased serum levels of
IL-17 and IL-23 together with an increased frequency of TH17 cells
in the liver compared to controls. Furthermore, the frequency and
function of TReg cells in the blood was decreased (Ferri et al., 2010).
By analyzing the T cell composition in the liver, it was
demonstrated that the total TReg number was not altered in AIH
patients. In contrast, these patients displayed higher hepatic
expression of the TH17-related cytokines IL-17, IL-23, IL-6, and
RORgt. In vitro experiments showed that IL-17 induces IL-6 via
MAPK signaling in hepatocytes, which in turn stimulates TH17 cell
differentiation and infiltration in a positive feedback loop (Zhao
et al., 2011). These results are supported by a retrospective study of
100 AIH patients. In addition to elevated serum levels of IL-17, IL-
6, IL-21, and TNF-a, an increased frequency of TH17 cells was
observed. Pro-inflammatory cytokines were positively correlated
with liver injury, whereas IL-10 was negatively regulated with
autoantibodies (An, 2019). Likewise, TReg cells from AIH patients
had decreased CD39 expression and functionally failed to prevent
TH17 accumulation mediated by extracellular ATP (Grant et al.,
2014). Remission in AIH patients was associated with restored T
cell balance, and the infusion of ex vivo expanded TReg cells was
beneficial in a murine model (Lapierre et al., 2013). In sum, the
balance of TReg and TH17 composition at the site of inflammation
and TReg function is critical in AIH pathomechanisms.

Primary biliary cirrhosis (PBC) is a chronic cholestatic liver
disease characterized by the loss of immune self-tolerance
leading to the chronic injury of biliary epithelial cells. Ninety
percent of affected patients are women older than 40 years. The
importance of the TH17/TReg balance in disease progression of
primary biliary cirrhosis (PBC) is evident when considering that
a knockout for CD25 (IL-2Ra) in mice serves as an animal model
for this disease. Mice spontaneously develop autoantibodies
caused by a loss of function of TReg cells and acquire biliary
duct damage similar to that observed in PBC patients
(Wakabayashi et al., 2006). Deficiency of functional TReg cells
leads to elevated TH17 cell numbers in the liver and elevated IL-
17 levels in these mice compared to wildtype controls. A possible
explanation might be the missing repressive function of IL-2
during TH17 cell differentiation. In line with the results obtained
in mice, patients suffering from liver fibrosis due to PBC show a
higher frequency of TH17 cells in blood than healthy control
FIGURE 3 | In acute and chronic liver diseases, T cells are crucial to either
initiate, maintain, or terminate pro-inflammatory immune responses. Different T cell
subpopulations develop, expand, and function based on a distinct cytokine milieu
influenced by the presence of different types of immune cells. Different CD4+ cells
recognize certain chemokine receptors within the liver and are thereby attracted by
different cell types and stimuli to infiltrate the liver tissue. The differentiation of these
subsets requires a specific cytokine milieu generated by non-parenchymal cells
(e.g. monocytes) or parenchymal cells [e.g., hepatic stellate cells (HSCs)]. TH1 cell
cells promote alternatively activated macrophage development (M2), whereas TH2
cells additionally promote liver myofibroblast (MFB) activation. TH17 cells leads to
the recruitment of neutrophils, granulocytes, and macrophages to the site of
inflammation to induce and sustain a pro-inflammatory immune response.
Regulatory T (TReg) cells and follicular T (TFH) cells prevent the pro-inflammatory
immune response of several parenchymal and non-parenchymal cells within the
liver tissue in course of an inflammatory immune response.
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patients. Liver biopsy samples of PBC patients point to a
dislocation of these cells around the portal tracts (Shi et al.,
2015). Patients with cirrhosis secondary to PBC displayed an
even higher infiltration of TH17 cells into liver tissue (Tan et al.,
2013). However, the exact mechanisms that cause an induction
of TH17 cells in livers of IL-2RA knockout animals
remain elusive.

Primary sclerosing cholangitis (PSC) is another chronic-
inflammatory liver disease with an unknown pathogenesis.
Similar to PBC, PSC can lead to liver fibrosis and obliteration of
intra-and extrahepatic bile ducts. PSC is often associated with
chronic ulcerative colitis, and there is no effective treatment
(Hirschfield et al., 2013). Patients with also have a decreased
peripheral TReg frequency with epigenetic changes. Furthermore,
a decrease in TReg numbers was associated with an IL-2RA gene
polymorphism and lead to reduced TReg function (Sebode et al.,
2014), (Figure 4).

Acute Liver Injury
Mouse models of acute liver injury were used to further investigate
the role of TH17 cells in the liver. In the concanavalin A- (ConA-)
model of acute T cell induced hepatitis, IL-1- deficient animals
were challenged and knockout mice developed less severe injury
Frontiers in Pharmacology | www.frontiersin.org 10
with higher TReg numbers compared to wildtype mice (Nagata
et al., 2008). However, these results are controversial; another
study found in the same model that IL-17-deficient mice seemed
to develop a comparable level of liver injury after ConA-treatment
(Zenewicz et al., 2007). In another interesting mouse model of
drug-induced liver injury (halothane injection intraperitoneally),
mice had increased serum levels of IL-17. After the administration
of an IL-17 neutralizing antibody serum, liver enzymes AST and
ALT had significantly decreased levels, with a downregulation of
inflammatory cytokines such as TNF-a. These beneficial effects
could be directly reversed by the application of recombinant IL-17
(Kobayashi et al., 2009).

Viral Infection
The TReg/TH17 balance is essential for an effective immune
response and at the same time preventing excessive liver injury
during viral infection. Thus, the liver is affected by several
viruses, and some of them lead to persistent infection and can
cause liver cirrhosis, organ failure, and cancer. During acute
hepatitis A virus (HAV) infection, serum IL-17 levels are
correlated with liver injury, and liver resident and circulating
TReg frequencies are negatively linked to elevation of ALT and
AST (Choi et al., 2015).
FIGURE 4 | A reciprocal relationship exists between TH17 and TReg cells. Their balance is found to be important in the persistence or recovery from liver injury. A
shift of the balance to a more dominant TH17 cell response favors pro-inflammatory reactions and persisting damage. In viral infections, TH17 are especially important
for viral clearance but at the same time cause liver damage. TReg cell on the other hand prevent liver damage but also trigger viral persistence by strengthening the
anti-inflammatory immune response. An imbalance of the TH17/TReg milieu to a dominant TH17 cell response favors disease development and progression in NAFLD.
In autoimmune diseases a TReg cell responses have beneficial effects in regards to self-tolerance, restore immune homeostasis and are even proposed as a
treatment option in acute and chronic transplant rejection reactions. In a tumor environment TReg cells support tumor cells from being targeted by the immune
system and hence promote tumor growth and metastasis.
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The major problem in persistent viral infection is a failure of
the T cell response involving T cell exhaustion due to persistent
antigen presentation. TReg cells also play a role in the
immunopathology of persistent viral infection. It was
demonstrated that liver sinusoidal endothelial cells (LSEC) are
potent enough to promote TReg differentiation by the continuous
induction of FOXP3 in conventional T cells, although all liver cells
were able to induce TReg differentiation. TReg stabilization did not
require inflammation but did require TGF-b, which is abundant
on the LSEC cell membrane. Experimentally, LSEC-induced TReg

cells expressed FOXP3 and had efficient inhibitory functions on
effector T cells in vitro and in vivo (Carambia et al., 2014). Antigen
presentation on LSECs and thereby an early TReg development in a
course of sub-infectious viral infection of hepatotropic viruses, e.g.,
chronic hepatitis C virus (HCV), can support ineffective virus
clearance and chronic infection (Park et al., 2013). In contrast,
virus-specific TH17 cells were correlated with liver injury and
inflammation, but TH17 quantity could not be linked to effective
viral clearance. Furthermore, IL-23 and IL-17 levels in HCV-
infected patients were elevated, and IL-23 therapy was reported to
modulate the antiviral response by preferentially promoting TH17
immune cells (Meng et al., 2016). In a course of HCV infection,
TReg cells were mainly found in necro-inflammatory liver areas to
inhibit the effector CD8 T cell response, which is the main cause of
liver damage in HCV and hepatitis B virus (HBV) infection.
Isolated TReg cells from HCV-infected patients suppressed virus-
specific CD8+ cells, whereas the depletion of TReg cells increased
their proliferation. Furthermore, TCR analysis demonstrated that
the effective TReg population during chronic HCV infection is
heterogeneous and consists of nTReg and pTReg cells (Losikoff et al.,
2012). In comparing the TReg cells of patients who spontaneously
resolved the infection and patients with persistent infection, core
virus-specific TReg cells were primarily found in patients with
chronic HCV infection. They inhibit the virus-specific T cell
response by producing IL-10 and IL-35 (Langhans et al., 2010).
Furthermore, several studies investigated a positive correlation
between TReg quantity and function with chronic HCV
progression (Cabrera et al., 2004; Ebinuma et al., 2008). TH17
cells on the other hand are enriched in livers of patients with
chronic HCV infection mainly driven by Tim-3, which leads to a
differential regulation of IL-12 and IL-23 (Wang et al., 2013).

The TReg/TH17 balance also plays an important role in
chronic HBV infection. TReg cells inhibit the antiviral response
of effector T cells (Yan et al., 2014). The frequency of circulating
TReg cells is differently described in chronic HBV infection, but
there are some indications that the TReg frequency is increased in
severe chronic HBV infection. Furthermore, TReg frequencies
could be positively correlated with viral load, HBeAg (Hepatitis B
envelope Antigen), and HBsAg (Hepatitis B surface Antigen)
(Manigold and Racanelli, 2007; TrehanPati et al., 2011). Patients
with a predominant TH17 response have high plasma viral loads.
Especially in HBV infection and HBV-induced cirrhosis, IL-17+
cells increase with cirrhosis stage and the HBcAg (Hepatitis B
core Antigen) mediates TH17 cell responses by an IL-17R-
induced activation of monocytes/macrophages. This effect leads
to the production of elevated levels of pro-inflammatory
Frontiers in Pharmacology | www.frontiersin.org 11
cytokines such as IL-6, TNF-a, IL-12, and IL-23 (Sun et al.,
2012). Further, the elevation of TReg and TFR cells in chronically
HBV infected patients associated with elevated IL-10 and TGF-b
levels in comparison to healthy individuals (Liu et al., 2020). TReg

differentiation was thereby promoted by TGF-b production of
hepatic stellate cells and activation of Notch signaling during
chronic inflammation. In a course of antiviral response, TH17
cells increased in quantity accompanied with an increase in viral
load (Ichikawa et al., 2011; Yan et al., 2014). In addition, in
course of antiviral therapy, PD-1 expression decreased on TH17
cells and other effector T cells, indicating an improved T cell
exhaustion; however, PD-1 was not present on TReg cells (Wei
et al., 2013). The TH17/TReg balance is critical in the development
of liver cirrhosis in chronically-infected patients. An imbalance
in TH17/TReg cells was thereby an independent predictive factor
for decompensated liver cirrhosis (Lan et al., 2019). In addition,
Yang et al. demonstrated that IL-35 is responsible to balance the
TReg and TH17 balance in acute and chronic HBV infection by
preferentially increasing virus-specific TReg cells and the
prevention of TH17 cell differentiation (Yang et al., 2019). In
conclusion, TReg and TH17 cells contribute to the immune
response during viral liver infection and the optimal balance is
important for an effective antiviral immune response and
prevention of complications (Figure 4).

Alcoholic and Nonalcoholic
Steatohepatitis (ASH and NASH)
Patients with alcoholic steatohepatitis (ASH) show a direct
correlation between the severity of inflammation and the
amount of liver damage. The degradation of ethanol mediated
by cytochrome P450 2E1 (CYP2E1) is associated with various
inflammatory responses within the liver. The immune response
leads to the production of reactive oxygen species (ROS) and
TNF-a and the infiltration of immune cells. T cells infiltrating
into the liver secrete high levels of pro-inflammatory cytokines,
thereby attracting neutrophils to the tissue site of inflammation.
Neutrophil recruitment could be closely linked to the
prominence of TH17 cells. This in turn leads to increased IL-17
serum levels in ASH patients, which could be directly linked to
progressive liver damage. Further, the number of TReg cells
decreases in the blood of these patients (Lemmers et al., 2009).

Nonalcoholic steatohepatitis (NASH) is related to metabolic
syndrome. This condition has become the most common cause of
chronic liver disease and will likely be the main cause for liver
transplantations within the next decade (Younossi et al., 2019).
Patients with non-alcoholic fatty liver disease (NAFLD) have a
high risk to progress from simple steatosis to more advanced
disease stages such as NASH, cirrhosis, and hepatocellular cancer
(HCC). The exact mechanisms of the pathogenesis of NASH are
poorly understood. However, the role of the activation of the
adaptive immune system via a TH17-mediated immune responses
is becoming evident.

Targeting the balance between TH17 and TReg cells is a
relatively new approach and currently topic of many research
studies. The lack of available human tissue samples makes it
difficult to investigate this as a potential new treatment option.
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Nevertheless, recent studies in mice and few data from humans
indicate a decisive role of CD4+ T cells in the progression from
NAFLD to NASH up to HCC development (Hammerich et al.,
2011; Rau et al., 2016). A key mechanism within this process is a
strong infiltration of neutrophils together with an increased IL-6
signaling and TH17 accumulation (Hubscher, 2006). This further
leads to a depolarization of the intrahepatic CD4+ cell response
to a more TH17 cell-driven reaction; at the same time, TReg cell
activity is suppressed (Gomes et al., 2016; Rau et al., 2016).
Although the total TReg number of circulating and intrahepatic
TReg cells is not altered, the overall TH17/TReg balance is shifted
to a more dominant pro-inflammatory immune response.

The majority of data on TH17 cells in NASH is limited to mice.
Different mouse models for diet-induced nonalcoholic
steatohepatitis, such as the methionine-choline deficient-diet
(MCD-diet) and the widely used high fat diet (HFD) model, can
lead to steatohepatitis and subsequent fibrosis. Disease
development and progression in these models is accompanied
with an increase in TReg cell numbers at early disease stages in
which only steatosis is present, and shifts significantly to a more
dominant TH17 cell-driven response at later time points when
steatohepatitis and beginning fibrosis are present. In the liver
fibrosis CCL4 mouse model, increased IL-17 levels led to an
elevated collagen1a1 expression in HSCs triggered by STAT3
signaling (Meng et al., 2012). Gomes et al. showed in 2016 that
the excess of nutrients leads to the expression of the factor
unconventional prefoldin RPB5 interactor (URI) in liver of mice
treated with different steatohepatitis-inducing diets. URI promoted
HCC development via a shift of the CD4+ T cell composition
during NASH and NASH-HCC development. The overexpression
of human URI in mouse hepatocytes led to spontaneous
development of steatohepatitis, which could be strengthened by
feeding steatohepatitis-inducing diets (CD-HFD) or MCD. Disease
was accompanied by increased IL-17 and TH17 cells in blood and
liver. Mice with a heterozygous, hepatocyte-specific deficiency for
URI were protected from the development of steatohepatitis
together with decreased numbers of TH17 cells. Inhibiting the
differentiation of TH17 cells through the blockade of RORgt lead to
an improved in lipid metabolism, insulin resistance, and HCC
development. The application of recombinant IL-17 in wildtype
mice induced steatohepatitis, the infiltration of neutrophils to white
adipose tissue, and led to an increased number of TH17 cells.

Interestingly, data from human NASH patients correlated with
the expression of URI with high IL-17 levels and hepatic steatosis
(Gomes et al., 2016). Another study points to overall diminished
CD4+ T cell numbers in NASH, and that this reduction is an
essential factor in the progression from NASH to HCC
development (Ma et al., 2016). The observed changes in the T
helper cell profile during NASH development can be caused either
by a depolarization of CD4+ T cells to a TH17 cell phenotype, or by
a relative shift of the CD4+ T cell composition in the liver due to
depletion of other T helper cell subsets, or driven by an altered
infiltration of distinct CD4+ T cell subsets.

A study from Rau et al. in 2016 showed that the progression
from NAFLD to NASH is directly correlated with an increased
frequency in TH17 cells in blood and liver of NAFLD and NASH
Frontiers in Pharmacology | www.frontiersin.org 12
patients together with an altered TH17/TReg balance depicted by an
increased TH17/TReg cell ratio in both compartments (Rau et al.,
2016). In visceral adipose tissue and subcutaneous adipose tissue of
morbid obese patients, an increase in themRNA expression of IL-17
was found compared to normal weight patients. The same patients
also showed increased numbers of TH17 cells in both adipose tissues
and peripheral blood mononuclear cells (PBMCs), while TReg cell
numbers were decreased due to impaired survival of these cells
(McLaughlin et al., 2014). A recent study published in April 2020
further points to the direct relationship between liver and adipose
tissue in regulating the TH17/TReg balance. Van Herck and
colleagues demonstrated that mice fed a high-fat high-fructose
diet displayed an increase in TH17 cells in both compartments,
with a simultaneous decrease in TReg cells. After removing the
steatohepatitis-inducing diet, the disruption in the TH17/TReg

balance persisted. The administration of an IL-17 neutralizing
antibody subsequently decreased the pro-inflammatory immune
response in the liver (Van Herck et al., 2020). NASH is further
closely related to the development of HCC. The involvement of
TH17 cells in tumor formation and patient survival was recently
described as influencing the prevention of apoptosis in tumor cells
induced by TH17 cells due to IL-17 promoting angiogenesis and an
IL-23 driven tumor growth (Langowski et al., 2006; Zhang et al.,
2009). Understanding the role of TH17/TReg balance and targeting it
therapeutically is an interesting approach for the treatment of
NASH (Figure 4).

Liver Fibrosis and Hepatocellular
Carcinoma
Chronic liver disease changes and impairs organ structure and
function. Liver disease leads to tissue replacement and scaring
subsequently leading to liver fibroses and cirrhosis. Several studies
describe the importance of TH17 and TReg cells in this process.
Although the exact role of TReg cells in liver fibrogenesis is not fully
understood, TReg cells support liver fibrosis by influencing
metalloproteinases activation (Zhang X. et al., 2016). TH17 cells
further signal on non-lymphoid cells such as endothelial cells,
fibroblasts, and keratinocytes inducing the production of
inflammatory cytokines such as IL-6, GM-CSF, IL-1, TGF-b,
TNF-a, and MCP-1 to attract immune cells thereby promoting
pro-inflammatory immune responses. IL-17 receptor signaling
further activates the expression of antimicrobial peptides and
matrix metalloproteinases, whereas the latter are important for
the degradation of scar tissue during infection (Bettelli et al.,
2008). In patients with more severe liver cirrhosis, an increased
frequency of circulating TReg cells, but a decreased TReg/TH17 ratio
was positively correlated with disease progression (Li et al., 2012).
More particularly, the abundant expression of TGF-b and IL-6 in
the liver, which both favor the differentiation of TH17 cells, points to
a major contribution of these cells during this process. Liver
cirrhosis is one of the major risk factors for the development of
HCC. Thus, 80%–90% of HCC develop in the course of chronic
inflammation (Refolo et al., 2020). HCC is associated with a poor
prognosis, is hard to detect, is aggressive, and has limited
therapeutic options. TReg and TH17 cells were increased in tumor
tissue in comparison to the surrounding liver tissue. Not only high
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intra-tumoral TReg frequencies and a decreased TH17 quantity but
also CD39 expressed by tumor cells and TReg cells facilitated HCC
growth, metastasis, and poor prognosis by mainly affecting TH17
function and differentiation (Bettini et al., 2012). TReg cell depletion,
however, negatively influenced HCC growth (Cany et al., 2011).
Interestingly, high IL-17 and IL-17R expression in the tumor tissue
and elevated circulating TH17 cells are also associated with poor
survival and early HCC recurrence. Sorafenib is currently used in
HCC treatment and targets varies kinases expressed in TReg cells.
This therapy negatively affects the TReg frequency, which can be
correlated to overall improved survival (Voron et al., 2014). To
improve the overall survival of HCC patients, new therapeutic
approaches are essential. A defect in T cell function is described
and immunotherapies are potential effective treatment strategies.
One possibility could be checkpoint inhibition. PD-1 upregulation
for example can be detected in circulating TReg cells in HCC
patients, supporting the overall immune dysregulation. Therefore,
anti PD-1 is a promising strategy. This therapy reverses the TReg

mediated inhibition of TH17 cells and other effector T cells
(Langhans et al., 2010) (Figure 4).

Liver Transplantation
Liver transplantation is in many cases the only possibility to
cure end-stage liver disease. The short-term outcome has
significantly improved, but chronic organ rejection and the
side effects of immunosuppressive therapy remain a concern.
The optimal immunosuppressive treatment to prevent organ
rejection and toxicity and at the same time avoid opportunistic
infections must be tightly balanced and will vary between
individuals. The state of optimal immunotherapy, called
operational tolerance, is difficult to achieve, and most patients
require a life-long therapy with numerous side effects. Thus,
new therapeutic approaches following liver transplantation are
urgently needed.

TReg cells play a leading role in averting the cause of graft-
versus-host disease (GvHD) which leads to organ rejection. TReg/
TH17 balance plays a fundamental role in rejection pathogenesis
(Wang et al., 2019), and TH17 cells were found to be elevated
during acute and chronic organ rejection. In addition, the pro-
inflammatory cytokine milieu during organ rejection can induce
RORgt and IL-17 expression in TReg cells. Thus, TReg cells seem to
contribute to organ rejection. Indeed, an early decrease in TReg

frequency is a risk factor for suspected acute and biopsy proven
acute rejection (Han et al., 2020). In addition, CD39 expression in
the transplanted liver tissue influences the TReg and TH17 immune
response and thereby organ rejection and GvHD (Yoshida et al.,
2015). Adoptive TReg transfer was protective inmice, and currently
several clinical trials are testing the efficiency and safety in humans
(Romano et al., 2017). Another study tested the TReg therapy in
patients 6–12months after liver transplantation and demonstrated
an increase in circulating TReg cells and reduced anti-donor T cell
response (Sanchez-Fueyo et al., 2020). Although the long-term
effects are not evaluated, TReg therapy could be a promising
therapeutic approach. In contrast to the beneficial effects, in
transplant patients with HCV infection, early high levels of TReg

cells and TH1 cells after liver transplantation are associated with
severe recurrent HCV infection (Ghazal et al., 2019).
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In addition to T cell-mediated organ rejection, danger associated
molecular patterns (DAMPs) play an important role in triggering
sterile inflammation in the liver after organ transplantation. Sterile
inflammation could be detected in different solid organs after
implantation, and sterile inflammation influences the transplant
tolerance and chronic rejection. A recently published study
described the correlation between elevated DAMPs and acute
postoperative multi-organ dysfunction (Nagakawa et al., 2020). In
sum, several studies implicate the contribution of sterile
inflammation in acute and chronic organ rejection and are
reviewed elsewhere (Braza et al., 2016) (Figure 4).
CONCLUSION

TH17 and TReg cells are essential in orchestrating the intrahepatic
immune response in health and disease. Under homeostatic
conditions their balance must be tightly regulated to have an
effective immune response and to prevent tissue damage. In the
course of several diseases, their balance is shifted. Especially in
the liver, the TH17/TReg response is tremendously important. An
overwhelming TH17 response, for example in NASH, can
promote the inflammatory state of disease and is associated
with disease progression. On the other hand, TReg cells prevent
the anti-tumoral immune response in HCC and promote
metastasis and cancer growth. Furthermore, both cell subsets
can be beneficial in different liver diseases settings. Thus, TH17
cells are necessary for effective pathogen clearance in the liver
and TReg cells are important to coordinate the immune response
in autoimmunity and after liver transplantation. Most of the
findings on the role of TH17 and TReg cells were generated in
mice. The importance of investigating their influence in humans
is highlighted in several disease settings. Many studies
demonstrate the necessity of investigating the function and
quantity of these cells in liver tissue specifically, as circulating
cells may not reflect intrahepatic conditions. In addition to
altered function and quantities in liver diseases, TH17/TReg cell
balance could be a therapeutic target in disease settings.

Future studies should investigate the function of TH17 and
TReg cells in liver tissue and review their balance. Furthermore,
different signals that might influence TH17/TReg cells, especially
in the liver, must be analyzed to fully understand the liver-
specific pathomechanism and to inform a liver-specific therapy.
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