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Personalised approaches to the management of all solid tumours are increasing rapidly,
along with wider accessibility for clinicians. Advances in tumour characterisation and
targeted therapies have placed triple-negative breast cancers (TNBC) at the forefront of
this approach. TNBC is a highly heterogeneous disease with various histopathological
features and is driven by distinct molecular alterations. The ability to tailor individualised
and effective treatments for each patient is of particular importance in this group due to the
high risk of distant recurrence and death. The mainstay of treatment across all subtypes of
TNBC has historically been cytotoxic chemotherapy, which is often associated with off-
target tissue toxicity and drug resistance. Neoadjuvant chemotherapy is commonly used
as it allows close monitoring of early treatment response and provides valuable prognostic
information. Patients who achieve a complete pathological response after neoadjuvant
chemotherapy are known to have significantly improved long-term outcomes. Conversely,
poor responders face a higher risk of relapse and death. The identification of those
subgroups that are more likely to benefit from breakthroughs in the personalised
approach is a challenge of the current era where several targeted therapies are
available. This review presents an overview of contemporary practice, and promising
future trends in the management of early TNBC. Platinum chemotherapy, DNA damage
response (DDR) inhibitors, immune checkpoint inhibitors, inhibitors of the PI3K-AKT-
mTOR, and androgen receptor (AR) pathways are some of the increasingly studied
therapies which will be reviewed. We will also discuss the growing evidence for less-
developed agents and predictive biomarkers that are likely to contribute to the
forthcoming advances in this field. Finally, we will propose a framework for the
personalised management of TNBC based upon the integration of clinico-pathological
and molecular features to ensure that long-term outcomes are optimised.
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1. INTRODUCTION

Breast cancer (BC) is the most common cancer affecting women
and is the leading cause of cancer-related death in women
worldwide (1). Triple-negative breast cancer (TNBC), a highly
heterogeneous subtype, represents approximately 15% of all
breast cancers (2). TNBC behaves aggressively, has a poorer
prognosis, and a higher risk of distant relapse and death relative
to other BC subtypes (2). Genomic and transcriptomic data have
enhanced our ability to understand the TNBC taxonomy and
have enabled the identification of new therapeutic targets. The
development of new therapeutic options and optimisation of
personalised management strategies is critical in improving
outcomes for affected patients.

This review provides an overview of contemporary practice
in the treatment of early-stage TNBC and highlights promising
future directions. We will discuss the growing evidence for
newer therapies predicted to contribute to forthcoming
advances in this field, and propose a framework for the
personal isedmanagement of TNBC based upon the
integration of clinical and molecular features.
2. DIAGNOSIS AND CLINICAL
PRESENTATION

TNBC is characterised by the absence of oestrogen (ER) and
progesterone (PR) receptor expression, in addition to the absence
of HER2 amplification as measured by immunohistochemistry or
fluorescence in situhybridisation. TNBC is disproportionately seen
in younger women, as well as in Hispanic and African American
populations (3). Disease-free intervals following primary treatment
of early-stage (I–III) TNBCs are often short. The recurrence rate is
25%, with the highest risk of recurrence in the first three years after
diagnosis and amedian time to relapse after surgery of 18.8months
(4). Metastatic TNBC (mTNBC) exhibits a more aggressive
phenotype than other BC subtypes, as demonstrated by a shorter
chemotherapy response duration, and a shorter overall survival
(OS) (median 13.3 months) (5).
3. TNBC HETEROGENEITY

TNBC is a heterogeneous disease with significant inter- and intra-
tumour heterogeneity (6–8). Multiple efforts have focused on
adequately addressing this biological complexity to enable the
tailoring of therapeutic options to individual tumour characteristics.

3.1. Histological Subtypes
The current clinical definition of TNBC encompasses multiple
histological subtypes. Approximately 85% of TNBCs are
morphologically defined as invasive carcinoma of no special type
(IC-NST). The remaining TNBCs are less common tumours of a
special type, which are collectively associated with a poor prognosis
(9). Individual special types display distinct pathological and
molecular characteristics and prognoses. Tumours of indolent
Frontiers in Oncology | www.frontiersin.org 2
course include adenoid cystic, secretory and tubular carcinomas.
Medullary histology is associated with a good prognosis and high
response rates to chemotherapy, whereas metaplastic tumours
show differentiation towards squamous epithelium with
mesenchymal components and are frequently chemoresistant
(10). An accurate histological examination marks the first step
towards the identification of keymechanistic features that could be
exploited for direct treatment (Table 1).

3.2. Molecular Subtypes
Numerous efforts to build upon the molecular classification of
TNBCs have been proposed (Table 2). Here we review the most
recognised classifiers that utilise genomic and transcriptomic
data and summarise their predictive value when tested in early
TNBC clinical cohorts. Many other classification approaches
have been proposed (Table S1), with the absence of clinical
evidence for treatment response limiting their use.

3.2.1. Intrinsic Subtypes
Breast cancers can be classified into six intrinsic molecular
subtypes by gene expression (GE) profiling (17, 24) as follows:
Luminal A, Luminal B, Her2 enriched, normal-like, basal-like,
and Claudin low. Each subtype is identified within the TNBC
group as defined by immunohistochemistry. Basal-like tumours
are most frequent (50–75%). However, they are not exclusive to
the TNBC phenotype (24). The claudin-low subtype represents
25–40% of TNBC and was more recently introduced (25).

Basal-like tumours are characterised by the presence of
cytokeratins typically expressed by the basal layer of the skin,
widespread genomic instability, high proliferation markers, loss of
function of BRCA1, and dysregulation ofMYC and RB1 pathways
(24). Claudin-low tumours have several features in common with
basal-like tumours but are uniquely characterised by low levels of
cell adhesion proteins, the enrichment of mesenchymal traits and
stem cell features (26). Luminal tumours overexpress a ‘luminal
signature’ containing ESR1, GATA3, FOXA1, XBP1, and MYB.
Her2 amplification concomitantly with overexpression of HER2-
amplicon-associated genes defines the Her2 enriched subtype (24).

Intrinsic subtypes provide independent predictive information
regarding the response to neoadjuvant chemotherapy (NACT)
when considering all subtypes of breast cancer, although not
consistently for the TNBC cohort when viewed in isolation.
Claudin-low tumours are associated with lower pathological
complete response (pCR) rates compared to basal-like subtypes
(27). In a subgroup analysis of the BrighTNess trial, pCR rates were
higher for basal-like vs. non-basal tumours (52.3% vs 35.4%,
p=0.003) (27). In contrast, no difference in pCR rate was observed
with the addition of carboplatin for patients with basal-like TNBC
vs non-basal TNBC in the CALGB40603 study (28). These results
illustrate that the predictive value often linked to the basal-like
subtypes has not always been reproduced in the early setting of
TNBC, making intrinsic subtypes less reliable biomarkers of
response within this group.

3.2.2. Lehmann/Pietenpol Subtypes
Lehmann et al. selected clustering analyses to identify six TNBC
subtypes displaying unique GE patterns and ontologies. Each
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subtype is characterised by the activation of specific signalling
pathways that lead to a selective response to targeted therapies in
vivo (18). Additional histopathological quantification and laser-
capture microdissection prompted a refined classification with
only four tumour-specific subtypes (TNBCtype-4). The original
immunomodulatory and mesenchymal stem-like subtypes were
deemed to originate from infiltrating lymphocytes and tumour-
associated stromal cells, therefore excluding the impact of these
elements from the classification. The new approach demonstrated
differences in clinical baseline characteristics and both local and
distant disease progression (29). Basal-like 1 (BL1) revealed
increased markers of proliferation and elevated expression of the
DNA damage response (DDR) genes. Basal-like 2 (BL2) is
characterised by features of basal/myoepithelial origin and
activation of growth factor pathways such as EGF, NGF, MET,
Wnt/b-catenin, and IGF1R. The mesenchymal (M) subtype
displays activation of pathways involved in epithelial–
mesenchymal transition (EMT), cellular differentiation, and
growth pathways. Luminal androgen receptor (LAR) tumours are
characterised by high expression of androgen receptor (AR) and
downstream AR targets, and enrichment of pathways involved in
steroid synthesis, porphyrin metabolism, and androgen/oestrogen
metabolism (18).

A retrospective analysis from the validation cohort of the TNBC
subtype classification presented by Masuda et al. showed that the
likelihood of pCRwithNACTwas subtype dependent. BL1 had the
highest pCR rate; BL2 and LAR had the lowest. TNBC subtypes
demonstrated improved pCR predictions compared to intrinsic
subtypes (basal-like vs. non-basal) (30). Ina retrospective analysisof
clinicallyannotatedmicroarraydatasets ofBCpatients,TNBCtype-
4 subtypingwasnot associatedwith significantdifferences inpCRin
the TNBC subgroup. However, the overall incidence of pCR for the
subtypes demonstrates trends similar to those observed in previous
studies. BL1 displayed the greatest pCR rate (41%), and LAR and
BL2 displayed the lowest (29 and 18%, respectively). BL1 patients
had significantly higher pCR rates compared with other subtypes
(49% vs. 31%, p = 0.04) (29). Santonja et al. explored the
Frontiers in Oncology | www.frontiersin.org 3
performance of Lehmann subtypes and their association with
pCR in 125 TNBC patients treated with neoadjuvant
anthracyclines and/or taxanes with and without carboplatin, and
their results agreed with previous reports (31). The pCR rate for
carboplatin containing regimenswashighest for BL1 tumours (80%
vs 23%, p = 0.027). LAR tumours had the lowest pCR rate for all
treatments (14.3% vs 42.7%, p = 0.045).

3.2.3. Burstein Subtypes
Burstein and colleagues applied non-negative matrix factorisation
clustering to identify four distinct TNBC subtypes characterised by
key molecular features and prognosis: LAR, mesenchymal, basal-
like immunosuppressed (BLIS), and basal-like immune-activated
(BLIA). BLIS and BLIA had the best and worst clinical outcomes,
respectively. LAR and mesenchymal subtypes revealed significant
overlap with Lehmman’s classification. Burstein’s subtypes based
on immune signalling (BLIA, BLIS) revealed a combination of BL1
and BL2 subtypes (19).

3.2.4. FUSCC Classification
Liu et al. developed a classification system based on the
transcriptome profiles of both messenger RNAs and long non-
coding RNAs to divide TNBC into four distinct clusters. Cluster
A: immunomodulatory subtype, Cluster B: luminal androgen
receptor subtype (LAR), Cluster C: mesenchymal-like subtype,
and Cluster D: basal-like and immune-suppressed (BLIS)
subtype. No significant difference in prognosis was found
between the four subtypes. Tumours classified as the BLIS
subtype experienced poorer relapse-free survival (RFS)
compared with all other subtypes (20, 32). Further
classification of BLIS tumours based on their homologous
recombination deficiency (HRD) status (33) showed that high-
HRD BLIS TNBCs and low-HRD BLIS TNBCs exhibited
distinctive genomic characteristics and prognoses. Patients
with tumours defined as low-HRD had a worse prognosis than
those in the high-HRD subgroup (5-year RFS of 73 and 95%,
respectively, p = 0.002) (32).
TABLE 1 | Histological special subtypes of TNBC.

TNBC histopathological subtype Key molecular features Ref.

Lobular Loss of E-cadherin expression and CDH1 alterations. (11)
Enriched AR activity co-regulation and FOXA1 network. Overexpression of genes under the control of ESR1 and PPARG.
Frequent alterations in the PI3K network and ERBB2.
Recurrent ESRRA hotspot mutations.
Lower Ki67 index and lower expression of basal markers (CK5/6, EGFR, and SOX10) compared to IC- NST.

Metaplastic Increased frequency of mutations in the PIK3CA/AKT1/PTEN pathway compared to IC-NST. WTN pathway activation (12)
Medullary Predominant basal-like phenotype (13)

High frequency in germline BRCA1 (gBRCA1) but rare in germline BRCA2 (gBRCA2) mutation carriers.
Prominent lymphoplasmacytic cell infiltrate in the tumour stroma and extensive intratumoural CD8+ TIL infiltration.

Apocrine Lower frequency of TP53 mutations (25%) and MYC gains (0%) compared with IC-NST. (14)
High frequency of mutations in PIK3CA and other genes related to the PI3K signalling pathway (75%).

Adenoid cystic t (6,9)(q22–23;p23– 24). Fusion MYB-NFIB (15)
MYBL1 rearrangements.
Low mutation rate.
Lack of high-level amplifications or homozygous deletions but recurrent 17q21-q25.1 gains and 12q12-q14.1 losses.
Lack of TP53, PIK3CA mutations. Recurrent mutations in TLN2, MYB, and BRAF

Secretory carcinoma t (12,15) (ETV6; NTRK3) (16)
Simple genomes with few CNA. Recurrent 8q, 1q, 16pq, and 12p gains, as well as 22q losses
August 2022 | Volume 12 | Article 86
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3.2.5. Integrative Clusters
Combining GE and DNA copy number analysis within the
METABRIC dataset further expanded the taxonomy of breast
cancer (22). Eleven Integrative Clusters (IntClust) with
distinctive copy number profiles and clinical outcomes were
Frontiers in Oncology | www.frontiersin.org 4
identified. TNBCs are most frequently classified as IntClust
4ER- or IntClust 10. Rueda et al. showed that patients with
tumours classified as IntClust 10 (n = 222) have a low probability
of late relapse (five years after diagnosis), while those classified as
IntClust4ER- (n = 73) show a persistent and increasing risk of
TABLE 2 | Common TNBC Classification Methods.

Subtype Main molecular characteristics Biomarker
value

Ref.

Classifier : Intrinsic subtypes*/ Hierarchical clustering , n = 825
Basal-like Expression of cytokeratin 5,6,17 typically expressed by the basal layer of the skin or airways. Very low level of expression of

luminal-related genes. High frequency of TP53 and PIK3CA pathway activation (~9%) – via PTEN INPP4B. Cyclin E1
amplification and BRCA1 loss of function. Deregulation of the RB1 pathway, hyperactivation of FOXM1, MYC and HIF1-
alpha/ARNT network hubs

Prognostic
and
predictive

(17)

Claudin Low Low levels of cell adhesion proteins (claudin 3, 4, 7 and E-cadherin). Enrichment of mesenchymal traits and stem cell
features Low to absent expression of luminal differentiation markers. High expression of stromal-specific and lymphocyte- or
granulocyte-specific gene signatures

Lehmann et al. TNBCtype4/ k-means and consensus clustering , n = 2,347
Basal-like 1 (BL1) Elevated cell cycle and DNA damage response (CHEK1, FANCA, FANCG, RAD54BP, RAD51, NBN, EXO1, MSH2, MCM10,

and RAD21)
Prognostic
and
predictive (in
vivo- clinical)

(18)

Basal-like 2 (BL2) Enriched in growth factor signalling (EGF, NGF, MET, Wnt/b-catenin, and IGF1R pathways) and myoepithelial markers (TP63
and MME)

Immunomodulatory
(IM)

Overexpression of genes encoding immune antigens and cytokine and core immune signal transduction pathways

Mesenchymal (M) Enriched in GE for EMT; cell motility (Rac1/Rho), ECM receptor interaction, and cell differentiation pathways (Wnt/b-catenin,
ALK, and TGF-b).

Luminal androgen
receptor (LAR)

Activated androgen receptor (AR) signalling (DHCR24, ALCAM, FASN, FKBP5, APOD, PIP, SPDEF, and CLDN8)

Burstein et. al/Non-negative matrix factorization clustering , n = 198
Luminal androgen
receptor (LAR)

Activation of AR, ER, prolactin, and ErbB4 signalling. RNA expression of ESR1 and other oestrogen-regulated genes (PGR,
FOXA, XBP1, and GATA3) in the absence of ER positivity by IHC. Focal gains on CCND1, FGF family and MDGA2 and
losses of 6q. MUC1 overexpression

Prognostic (19)

Mesenchymal (MES) Dysregulated expression of genes involved in the cell cycle, mismatch repair, DDR networks, and hereditary BC signalling
pathways. High expression of OGN, ADIPOQ, PLIN1 and IGF1.

Basal-like
immunosuppressed
(BLIS)

Low expression of molecules that control antigen presentation, immune cell differentiation, and innate and adaptive immune
cell communication. High expression of SOX family transcription factors and VTCN1.

Basal-like immune-
activated (BLIA)

Upregulation of genes controlling B cell, T cell, and natural killer cell immune-regulating pathways, as well as activation of
pathways mediated by STAT genes. CDK1 amplification and overexpression of CTL4

FUSCC subtypes / k- means and consensus clustering , n =165
Immunomodulatory
(IM)

High immune cell signalling and cytokine signalling gene expression. Activation of the adaptive immune system and INFg-
related pathways. Overexpression of ID01

Prognostic
and
predictive
(cell lines)

(20)

Luminal androgen
receptor (LAR)

AR signalling. Low chromosomal instability. Increased frequency of ERBB2 mutations. Enriched with Chr9p21 loss,
decreased expression of CDKN2A and E2F3. Lower frequency of RB1 losses/deletions and CCND1 and E2F3 gains/
amplifications.

Mesenchymal-like
(MES)

Enriched in mammary stem cell pathways. Higher expression of JAK/STAT3 activation

Basal-like and
immune-
suppressed (BLIS)

Upregulation of cell cycle, activation of DNA repair, and downregulation of immune response genes. High-HRD BLIS shows
higher HRD scores irrespective of gBRCA status, higher proportion of Chr9p23 amp and Chr13q34 amp. Low-HRD BLIS is
more likely to exhibit whole genome doubling.

Integrative Clusters/Integrative clustering framework (iCluster), n = 2,000
IntClust 4- Flat copy number landscape and extensive lymphocytic infiltration. Strong immune and inflammation signature involving the

antigen presentation pathway, OX40 signalling, and cytotoxic T-lymphocyte-mediated apoptosis. Genomic copy number
loss at TCR loci

Prognostic (21,
22)

IntClust 10 Enriched within basal-like tumours. High-genomic instability, cis-acting alterations (5 loss/8q gain/10p gain/12p gain)
Prado-Vasquez Classification, n = 494
Cellular classification Luminal (LAR): Lower activity in the nodes related to cell adhesion, G1/S transition of mitotic cell cycle and chemokine

activity.
Pronostic
(IM) and
predictive
(CLDN-high)

(23)

Basal: Higher activity in cell adhesion and regulation of the actin cytoskeleton nodes.
Claudin-High (CLDN-high): Poor response to neoadjuvant chemotherapy. Higher activity in the chemokine activity functional
node.
Claudin Low (CLDN-Low): Higher activity in the haptoglobin binding functional node and PPAR signaling pathway.

Immune
classification

Immune metanode (IM) positive
Immune metanode (IM) negative
August 2022 | Volume
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relapse or cancer-related death after 5 years. Classification by
immunohistochemistry or intrinsic subtypes did not show this
risk (21). The predictive value of IntClust to define response to
NACT is yet to be fully established.

3.2.6. Prado-Vasquez Classification
Prado-Vasquez et al. developed a probabilistic graphical model
to classify the cellular components of tumours into four groups
based on the ‘stem cell hypothesis,’ defined based on the grade of
development of the cells from which they derived luminal (LAR),
basal, claudin-high (CLDN-high), and claudin-low (CLDN-low).
The sparse k-means method was used to define high or low
immune activity and to classify the tumour as immune metanode
positive or negative. Immune metanode activity was prognostic
overall, and particularly in the luminal group defined by the
cellular classification and TNBC type4-LAR (23).

Combining molecular knowledge with patient management is
an increasingly accepted technique across tumour types. In early
TNBC, lack of reproducibility and the absence of a unified
approach have led to the continuous use of unselected clinical
strategies that remain insufficient. Stable commonalities among
the classification methods of molecular subtyping in TNBC
suggest the presence of clear biological groups suitable for
personalised therapeutic interventions. For instance, luminal-
like and mesenchymal tumours are consistently identified across
the methods with decent overlap and reproducible outcome data.
Moreover, most methods include a measurement of the
interaction between tumours and the immune response,
highlighting the importance of considering this element as a
key component of the TNBC taxonomy. Overall, these efforts
provide the basis for understand how the molecular complexity
of TNBC influences outcomes. Considering the treatment
response due to dynamic network interaction, rather than
focusing on individual static components, is likely to have
more predictive power. But even with reproducible and reliable
classification, delivering this in a clinical timeframe suitable for
neoadjuvant therapy decision-making remains a challenge.
4. OVERALL APPROACH TO THE
TREATMENT OF EARLY STAGE TNBC

Therapeutic options for early TNBC have traditionally been
limited to cytotoxic chemotherapy, surgery, and radiotherapy.
Significant advances in basic and clinical research have led to
tangible improvements in the current therapeutic arsenal. The
FDA has now approved pembrolizumab immunotherapy for use
along with chemotherapy for high-risk early-stage TNBC
following survival data from the KEYNOTE-522 trial (34).
This has established immunotherapy as a new standard of care
in the United States, and it is anticipated to reach clinical practise
in other countries in the near future. Similarly, the recent FDA
approval of Olaparib for the adjuvant treatment of high-risk
germline BRCA (gBRCA) carriers following results of the
OlympiA trial is expected to reshape clinical practice (35).
These encouraging developments highlight the importance of a
Frontiers in Oncology | www.frontiersin.org 5
personalised treatment approach and focus attention on the
unresolved challenges of appropriate patient selection and
derived toxicity.

Closing the gap between preclinical advances and the clinical
setting remains a prolonged and challenging process.

4.1. (Neo)adjuvant Chemotherapy
The effect of polychemotherapy compared with no chemotherapy
across all BC subtypes was assessed as part of the 2012 Early Breast
Cancer Trialists’ Collaborative Group (EBCTCG) meta-analysis of
32,000 patients. This resulted in a ~50% reduction in 2-year
recurrence and a 20–25% decrease in BC (36). Chemotherapy is
particularly important in managing TNBC as these tumours
demonstrate a better response compared to other subtypes of
BC and the importance of achieving and optimising the early
treatment response in these tumours is well recognised.

4.1.1. Anthracyclines
Anthracyclines target cell proliferation pathways by interacting
with DNA gyrase and leading to DNA double-strand breaks
(DSBs). The ABC trials proved that the addition of an
anthracycline to taxane and cyclophosphamide improved
patient outcomes, with the greatest benefit in high-risk
patients, those with lymph node involvement or hormone-
negative disease (37). More recently, a large meta-analysis by
Braybrooke et al. found an 18% reduction in the 10-year
recurrence risk with the addition of anthracycline to taxane
chemotherapy, as compared to taxane alone (38). There are
multiple anthracycline-taxane-based regimens now in use, with
evidence to support one “optimal” standard of care regimen for
TNBC lacking (39).

Anthracycline-free chemotherapy regimens are considered
when cardiotoxicity is a concern, and routine use of such
regimens for treatment de-escalation is an area of increasing
interest (40) (see Table 3). Evidence regarding efficacy as a
standard treatment for TNBC is conflicting, although a recent
meta-analysis has established anthracycline-free chemotherapy
to be acceptable for lower risk, early-stage HER2-negative
BC (39).

4.1.2. Microtubule Targeting Agents
Taxanes inhibit cell division by stabilising microtubules,
preventing depolymerisation, spindle formation, and
progression through the cell cycle. Paclitaxel and docetaxel are
regularly used to treat early-stage TNBC. An EBCTCG meta-
analysis showed that the addition of taxane to anthracycline
resulted in a proportional reduction in mortality rates of 15–20%
(36). The European Cooperative Trial in Operable Breast Cancer
(ECTO) also demonstrated significant improvements in RFS and
distant RFS (45). Although this evidence is not unique to TNBC,
these studies provide the strongest evidence to support taxane
use in this cohort. BL1 and BL2 tumours appear to derive an
increased benefit from this drug class (46).

There are several novel alternatives to traditional taxanes
under investigation. Nab-paclitaxel is a solvent-free albumin-
bound nanoparticle formulation of paclitaxel. It potentially
August 2022 | Volume 12 | Article 866889
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enables higher intra-tumoural taxane concentrations, better
efficacy, and improved tolerability. The GeparSepto (47) and
ETNA trials (48) showed conflicting results with a significant
difference in pCR rates seen only in GeparSepto (Table S2),
which may reflect the relative dose intensities used.

Epothilones are promising alternatives to taxanes in
development. These novel potent microtubule stabilisers can
bypass common resistance mechanisms seen with taxanes, such
as drug efflux pumps and b-tubulin. In the early setting, the phase
3 TITAN trial has shown similar efficacy and reduced rates of
peripheral neuropathy, dose modifications, and discontinuation
with Ixabepilone comparised with paclitaxel (49).

4.1.3. Platinum Salts
The clinical activity of platinum agents has been significantly
associated with a DDR vulnerability in both sporadic and
Frontiers in Oncology | www.frontiersin.org 6
gBRCA-associated TNBC. Carboplatin is increasingly used in
neoadjuvant regimens, improving both pCR and long-term
outcomes (50). Please see section DNA Damage Response (DDR).

4.1.4. Capecitabine
Capecitabine is an oral prodrug of the antimetabolite 5-
fluorouracil. Capecitabine is not currently recommended in
clinical guidelines for the neoadjuvant or adjuvant treatment of
TNBC, though it is selectively used as a post-neoadjuvant
treatment for residual TNBC. Insights for use in the adjuvant
setting are accumulating (Table 4), but in most cases, studies
have not incorporated the molecular features of the TNBC
cohort into the planned analysis for response assessment. The
recent phase 3 CBCSG-010 trial for unselected patients with
TNBC with concomitant use of capecitabine 1,000 mg/m2 and
standard anthracycline-taxane adjuvant chemotherapy (ACT)
TABLE 3 | Major clinical trials evaluating adjuvant anthracycline-free chemotherapy regimens for patients. with stage I-III TNBC.

Trial Phase Disease Setting TNBC
sample
size

Treatment Primary
endpoint

Results (ITT population) Ref.

ABC – joint analysis:(USOR
06-090, NSABP B-46-I/
USOR 07132, and) NSABP
B-4)

3 Adjuvant treatment of HER2–
negative breast cancer

31% of
patients
(n =
4,156)

Docetaxel/
cyclophosphamide (TC)
vs
doxorubicin/
cyclophosphamide/taxane
(TaxAC)

iDFS 4y IDFS
ITT Population
88.2% vs 90.7% (P = .04)
TNBC
Node negative 87% vs. 89.5%
(HR 1.31 95% CI 0.86–1.99)
1-3 positive nodes. 74.6% vs
85.5% (HR 1.58 95% CI 0.90–
2.79)
>=4 positive nodes 60.8% vs.
71.8% (HR 1.34 0.62–2.91)

(37)

MASTER 3 Adjuvant Treatment of high-risk
HER2-negative operable breast
cancer

120 Docetaxel/
cyclophosphamide (TC)
vs
cyclophosphamide/
epirubicin/fluorouracil
followed by docetaxel (CEF-
T)
vs
epirubicin and
cyclophosphamide followed
by paclitaxel (EC-P)

DFS 5-year DFS
CEF-T versus EC-P, 85.1% vs.
85.9% (HR = 0.99 90% CI:
0.75–1.30, non-inferior P =
0.045).
TC versus EC-P
85% vs 85.9% (HR 1.05 90%
CI 0.79–1.39, non-inferior P =
0.048

(41)

DBCG 07-READ 3 Adjuvant treatment in high risk
TOP2A-normal breast cancer

459 Epirubicin/cyclophosphamide
followed by docetaxel (EC-T)
Vs
docetaxel/
cyclophosphamide (TC)

DFS 5y DFS 87.9% vs. 88.3% (HR,
1.00 95% CI, 0.78–1.28)

(42)

HORG 3 Adjuvant treatment of HER2-
negative invasive BC and at least
one positive axillary lymph node

74 Dose-dense epirubicin/5-
fluorouracil/
cyclophosphamide followed
by docetaxel (FEC-D)
Vs
docetaxel/
cyclophosphamide (TC)

DFS 3y DFS: 89.5% vs 91.1% (HR
1.147, p = 0.568)

(43)

WGS Plan B + Success C
Pooled Analysis

3 Adjuvant Not
available

Docetaxel/
cyclophosphamide (TC)
vs
epirubicin/cyclophosphamide
followed by docetaxel (EC-T)
or epirubicin/5-fluorouracil/
cyclophosphamide followed
by docetaxel (FEC-D)

DFS ITT DFS HR = 1.04 (95% CI:
0.85 – 1.19, p = 0.96)
pN2-3 patients HR 0.69 (95%-
CI 0.48– 0.98, p = 0.04)
TNBC DFS HR = 0.99( 95% CI
0.76 – 1.30, p = 0.95)

(44)
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established a significant 5-year disease free survival (DFS) benefit
(53). This is supported by the FINXX trial (54) and the Ye et al.
meta-analysis, which demonstrated improved DFS and OS with
a tolerable increase in toxicity (56).

4.2. Bone Modifying Agents
Adjuvant bisphosphonates are recommended for breast cancer
patients with low-oestrogen status at high risk of relapse to
decrease skeletal metastases and improve OS and DFS, as
evidenced by the AZURE trial and the EBCTCG meta-analysis,
both of which included patients of all BC subtypes (57, 58).
While most of the evidence for bone modifying agents in TNBC
comes from studies of patients receiving ACT, benefit is also
probably derived in the neoadjuvant setting (59). A subgroup
analysis of patients receiving neoadjuvant ZA alongside NACT
in the AZURE trial led to improved pCR rates (60). The role of
RANK-L remains under investigation. The D-CARE trial of
adjuvant denosumab showed no improvement in bone
metastasis free survival, invasive disease free survival (iDFS), or
OS in high-risk early breast cancer. This suggests that the
mechanisms by which bisphosphonates act against the
metastatic potential of BC cells are broader and more sustained
than the known effects on bone cell function (61).

4.3. Treatment Schedule
4.3.1. Neoadjuvant vs. Adjuvant Chemotherapy
Chemotherapy can be delivered in an adjuvant or neoadjuvant
setting with no significant difference in long-term outcomes, as
illustrated by the NSABP B-18, EORTC 10902, and IBBGS trials
(62–64). More recently, an EBCTCG meta-analysis
demonstrated no significant difference in distant recurrence or
death between NACT and ACT but a more frequent local
Frontiers in Oncology | www.frontiersin.org 7
recurrence rate (65). A TNBC-specific meta-analysis suggested
that NACT is associated with a comparable DFS but worse OS
than ACT (66), perhaps explained by patients with higher disease
burden being more likely to receive NACT. In this meta-analysis,
patients who achieved pCR had superior OS and DFS compared
to those treated with ACT. This evidence does not support the
suggestion that NACT promotes cancer cell dissemination (67).

Advantages of NACT include downstaging tumours, resulting
in increased rates of breast-conserving surgery and associated
improved cosmesis and reductions in postoperative
lymphoedema. Additionally, it allows the assessment of
treatment response, provides valuable prognostic information
(68), guide choice of post-surgical treatment and allows for
ineffective treatment to be ceased to avoid unnecessary toxicity.
NACT also provides an ideal platform for translational research,
assessment of biomarkers, and genetic testing (69).

The same anthracycline/taxane-based regimens are typically
used in NACT and ACT. Whether the scheduling of these
combinations has any effect on efficacy has been the subject of
extensive research. It is been shown that using taxanes and
anthracyclines sequentially increases efficacy and decreases
toxicity (70). Some evidence suggest that administration of
taxane chemotherapy before anthracyclines is associated with
improved pCR rates (71).

4.3.2. Dose-Dense and Metronomic Chemotherapy
There has been an increasing interest in personalising the
treatment timetables to take patient and tumour characteristics
into account. Dose-dense NACT is now a widely accepted
treatment strategy for high-risk TNBC in order to prevent
cancer cell repopulation (72). It has been consistently shown to
improve the rates of pCR, breast-conserving surgery, and
recurrence in hormone-low BC (73, 74). Although this
TABLE 4 | Major clinical trials evaluating capecitabine in patients with stage I–III TNBC.

Trial Phase Disease Setting TNBC
sample
size

Treatment Primary
endpoint

Results Ref.
(TNBC cohort)

CREATE-X 3 Adjuvant treatment of residual HE2 negative
early-stage BC following Taxane &/or
anthracycline based NACT

286 6–8 cycles of capecitabine vs control DFS 5y DFS: 70% vs 56%
(0.58; 95% CI, 0.39 to

0.87)
5y OS: 79% vs. 70%
(0.52; 95% CI, 0.30 to

0.90)

(51)

GEICAM/
2003-
11_CIBOMA/
2004-01

3 Neoadjuvant or adjuvant treatment of early-
stage TNBC following Taxane &/or
anthracycline based NACT/ACT

876 8 cycles of extended capecitabine after
standard chemotherapy vs. observation

DFS 5y DFS: 80% vs 77%
(HR, 0.82; 95% CI, 0.63

to 1.06; P = .136)
5y OS: 86.2% vs 85.9
(HR, 0.92; 95% CI, 0.66

to 1.28; P = .623)

(52)

CBCSG-010 3 Adjuvant treatment of early stage TNBC 585 standard anthracycline-taxane
chemotherapy with or without 3 cycles
of capecitabine

5y DFS 86.3% v 80.4%; HR
0.66; 95% CI, 0.44 to

0.99; P = .044

(53)

FinXX Trial 3 Adjuvant treatment of early stage breast
cancer

202 Docetaxel, Epirubicin, and
Cyclophosphamide chemotherapy with
or without 3 cycles of capecitabine

RFS HR, 0.53; 95% CI, 0.31–
0.92; P = .02

(54)

SYSUCC-001 3 Adjuvant treatment of early-stage TNBC
following standard adjuvant therapy

434 1 year of capecitabine vs observation DFS 5y DFS: 83% vs 73%
(HR 0.64 95% CI, 0.42–

0.95 P = .03)

(55)
August 202
2 | Volume 12 | Article 86
6889

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Alba et al. Precision Treatment of Early TNBC
regimen has not translated into a significant survival benefit (74),
this approach should be considered in selected patients with a
high disease burden. Dose-dense ACT improves DFS and OS
rates in patients with low hormone receptor levels, although this
is accompanied by increased toxicity and patients need to be
selected carefully (75).

At the other end of the spectrum, metronomic chemotherapy
is given at a minimum biologically effective dose either
continuously or with minimal extended breaks from treatment
to reduce severe toxicity. It is thought to have angiogenic,
stroma-targeting, and immunostimulatory effects (76). It has
been investigated as a single approach and is being used in
combination to intensify standard chemotherapy. It may have a
role as a maintenance therapy for high-risk patients or for use by
patients who would not otherwise be able to tolerate the adverse
effects of standard treatments. The SYSUCC-001 study showed
significant improvement in 5-year DFS with 1 year of
maintenance capecitabine (55). The IBCSG 22-00 trial
confirmed a 7.9% reduction in the absolute risk of relapse in
patients with node-positive TNBC (77) after 1 year of low-dose
capecitabine and methotrexate maintenance treatment, although
no improvement in DFS was observed.

4.4. Assessing Response to NACT
Residual Cancer Burden (RCB) classifies tumour response to
chemotherapy using a numeric score based on four
characteristics of surgical outcome: primary tumour bed
dimensions; cellularity fraction of invasive cancer; size of
largest metastasis; and number of positive lymph nodes (68).
Four prognostic categories were established (Table 5). It has
been shown that NACT achieves a pCR in slightly over a third of
patients with TNBC, and these patients enjoy excellent long-term
survival outcomes (78, 79). Higher rates of pCR following NACT
are seen in TNBC as compared to other subtypes, despite the
high rate of disease relapse in this cohort. This is believed to
derive from poor outcomes in patients with residual
chemotherapy-resistant disease (80). RCB after NACT can
accurately predict both event-free survival (EFS) and DFS and
is commonly used as a surrogate outcome in clinical trials (79).

Liquid biopsies for circulating tumour DNA (ctDNA)
measurement are a promising dynamic approach to assess
residual disease and predict treatment response in real-time
(81). Fragments of DNA released by apoptosed or necrosed
tumour cells can be longitudinally measured in the blood
samples of patients. Detection of high ctDNA levels at the time
of surgery has been associated with reduced DFS and OS rates,
and clearance of ctDNA during NACT has been associated with
improved outcomes across all BC subtypes (82). Clinical trials
Frontiers in Oncology | www.frontiersin.org
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that incorporate this approach for patient selection
are imminent.

4.5. Post Neoadjuvant Treatments
Patients with residual disease after surgery are often considered
for further systemic therapy. Current treatment options in this
setting following NACT include capecitabine and poly ADP-
ribose polymerase inhibitors (PARPi) for gBRCA carriers.

The Create-X trial demonstrated that six to eight cycles of
capecitabine improved 5-year DFS and OS compared to no
further therapy, especially in the TNBC cohort (51). In
contrast, the GEICAM/2003-11_CIBOMA/2004-01 trial failed
to show a statistically significant increase in DFS with the use of
eight cycles of adjuvant capecitabine. Of note, a pre-planned
analysis of this study showed that the non-basal TNBC cohort
derived the most benefit from receiving capecitabine (52).
Significant differences in study populations limit direct
comparisons between these two studies. Create-X enrolled an
Asian population who are highly efficient metabolizers of
fluoropyrimidines, all of whom had high-risk pathologically-
assessed residual disease. In contrast, GEICAM/CIBOMA
accrued patients from Europe and South America, only 80% of
whom had residual disease. Meta-analyses on the topic have
concluded upon an overall improvement in DFS and OS with
capecitabine (83) and opinions from the St. Gallen International
Conference found 87% of experts would offer capecitabine to
patients with residual TNBC in the post-neoadjuvant setting
(84). Differences in outcomes at a population level and issues
with toxicity have led to capecitabine being offered on a case-
specific basis rather than as a standard of care (85). The
GEICAM/CIBOMA data indicate that more detailed
investigation is needed into exactly which TNBC sub-types
would benefit from capecitabine.

The OlympiA trial recruited 1,836 patients with HER2-
negative cancers, 82% classified as TNBC, and showed that 52
weeks of adjuvant olaparib was associated with a significant DFS
improvement in patients with gBRCA1/2mutations (3-year iDFS
of 85.9% for olaparib vs 77.1% for placebo) (35). A 32%
reduction in the risk of death versus placebo (HR = 0.68; 95%
CI 0.50–0.91; p = 0.0091) led to the recent FDA approval for
olaparib in this setting.

The optimal treatment for residual disease after NACT
remains a matter of debate, particularly for gBRCA carriers
with high-risk TNBC. A direct comparison between adjuvant
olaparib and capecitabine is unavailable. The theoretical
advantage for olaparib use includes targeting a known tumour
susceptibility in a selected population, leading to an improved
response and improved tolerability compared to standard
cytotoxics. Interestingly, a phase 2 trial that assessed the value
of molecularly targeted postneoadjuvant treatment vs choice of
clinician in TNBC patients with residual disease did not
demonstrate the superiority of this approach (86). Despite the
limitations with regard to the primary outcome, an example was
set for biomarker-driven clinical trials and the use of ctDNA in
optimising the selection of biomarker-treatment partners.
Patient preference and financial issues clearly need to be
considered in this setting.
TABLE 5 | Residual cancer burden categories.

RCB-0 ‘Pathological complete response (pCR)’ defined by the absence o
tumour cells in breast and axilla

RCB-I ‘Minimal residual disease’
RCB-II ‘Moderate residual disease’
RCB-III ‘Extensive residual disease
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5. TARGETABLE MOLECULAR PATHWAYS

Much progress has been made in defining and treating TNBC
according to aberrations on the molecular level, although the
derivation and use of biomarkers to select patients for specific
treatments has been somewhat lacking. To make further
progress, the identification of predictive biomarkers must be a
central focus of our research and, once secured, used to guide and
to select patients most likely to derive benefit from
targeted treatments.

Tables S3–S5 summarise ongoing trials contributing to the
use of molecularly targeted treatments for early TNBC.

5.1. DNA Damage Response (DDR)
TNBCs are frequently deficient in DDR pathways and exhibit
high chromosomal instability (7, 87). The repair of DNA double-
strand breaks (DSBs) relies on the homologous recombination
(HR) pathway. Dysfunctional activity of genes involved in this
process compromises the ability of cells to mend DSBs, thereby
inducing Homologous Recombination Deficiency (HRD) (88).

HRD can occur via numerous mechanisms, all resulting in
similar phenotypic and genotypic features to those of BRCA
mutant tumours, an observation termed ‘BRCA-ness’.
Phenotypic and molecular similarities between BRCA-
associated BC and sporadic TNBC have led to the application
of similar therapeutic interventions in both groups. In patients
with BRCA mutations and BRCAness features, a compromised
DDR pathway facilitates increased sensitivity to drugs such as
platinum and PARPi, based on the concept of synthetic
lethality (89).

Approximately 10–20% of TNBC harbour gBRCA mutations,
and 70% of gBRCA1 and 16% of gBRCA2-associated tumours are
classified as TNBC (90). Somatic BRCA mutations are
uncommon in sporadic TNBCs (6, 24, 32). BRCA1 and 2
mutations, and hypermethylation of the BRCA1 promoter,
only account for some TNBCs that exhibit functional evidence
of HRD. In total, around 40% of BCs are identifiable as HRD in
the absence of these changes (91). Dysfunctional BRCA pathways
are frequently enabled by other mechanisms; for example,
RAD51 and PALB2 mutations can confer a BRCA-ness
phenotype (91).

5.1.1. Therapeutic Approaches
5.1.1.1. Platinum Agents
The cytotoxic activity of platinum is mediated by the formation
of platinum–DNA adducts that interfere with DNA replication
and transcription, activating DNA-damage recognition and
repair, cell-cycle arrest, and apoptosis.

Platinum-containing regimens have not been regarded as the
standard of care for treating TNBC in most guidelines to date.
Several trials have investigated the addition of platinum agents to
standard chemotherapy for this subgroup based on the potential-
increased susceptibility of TNBC to DNA-damaging compounds
(30) (Table 6). Improved pCR rates with the addition of
carboplatin have been a consistent finding, with confirmed EFS
benefit in two large randomised studies, GeparSixto and
BrighTNess (92–95, 101–103). These results have led to the
Frontiers in Oncology | www.frontiersin.org 9
inclusion of carboplatin within neoadjuvant regimens for high-
r i sk TNBC in the Amer i can Soc i e t y o f C l in i ca l
Oncology guidelines.

Combining carboplatin with anthracycline/taxane NACT
increases haematological and gastrointestinal toxicity, which
in turn has implications for patient selection. Predictive
biomarkers to identify those patients deriving the most
benefit from the addition of platinum, for example, gBRCA
mutations, have been investigated. Single-agent cisplatin has
shown conflicting results for BRCA carriers (96). The
PARTNER (NCT03150576) trial includes a cohort of gBRCA-
mutated patients (100) and will help elucidate the effect of
platinum and PARPi in this subgroup.

There is currently no routine indication for platinum agents
in the post-neoadjuvant setting. The EA1131 study
(NCT02445391) was closed early as neither cisplatin nor
carboplatin was able to demonstrate non-inferiority or
superiority over capecitabine, and toxicity rates were higher (97).

5.1.1.2. PARP Inhibition
Poly ADP-ribose polymerase (PARP) activity is crucial for
maintaining the correct fork speed and fidelity of DNA
synthesis. PARP1 is involved in the response to single-strand
DNA (ssDNA) damage and maintains genome integrity via base
excision repair. PARP1 is also a critical early event for DNA DSB
repair activation and regulation of resection (104). PARP
inhibition causes replication stress, induces ssDNA breaks and
affects the normal regulation of p53 and its downstream effectors
(105). In tumours that have deficiencies in the HR pathway, the
accumulation of DSBs originating from primary ssDNA breaks
leads to cell cycle arrest and death (106).

Robust evidence now supports the efficacy of single-agent
PARPi in BC patients with gBRCA mutations who have received
prior chemotherapy (107, 108). A variety of PARPi and
combinations have now been explored in both patients with
gBRCA mutations and sporadic (non-BRCA) TNBC in the
early setting.

Evidence to date for the use of olaparib is promising, both as
monotherapy and in combination with chemotherapy,
immunotherapy, or radiotherapy. In the neoadjuvant setting,
olaparib was given as monotherapy in 32 patients with
unselected TNBC for up to 10 weeks before chemotherapy
(109) with an overall objective response rate of 56.3% vs 51.9%
among patients not harbouring gBRCA1/2 or germline PALB2
mutations. A numerical enrichment of somatic HR mutations
and BRCA1 methylation in the responding group suggests
favourable activity of olaparib here. Other trials in the
neoadjuvant setting combine olaparib with chemotherapy.
GeparOLA included patients with HER2-negative BC and
HRD, received paclitaxel with olaparib or carboplatin followed
by epirubicin and cyclophosphamide (110). No formal testing
between the arms was planned but increased benefit from
olaparib was observed in young (<40 years) and HR-positive
patients. In the TNBC subgroup, the pCR rate was 56.0% with
olaparib and 59.3% with carboplatin. PARTNER is a phase 3 trial
that assesses the addition of olaparib to neoadjuvant platinum-
based chemotherapy in the treatment of TNBC and gBRCA-
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derived tumours. Preliminary safety results show that the
combination of olaparib and platinum has an acceptable and
manageable toxicity profile (111). In the I-SPY2 trial, research
arm patients received olaparib and Durvalumab with paclitaxel,
then doxorubicin and cyclophosphamide (112), which increased
pCR in the TNBC group (27–47%). Immune-rich tumours had
greater sensitivity to this treatment. The adjuvant phase 1
RadioPARP trial for patients with inflammatory, locoregionally
advanced or mTNBC, or patients with residual disease after
surgery for TNBC, sought to evaluate safety and dosing for
olaparib in combination with radiotherapy (113). Olaparib was
escalated to the maximum target dose of 200 mg twice daily with
no dose-limiting toxicity.

Talazoparib has been reviewed in the neoadjuvant setting as
monotherapy and along with chemotherapy. TALA was a pilot
study that recruited 20 patients with operable BC and a BRCA
mutation to receive talazoparib monotherapy for 6 months
(114). Despite the small sample size, this trial showed an
encouraging pCR rate of 53% and RCB-0/I of 63%, with a
manageable safety profile. In the I-SPY2 trial, talazoparib
Frontiers in Oncology | www.frontiersin.org 10
combined with irinotecan for HER2-negative patients had
limited activity beyond that seen with standard treatment (115).

Veliparib has also been evaluated in the neoadjuvant setting
in the I-SPY2 trial (116). The addition of veliparib to
carboplatin-containing chemotherapy increased the pCR rate
in the TNBC group from 26 to 51%. This combination was
further assessed in the phase 3 BrighTNess trial in 634 patients
with TNBC (94), where no additional benefit for veliparib above
that achieved by adding carboplatin, regardless of BRCA
mutation status, was found. A key limitation of this study is
the low dose of veliparib, less than half of that used in the
BROCADE-3 study in the advanced disease setting (117).
Veliparib has been combined with radiotherapy for
inflammatory or locoregionally recurrent TNBC, which results
in significant local toxicity (118).

Both talazoparib and olaparib are effective as monotherapies
in patients carrying gBRCA mutations. Given the low dose of
velaparib used in the BrighTNess trial, and considering
individual PARPi differences in PARP trapping capacity, the
potential summative benefit from the addition of platinum to
TABLE 6 | Major clinical trials involving platinum agents in patients with stage I–III TNBC.

Trial Phase Disease Setting TNBC
sample
size

Treatment Primary
endpoint

Results Ref.

CALGB 40603 2 Neoadjuvant - Stage II to
III TNBC

443 Addition of carboplatin and/or bevacizumab to
neoadjuvant paclitaxel followed by dose dense
doxorubicin/cyclophosphamide (ddAC)

pCR pCR 54% vs 41%. (p = 0.0029)
No EFS or OS benefit

(92)

BrighTNess 3 Neoadjuvant -Stage II o
III TNBC

634 Addition of carboplatin and/or veliparib to
neoadjuvant paclitaxel followed by doxorubicin/
cyclophosphamide (AC)

pCR Carboplatin Arm - pCR 58% vs
31%. (p = 0.0001).EFS (HR: 0.57
CI 0.36−0.91, p = 0.018)
Veliparib+carboplatin Arm pCR
53% vs. 31%: EFS (HR 0.63 CI
0.43−0.92)

(93)

GeparSixto 2 Neoadjuvant- Stage II to
III HER+ and TNBC

315 Paclitaxel, doxorubicin, and bevacizumab with or
without carboplatin

pCR pCR 53.2% vs 36.9%( p 0.005)
DFS (HR 0.56 CI 0.34–0.96; p =
0.022)
No OS benefit

(94)

Byrski et al. 2 Neoadjuvant - BRCA1
associated BC

107 Single-agent cisplatin pCR pCR 61% (95)

INFORM 2 Neoadjuvant - Stage I –
III BRCA carriers/ HER2
negative BC

118 Single-agent cisplatin vs doxorubicin-
cyclophosphamide (AC)

pCR pCR 23% vs 29% (RR of 0.70,
90% CI, 0.39 to 1.2)
RCB0/1 36% vs 47% (RR, 0.73;
90% CI, 0.50 to 1.1)

(96)

ECOG-ACRIN
EA1131

3 Adjuvant/Post NACT -
Residual disease, stage
II-III basal-like TNBC

562 Platinum vs capecitabine vs observation iDFS 3y iDFS – 42% vs 49% (1.06
(95% RCI, 0.62 to 1.81).

(97)

PATTERN 3 Adjuvant - TNBC 647 Carboplatin and paclitaxel vs cyclophosphamide,
epirubicin, and fluorouracil followed by docetaxel

DFS DFS 86.5% vs 80.3% (HR 0.39
(95% CI, 0.15-0.99; P = .04)

(98)

NCT03301350 2 Neoadjuvant - TNBC 29 Carboplatin/paclitaxel followed by dose-dense
doxorubicin/cyclophosphamide

pCR pCR = 33% (99)

PARTNER 2/3 Neoadjuvant - TNBC
and/or gBRCA
associated Her2 neg BC.

527 Paclitaxel/carboplatin with or without olaparib
followed by anthracycline-based chemotherapy

Safety
pCR

Pending (100)

NCT03876886 3 Adjuvant- High-risk
node-negative or node-
positive TNBC with HRD

200 Dose-dense AC-Tvs TP 3y DFS Pending

NCT04664972 2 Neoadjuvant -Operable
TNBC

166 Docetaxel/cisplatin (TP) vs docetaxel/
doxorubicin/cyclophosphamide (TAC)

pCR Pending

NCT03168880 3 Neoadjuvant - Large
Operable or Locally
Advanced TNBC

720 Paclitaxel with or without carboplatin followed by
anthracycline-based chemotherapy

DFS
OS

Pending
Au
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PARPi cannot be excluded. This encourages further investigation
into the role of other PARPi such as olaparib and talazoparib and
the great potential for combination therapy, as demonstrated by
the ongoing trials in Table S3.

5.1.1.3. Other DDR Agents
The ATR inhibitor Ceralasertib (AZD6738) is being investigated
as monotherapy in chemotherapy-resistant TNBC as part of a
pre-surgical window of opportunity and post-surgical biomarker
study (NCT03740893, PHOENIX), reviewing the change in
mean proliferation index between baseline and post-treatment.
PARTNERING is a phase 2 sub-study for the PARTNER trial
that offers durvalumab along with AZD6738 to patients with
evidence of residual disease after completion of NACT and
before surgery. WEE 1 inhibitors have not yet been reviewed
in the early TNBC setting.

Table S3 summarises the major incomplete clinical trials
involving DDR agents in patients with stage I–III TNBC.

5.1.2. Predictive Biomarkers of DDR Agents Response
5.1.2.1. BRCA Mutations
The predictive value of both gBRCA and somatic BRCA
mutations for response to platinum and PARPi has been
validated in large clinical trials that included patients with
ovarian and metastatic BC (108, 114). The role of BRCA status
as an independent predictive biomarker for the TNBC
population in the neoadjuvant setting is still unclear, with
studies showing conflicting results. In a secondary analysis of
the GeparSixto trial (n = 50) (119), gBRCA mutations were
predictive of higher pCR rates and carboplatin did not increase
this further. In the CALGB 40603 trial, pCR rates in patients with
gBRCAmutations were similar to the overall population, and this
outcome was not altered by the addition of carboplatin (120).

BRCA1/2 mutation carriers with the TNBC subtype in the I-
SPY 2 trial were significantly more likely to achieve a pCR than
non-BRCA TNBC (predicted pCR of 75% vs. 29%) (121) and a
greater response was seen for patients with a BRCA-ness
signature (116). Subgroup analysis of the BrighTNess trial did
not show a difference in pCR rate based on BRCA status (93).
However, in the GeparOcto trial (122) gBRCA mutation carriers
gained greater benefit from platinum (68.1% vs 45.7%,
p = 0.005), particularly in the TNBC subgroup (74.3% vs 47%,
p = 0.005).

In the PETREMAC trial, in which patients received olaparib
monotherapy before chemotherapy, pathogenic mutations
(germline or somatic) in the HR pathways and/or BRCA1
promoter methylation were associated with olaparib and its
overall response (OR) of 88.9% (109). Although pCR rates in
the GeparOLA trial for gBRCA1/2 carriers were significantly
higher than those in non-carriers (62.7% vs 41.3%, P = 0.047),
exploratory analysis revealed no difference between treatment
arms if somatic or germline BRCA1/2 mutations were
detected (110).

5.1.2.2. HRD by Gene Set Analysis and Functional Assays
Several attempts to simplify and systematically identify common
molecular changes associated with defective HR have been
Frontiers in Oncology | www.frontiersin.org 11
published. The evaluation of DNA damage repair-related genes
by either gene expression or by the presence of mutations has
shown a positive association with response. Confirmation of the
predictive value of these individual efforts has not always been
accomplished given the underlying heterogeneity of some of
these variations (Table 7).

5.1.2.3. HRD by Genomic Scars and Mutational Signatures
The detection of mutational signatures that uniquely identify
patterns of defective HR repair has been the subject of several
studies. Vollebergh et al. assessed whether array comparative
genomic hybridisation patterns could predict the benefit of
intensified carboplatin-based chemotherapy (126). An HRD
score defined by an unweighted sum of loss of heterozygosity,
telomeric allelic imbalance, large-scale transition, and BRCA1/2
mutations has been tested in TNBC treated with platinum, and
used to aid patient selection in PARPi trials (128, 129). In the
absence of gBRCA mutations, a high HRD score was associated
with higher pCR rates irrespective of the use of carboplatin. The
microhomology-mediated indels, HRD index, single base
substitution signature 3, rearrangement signatures 3 and 5, and
genomic instability markers of HRD are aggregated into the
HRDetect score (91). The prognostic value of HRDetect has been
demonstrated in two retrospective clinical cohorts, and further
evaluation of its predictive power in randomised clinical trials
is awaited.

HRD has yet to be used to guide the clinical management of
TNBC despite its theoretical significance. The absence of a
standardised definition of HRD beyond gBRCA mutation and
the lack of prospective clinical trial data currently limits its
clinical utility.

5.1.2.4. Tumour Mutational Burden
More tumour mutations could be correlated with an enhanced
response to drugs causing DNA damage. For example, somatic
hypermutation was shown to be an independent factor for
estimating the risk of platinum sensitivity in high-grade serous
ovarian cancer (OR = 3.616, p = 0.002) (132). A higher tumour
mutational burden (TMB) has been observed in BCs that
harbour DDR gene mutations (133), although the correlation
with response to platinum is not yet established. In the
PETREMAC trial, no difference in TMB was observed between
responders and non-responders, or BRCA carriers versus non-
carriers (109).
5.2. Immune Response
Although BC is largely considered an immune-quiescent cancer
type (134), increasing evidence suggests that a range of tumour
immunogenicity is present. TNBC is characterised by increased
immune activation and wide immune heterogeneity compared to
other BC subtypes (135).

5.2.1. Therapeutic Approaches
Tumours evade detection and eradication by the immune system
through the dysregulation of pathways controlled by immune
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checkpoints. Immunotherapy harnesses the immune system of
the patient to target malignant cells using immune checkpoint
inhibitors (ICI), chimeric antigen receptor T cells, or cancer
vaccines. ICIs release the immune system from tumour-induced
inhibitory signals, allowing an effective anti-tumour response.
They include monoclonal antibodies (mAbs) against cytotoxic T
lymphocyte-associated antigen-4 (CTLA-4), programmed cell
death-1 (PD-1), and programmed cell death ligand-1 (PD-L1).
Frontiers in Oncology | www.frontiersin.org 12
5.2.1.1. Monoclonal Antibodies Against PD-1
Pembrolizumab is the most well-established and successful anti-
PD-1 ICI in operable TNBC. The addition of pembrolizumab to
NACT has shown increases in pCR rates across several RCTs,
including the KEYNOTE-173 and I-SPY 2 trials (136, 137).
These successes led to the landmark phase 3 KEYNOTE-522
trial, which has culminated in the FDA approval for use of
pembrolizumab in high-risk early-stage TNBC, the first
TABLE 7 | HRD related biomarkers and its association with treatment response.

Clinical cohort Biomarker Type of response association Ref.

Gene sets and functional assays

Prat et al.
(2014)
Five
independent
cohorts
n = 1,055

Cell cycle-related genes (CCNE1, CHEK1,
CCNB1, and FANCA)

High gene expression - increased response (123)

Endocrine response (PGR, FOXA1, CCND1,
and IL6)

Low gene expression - increased response

EMT (TWIST1 and ZEB1) High gene expression - lack of response

Severson et al.
I-SPY trial
n=116

77- gene signature ` BRCA-ness` BRCA-ness signature positively associated with response (OR = 3.2, p = 0.03) in the
Velaparib-carboplatin arm.
Significant Biomarker * treatment interaction (p=0.025)

(116)

Graeser et al.
(2010)
n = 68

RAD51 focus formation by immunofluorescence Low RAD51 score was strongly predictive of response (33% vs 3%, p = 0.01) (124)

Eikesdal et al.
(2021)
n = 32

Low RAD51 scores positively associated with Olaparib response. (109)

Eikesdal et al.
(2021)
n = 32

ATRX, BRCA1/2, EMSY, Mutations more frequent in responders (p = 0.011) (109)
MSH6, PARP10, PPM1D)
PIK3CA, AKT1, KRAS, IGF2R, Mutations are more frequent in non-responders.
NF2 and TGFBR2

Peng et al.
(2014)
n = 295

230 gene HRD signature Predictive of PARP inhibition sensitivity in cell lines. (125)
Association with overall survival in the BC patient cohort.

Genomic scars and mutational signatures
Vollebergh et al.
(2014)
n = 249

BRCA-like signature' by array comparative
genomic hybridisation (aCGH) patterns

Better OS and PFS (HR 0.19, 95% CI: 0.08 to 0.48).
No association with OR to carboplatin based - NACT

(126)

Eikesdal et al.
(2020)
PETREMAC
trial
n = 32

HRD by MLPA analysis of CNV No significant association with response to Olaparib (p=0.07) (109)

Telli et al.
(2015)
PrECOG 0105
trial
n = 80

HRD -LOH and HRD-LST score Mean HRD-LOH scores higher in responders vs nonresponders (P = .02) . Subgroup of
BRCA1/2 germline mutations carriers excluded association remained significant (P = .021)

(127)

Loibl et al.
(2018)
GeparSixto trial
n=588

HRD score >42: unweighted sum of HRD-LOH,
HRD-TAI, HRD-LST and BRCA1/2 mutations

HRD high vs HRD low pCR (55.9% vs 29.8%, p=0.001). Greater pCR rates when HRD high
tumours were treated with platinum (64.9% vs 45.2%, p=0.025).
Patients with no gBRCA mutations: high HRD associated with higher pCR rate (49.4% vs
30.9%, p=0.050) irrespective of the use of carboplatin.

(128,
129)

Fasching et al.
(2020)
GeparOLA trial
n = 107

In the paclitaxel Olaparib arm, a pCR rate of 55.1% (90% CI 44.5% to 65.3%) (110)

Staaf et al.
(2019) SCAN-B
trial
n = 144

HRDetect: : microhomology-mediated indels,
HRD index,SBS3, RS3, and RS5

HRDetect-high associated with better DFS outcomes compared to HRDetect-low (HR 0.31,
95% CI = 0.13–0.76)

(130,
131)

Chopra et al.
(2020)
RIO trial
n = 27

HRDetect score >0.7 not associated with Ki67 change after PARP inhibitor treatment.
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regulatory approval for an immunotherapy agent in this setting.
Pembrolizumab is now considered a standard of care treatment
in the United States for patients fitting trial eligibility criteria.

KEYNOTE-522 evaluated neoadjuvant pembrolizumab along
with carboplatin/paclitaxel and anthracycline-based NACT, and
then adjuvantly as monotherapy, in high-risk early TNBC. The
pCR rate improved by 7.5% (95% CI: 1.6 to 13.4%) with the
addition of pembrolizumab, and after a median follow-up of 39.1
months, 36-month EFS improved from 77 to 85% (HR: 0.63; 95%
CI, 0.48 to 0.82; P <0.001). OS data remains immature at the time
of analysis (34). High-risk patients derived the greatest benefit,
with higher absolute improvements in pCR in stage III and node-
positive disease. There are some limitations to this study. With
this trial design, it is not possible to elucidate the relative
contributions of the neoadjuvant and adjuvant treatment
phases to these EFS results. Concern has been raised at the rate
of serious adverse events (77% incidence of grade ≥3 events in
the immunotherapy group) and immunotherapy-related adverse
effects (irAE) (affecting 33.5% of patients on this trial) due to
their protracted nature. It is therefore imperative to detect
predictive biomarkers to facilitate the selection of patients
likely to derive the most benefit from immunotherapy and
treatment de-escalation strategies. No predictive biomarkers
were identified in this trial. Improvement in pCR rate was seen
regardless of PD-L1 status (138). Patients on the pembrolizumab
arm that achieved pCR derived a modest survival benefit
(approximately 2%), as compared to 10% in the cohort of
patients with residual disease at surgery. This suggests that the
value of adjuvant pembrolizumab as a monotherapy may be
small in the group that achieved pCR. Removal of the adjuvant
portion of treatment based on response to surgery could
represent a potential treatment de-escalation strategy that
requires further exploration.

5.2.1.2. Monoclonal Antibodies Against PD-L1
Atezolizumab, durvalumab, and avelumab are the most
established anti-PD-L1 ICIrs being investigated in operable
TNBC, although results from trials have been inconsistent. The
pCR rate improved from 41 to 58% with the addition of
atezolizumab to anthracycline/taxane-based chemotherapy in
Impassion031 (139). Secondary endpoints (EFS, DFS, and OS)
are expected later this year. However, this trial is not powered to
show survival differences. The phase 3 NeoTRIPaPDL1 trial
failed to show a significant pCR advantage with the addition of
atezolizumab to neoadjuvant carboplatin and nab-paclitaxel
(140), although EFS was the primary endpoint and this data is
not yet available. These incongruent results are likely to reflect
the higher-risk patient population in NeoTRIPaPDL1 and the
difference in the chemotherapy backbone. Results from the
TONIC trial suggest anthracycline chemotherapy, used in
Impassion031, leads to a potentiation of the effects of
immunotherapy (141). These insights should inform the choice
of chemotherapy backbone in the design of future
immunotherapy trials.

GeparNUEVO assessed Durvalumab in addition to
anthracycline/taxane-based NACT. This showed a non-
significant 9% improvement in pCR rate. Improvements in 3-
Frontiers in Oncology | www.frontiersin.org 13
year iDFS and 3-year OS were also seen, though this trial was not
powered to definitively assess long-term survival differences. An
underpowered subgroup analysis showed a particular benefit in
patients who received durvalumab alone for two weeks prior to
NACT, suggesting immunological interactions with priming in
this window phase (142, 143). While the small patient cohort
included in GeparNUEVO has resulted in statistically non-
significant pCR and iDFS benefits, the results are similar to
those from KEYNOTE-522. This is despite lacking a platinum
agent and an adjuvant treatment phase. These represent
potential treatment de-escalation avenues that could benefit
from further exploration. Discrepancy between the magnitud
of benefit for pCR rate and survival seen across both trials
suggest the value of pCR as a marker for long term survival in
immunotherapy trials requires further exploration. Published
and ongoing trials of ICI have been summarised in Tables 8, 9.

The use of ICIs in TNBC is an area of active research,
although it is at an early stage, and long-term outcome data
remain immature for the majority of the neoadjuvant trials.
Concern regarding the use of pCR as a primary endpoint upon
which to grant regulatory approval for neoadjuvant
pembrolizumab was cited by the FDA, and long-term survival
data is of particular interest (147). There is a paucity of data
available to guide use of pembrolizumab in the adjuvant or post-
neoadjuvant setting, particularly in combination with agents
such as capecitabine or olaparib, used in more contemporary
practice. This represents a challenge when adopting
pembrolizumab as the standard of care treatment, and the
results of trials investigating these issues are highly anticipated.

5.2.1.3. Cancer Vaccines
Cancer vaccines use tumour associated antigens to stimulate
CD4+ and CD8+ T cells, inducing the immune system of the
patient to target cancer cells that were previously successfully
evading immune suppression. They have yet to show success in
late-stage clinical trials or to receive regulatory approval for
TNBC. Clinical trials evaluating cancer vaccines in non-
metastatic TNBCs are listed in Table S4.

5.2.2. Predictive Biomarkers of ICI Response
5.2.2.1. PD-L1
PD-L1 expression is higher in TNBCs compared with non-
TNBCs (135) and quantification is currently performed using
five distinct FDA-approved companion diagnostic tests across
tumour types. The variety in assays, scoring systems, and cut-off
values renders the interpretation of its predictive value
challenging (148). Increased pCR rate in PD-L1+ early-stage
TNBC is seen, but rather confusingly, ICI benefit independent of
PD-L1 status has been consistently described (138, 139, 143). In
the GeparNUEVO trial, pCR rate was increased in PD-L1+
tumours in all therapy groups, but PD-L1 did not predict ICI
response (143). Similar results were observed in the KEYNOTE-
522 and Impassion 031 trials.

5.2.2.2. Tumour Mutational Burden
High tumour mutational burden precipitates enhanced
immunogenicity by increasing the number of tumour antigenic
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TABLE 8 | Major neoadjuvant trials that include immune checkpoint inhibitors in patients with stage I–III TNBC.

Neoadjuvant Trials

Trial Phase Disease Setting Sample
size

(TNBC
where

available)

Treatment Primary Results Ref.
endpoint

Pembrolizumab
KEYNOTE-522 3 Neoadjuvant/adjuvant

treatment of stage II or III
TNBC

1174 Pembrolizumab vs. placebo in
combination with paclitaxel and
carboplatin, and followed by AC/EC
chemotherapy. Patients also underwent
adjuvant treatment with pembrolizumab
or placebo

pCR pCR 63 vs 56%
EFS 3y EFS 84.5 % vs 76.8%

(95% CI = 72.2–80.7%)
(34,
138)

ISPY-2 2 Neoadjuvant treatment of
high-risk stage II to III HER2
negative breast cancer

114 Paclitaxel +/- pembrolizumab followed by
adjuvant doxorubicin +
cyclophosphamide (AC)

pCR pCR 60% vs 22%
EFS in patients with pCR 93% (136)
EFS in patients without pCR
70%

KEYNOTE-173 1b Neoadjuvant treatment of
high-risk, early-stage TNBC

60 (10
per

cohort)

Pembrolizumab in combination with a
taxane with or without carboplatin,
followed by doxorubicin and
cyclophosphamide.

Safety
and
RP2D

Overall pCR 60% (137)

6 regimens were evaluated. 1y EFS in patients with pCR
100% 1yr EFS in patients
without pCR 88%
1y OS 80–100%

NeoPACT 2 Neoadjuvant treatment of
stage I–III TNBC

121 Carboplatin & docetaxel plus
pembrolizumab

pCR Pending

NeoImmunoboost 2 Neoadjuvant treatment of non-
metastatic TNBC

53 Pembrolizumab in combination with nab-
paclitaxel followed by EC

pCR Pending

PELICAN-IPC
2015-016

2 Neoadjuvant treatment of non-
metastastic HER2- BC

81 Pembrolizumab in combination with EC-
paclitaxel

pCR Pending

Atezolizumab
NCT02883062 2 Neoadjuvant treatment of

stage II – III TNBC
72 Carboplatin and paclitaxel +/-

atezolizumab followed by adjuvant AC
TIL % pCR 55.6% vs 18.8% (144)

p-value 0.018
pCR

Impassion031 3 Neoadjuvant treatment of
stage II–III TNBC

333 Atezolizumab vs placebo in combination
with nab-paclitaxel followed by AC

pCR pCR 58% vs 41% (P = 0.004) (139)
PD-L1-positive cohort 69%
(95% CI: 57–79)

PD-L1
status

NeoTRIPaPDL1 3 Neoadjuvant treatment of
early, high-risk, locally
advanced TNBC

278 Carboplatin and nab-paclitaxel +/-
atezolizumab

EFS pCR 43.5% vs 40.8% (p =
0.066)

(140)

NCT02530489 2 Neoadjuvant treatment of
stage I-III operable TNBC who
were non-responders to initial
anthracycline and
Cyclophosphamide
chemotherapy

37 Atezolizumab and nab-paclitaxel pCR pCR 30%( 95% CI: 16-49%) (145)
(Historical controls 5%)

GeparDouze 3 Neoadjuvant/adjuvant
treatment of high-risk TNBC

1520 Neoadjuvant Atezolizumab vs. placebo in
combination with paclitaxel and
carboplatin followed by AC. 6 months of
adjuvant atezolizumab or placebo.

EFS Pending
pCR

Durvalumab
GeparNUEVO 2 Neoadjuvant treatment of early

TNBC
174 Durvalumab vs placebo in addition to

anthracycline/taxane based neoadjuvant
chemotherapy

pCR pCR 53.4% vs 44.2% p 0.287
3y iDFS 84.9 vs 76.9 (HR
0.48, 95% CI 0.24–0.97)

(142,
143)

3y DDFS 91.4 vs 79.5 (HR
0.31, 95% CI 0.13–0.74)
3y OS 95.1 vs. 83.1 (HR 0.24,
95% CI 0.08–0.72)

B-IMMUNE 1b/2 Neoadjuvant treatment of
HER2 negative and TNBC

57 Durvalumab in addition to paclitaxel
followed by ddEC

SAEs Pending
pCR

(Continued)
Frontiers in Oncolog
y | www
.frontiersin.org
 14
 Augu
st 2022 | Volume 12 | Article 8
66889

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Alba et al. Precision Treatment of Early TNBC
peptides or neoantigens that can be recognised by T cells (149).
Based on this hypothesis, high TMB has been correlated with an
increased response to ICI (150, 151) independently of PD-L1
expression (152). The FDA granted accelerated approval of
pembrolizumab as monotherapy for advanced tumours that
exhibit high TMB (defined as ≥10 mut/Mb) in 2020 (153). More
recently, it has been shown that the association of TMB with
response to ICI relies on a positive correlation between CD8+ T-
cell level and neoantigen load and differs across tumour types (154).

Due to limited data availability and differences among TMB
quantification methods, the role of mutational load as an
independent predictive biomarker of ICI response is yet to be
defined in TNBC. In the GeparNUEVO trial, TMB was higher in
patients with pCR (median 1.87 versus 1.39 mut/MB), and both
continuous TMB and the immune GE profile independently
predicted pCR (155). In comparison, no difference in pCR rate
was observed in patients with high TMB who received ICI
compared with other targeted therapies in the ARTEMIS trial
(NCT02276443) (156).

5.2.2.3. Tumour Infiltrating Lymphocytes (TILs)
Both intra-tumoural TILs (iTILS) and stromal TILs (sTILs) have
prognostic and predictive roles for treating early TNBC and have
also been evaluated in this setting as biomarkers of
immunotherapy response. In the GeparNUEVO trial (142),
sTILs before therapy predicted a higher pCR rate overall and
Frontiers in Oncology | www.frontiersin.org 15
in both therapy groups, but were not predictive of durvalumab
response. The increase in iTILs in post-window samples
compared with pre-therapeutic samples was predictive of pCR,
yet the treatment interaction test did not reach significance (P =
0.085). High TILs were significantly associated with the olaparib
response in the PETREMACT trial (109). Criscitiello et al. used
the LASSO penalised regression model to develop a 4-gene
signature to predict high and low TILs after NACT. A high
TIL signature was associated with improved long-term outcomes
independent of pCR (157). Overall, increased TILs are associated
with a more favourable response to NACT and improved long-
term outcomes (158, 159).

5.2.2.4. Immune Signatures
GE immune signatures have been extensively used to describe
profiles of immune infiltration and immune cell types that
impact on the prognosis of many tumour types, including
TNBC (160–163). Few studies have tested the value of GE
immune signatures in the prediction of chemotherapy response
in the early setting of TNBC. In the SWOG 9313 trial, Sharma
et al. (164) evaluated the performance of a DNA damage
immune response signature and sTILs as prognostic markers
in patients with TNBC treated with adjuvant doxorubicin and
cyclophosphamide. DDIR was associated with improved OS and
DFS and was moderately correlated with sTILs density (≥20%
v, <20%). Using network analysis, Lv et al. identified CXCL9 and
TABLE 9 | Major adjuvant trials that include immune checkpoint inhibitors in patients with stage I–III TNBC.

Adjuvant Trials

Trial Phase Disease Setting Estimated
Sample
size

Treatment Primary Results
endpoint

IMpassion030 3 Adjuvant treatment of stage II–III TNBC 2300 Atezolizumab vs. placebo in combination with
adjuvant anthracycline/taxane-based
chemotherapy

iDFS
Pending

SWOG S1418/
NRG BR-006

3 Adjuvant treatment of stage II–III TNBC with residual
disease or postive lymph nodes following NACT

1155 1 year of pembrolizumab vs. observation iDFS Pending

A-Brave 3 Adjuvant treatment of high risk TNBC following
NACT

474 1-year avelumab vs. observation DFS Pending

MIRINAE 2 Adjuvant treatment of TNBC with residual
disease following NACT

284 Atezolizumab with capecitabine vs capecitabine
alone

5y iDFS Pending
August 2022 | Volume
 12 | Articl
Ongoing trials evaluating PARP inhibitors in combination with immunotherapy can be found in Supplementary Table 3.
TABLE 8 | Continued

Neoadjuvant Trials

Trial Phase Disease Setting Sample
size

(TNBC
where

available)

Treatment Primary Results Ref.
endpoint

NCT02489448 1/2 Neoadjuvant treatment of
stage I–III TNBC

69 Durvalumab in addition to nab-paclitaxel
followed by ddAC

pCR Overall pCR 44% (95% CI:
30–57%) PD-L1 positive
subgroup 55% (95% CI: 0.38–
0.71) PD-L1 negative
subgroup 32% (95% CI: 0.12–
0.56)

(146)
e 8
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CXCL13 as prognostic biomarkers in TNBC. Further testing in
two neoadjuvant data sets confirmed its predictive value in the
response to chemotherapy (165). An exploratory analysis of the
GeparNUEVO trial revealed that predefined TIL and IFN-
gamma signatures were associated with an increased pCR rate,
without specificity for durvalumab response. The expression of
six genes required for immune cell function was significantly
correlated with pCR and showed a positive test for interaction
with durvalumab plus NACT (166). Further evaluation of the
interactions between the tumour and the immune system, as well
as its architectural heterogeneity, will provide a more accurate
estimation of the individual predictive potential to be derived
from immune signatures.

5.2.2.5. Microsatellite Instability Status
Pembrolizumab monotherapy received FDA approval in 2017
for treating advanced mismatch repair deficient solid tumours
(167). Although only a small proportion of breast cancers are
defined as microsatellite instable, (168) tumours with defects in
the mismatch repair pathways are known to have highly
upregulated expression of multiple immune checkpoints and
increased sensitivity to ICI (169). The introduction of new
strategies to facilitate the identification of this biomarker in a
low-frequency cohort like TNBC remains a challenge.
5.3. PIK3CA/AKT1/PTEN Pathway
Dysregulation of the PI3K/AKT/mTOR pathway is often
observed in TNBC (24, 32), and remains a promising target for
the future treatment of this BC subtype. Pathway activation is
predominantly via PIK3CA mutations (~9–18%), loss of PTEN
(~35%), or INPP4B (~30%), and amplification of PIK3CA
(~43%). The frequency of PI3K/AKT/mTOR pathway
activation and its spectrum varies by TNBC subtype (24, 32),
and is strongly associated with the LAR subtype across classifiers.

5.3.1. Alpha-Specific PI3K Inhibitors
In unselected TNBC, response to PIK3CA inhibitors remains
low. The BELLE-4 study evaluated the efficacy of buparlisib in
the locally advanced setting for patients with HER2-negative BC
along with paclitaxel versus placebo and observed no benefit
from PIK3CA inhibition. Worse outcomes were observed in the
TNBC cohort treated with the PIK3CA inhibitor, and the lack of
benefit was independent of PIK3CA mutation or PTEN loss by
immunohistochemistry (170). Shorter treatment duration in the
buparlisib arm due to adverse events and longer progression-free
survival (PFS) in the placebo arm than anticipated are possible
explanations for the worse outcomes in this subgroup. The global
lack of activity is possibly due to inadequate patient selection and
the absence of an accurate biomarker. Parallel pathway activation
cou ld a l so exp l a in a r e s i s t ance mechan i sm tha t
requires addressing.

5.3.2. AKT Inhibitors
Ipatasertib was reviewed in the neoadjuvant setting along with
paclitaxel for TNBC patients in the FAIRLANE trial (171).
Frontiers in Oncology | www.frontiersin.org 16
Adding ipatasertib did not significantly increase the pCR rate
compared with paclitaxel alone, and this effect was independent
of PIK3CA/AKT1/PTEN or PTEN low status. A complete clinical
response was absent in the placebo-treated group in patients with
tumours defined as the LAR subtype, but was observed in 50% of
those treated with ipatasertib. This difference was not evident in
pCR rates. Elevated immune scores were more strongly
associated with improved outcomes in paclitaxel-treated
compared with ipatasertib-treated patients, highlighting the
key interaction with the immune system. All ipatasertib-treated
patients with low immune scores and complete clinical response
had PIK3CA/AKT1/PTEN-altered tumours. MK2206 has been
trialled in the neoadjuvant setting in the I-SPY2 trial for stage 2–
3 BC of any subtype (172). Patients received paclitaxel
chemotherapy with or without MK2206, then AC. pCR for the
TNBCgroupwas 40.2%withMK2206vs. 22.4%without. Following
assessment of biomarkers in the AKT pathway in the TNBC
subgroup, higher levels of phosphorylated AKT and its substrates
were paradoxically associatedwith a reduced response toMK-2206.

5.3.3. MTOR Inhibitors
Everolimus has been reviewed in the neoadjuvant setting for
patients with TNBC along with cisplatin and paclitaxel (173),
and along with docetaxel, 5-fluorouracil, epirubicin, and
cyclophosphamide (174). No improvement in the response rate
has been demonstrated.

The exact contribution of drugs targeting the PIK3CA/AKT1/
PTEN pathway in early TNBC has not yet been defined. The
complexity of the immune microenvironment and parallel
molecular alterations can obscure accurate estimation of clinical
benefit if they are not in some way accounted for. It is important to
try these therapies in a way that reduces these confounders and
separates theTNBCsubtypes todetermine their individual responses.
Current approaches include combining alpelisib with nab-paclitaxel
in the neoadjuvant setting (NCT04216472) for anthracycline
refractory TNBC with PIK3CA or PTEN alterations, with
exploratory objectives to assess biomarkers of response and
resistance to alpelisib and nab-paclitaxel combination.

Table S5 summarises ongoing trials that target this pathway
in early TNBC.
5.4. AR Pathway
AR expression is found in approximately 10–35% of TNBCs as
detected by immunohistochemistry (175, 176). The LAR
molecular subtype derived from GE accounts for 20–40% of
TNBC and is characterised by the activation of AR, ER, prolactin,
and ErbB4 signalling. Tumours defined as the LAR subtype
typically contain a higher number of PIK3CA mutations, and
the pCR rate following NACT is significantly lower compared to
other subtypes. (18–20).

There is a paucity of data for drugs targeting the AR pathway
in the early TNBC setting. Enzalutamide has been trialled as
monotherapy (177), and along with PIK3CAi in the advanced
setting with modest benefit (178). Other AR pathway targeted
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drugs, for example, abiraterone and bicalutamide, have been
reviewed in the advanced setting with modest results (179, 180).
Although the overall benefit remains limited, it is unclear if this
derives from inadequate patient selection or analogous pathway
activation. Results from four trials in the early TNBC setting are
highly anticipated.

Table S5 summarises ongoing trials that target this pathway
in early TNBC.
5.5. Receptor Tyrosine Kinase Family
5.5.1. HER2
Approximately 35%of TNBCs as defined by immunohistochemistry
could be classified as HER2-low (181). Somatic ERBB2 mutations
occur in approximately 3% of TNBC (6), and a subset of TNBC
tumours are classified as HER2-enriched by gene expression. This
biological heterogeneity has expanded therapeutic opportunities in
thispopulationofpatients. Inanexploratoryanalysisofacohortof the
I-SPY2 trial, activation of HER2-EGFR was identified as a positive
predictor of pCR in 49 TNBC patients treated with a pan-HER
inhibitor (182). A significant correlation between the response to
HER2 inhibition and HER2 pathway activation has been
demonstrated in TNBC cell lines (183).

Neratinib has been investigated in the neoadjuvant setting for
high-risk clinical stage II or III BC. The pCR rate overall in the I-
SPY 2 trial was 37.5% in the neratinib arm, and among patients
demonstrating the phosphorylation of HER2 or EGFR (i.e.,
biomarker-positive for EGFR Y1173 or ERBB2 Y1248), it rose
to 63% (184). Encouraging results in the HER2-low–expressing
refractory BC setting with Trastuzumab Deruxtecan (OR 37%)
(185) and Trastuzumab Duocarmazine (OR 40%) (186) now
require translation into the early setting. These trials illustrate the
importance of identifying patients categorised as TNBC who are
more accurately defined as HER2 low (Table S5).
5.5.2. VEGF
VEGF promotes angiogenesis, invasion, and increases vascular
permeability and is an essential element in TNBC formation,
progression, and metastasis. VEGF-A expression is higher in
TNBC compared with other BC subtypes (187), and enhanced
angiogenic potential is associated with poor prognosis in BC
(188). Targeting of VEGF has been extensively tested in TNBC,
but no clear predictive biomarkers of treatment response have
been identified.

Trials targeting VEGF in the neoadjuvant TNBC setting have
shown disappointing results to date, with no difference in DFS or
OS. The addition of bevacizumab significantly increased the rate
of pCR among patients with Her2-negative disease in some
studies (103, 189–191). The ARTemis and GeparQuinto trials
reported increased benefits primarily in the TNBC subgroup. In
the adjuvant setting, the BEATRICE trial added bevacizumab to
anthracycline and/or taxane-based chemotherapy (192), and no
difference in iDFS or OS between treatment groups was found.
The underlying reason for the lack of treatment effects with these
drugs is poorly understood. It is possible that a fundamental flaw
in either the drug or the signalling pathway is being overlooked.
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Attempts to overcome drug resistance using novel agents and
combinations are ongoing (Table S5).

5.5.3. FGFR
The fibroblast growth factor receptor family includes FGFR1–4.
Signalling through this pathway regulates cell survival,
proliferation, and differentiation. Genes that encode for these
receptors are amplified in ~10% of BC (24). Although FGFR1 is
the most frequent genomic alteration in all subtypes of BC,
amplification and overexpression of FGFR2 are more frequently
observed among TNBCs (~4%). Basal BC with elevatedMET and
FGFR1 signatures is associated with poor relapse-free survival
(193). The interplay between MET and FGFR regulates cancer
stem cells in mesenchymal subtypes (194).

Trial data in this setting is limited to a few studies that do not
select for TNBC but in which some response to this target has
been seen. It seems likely that the correct biomarker has not yet
been identified. Ongoing trials for this target in the neoadjuvant
setting include a window of opportunity trial combining
lenvatinib and pembrolizumab (NCT04427293).

5.5.4. EGFR
EGFR dysregulation is frequently reported in TNBC (195) and
enrichment for this pathway signalling is predominantly
observed in BL2 tumours (196). In contrast to EGFR
mutations, EGFR amplification is a relatively frequent event
(11% vs 23%, respectively) (24, 197) and is considered an
independent prognostic factor for poor disease-free survival
(198). Several attempts to target this pathway with tyrosine
kinase inhibitors and mAbs in the context of mTNBC have
been pursued without success. A limited number of trials have
used these therapies in the early setting.

Trials are underway in the locallyCetuximab has been trialled
along with neoadjuvant docetaxel in a pilot phase two study,
including stage II–IIIA TNBC (199). The pCR rate was 24%
[95% CI: 7.3–40.7] and the pre-therapy ratio between CD8+ and
FOXP3+ TILs equal or higher than 2.75 was predictive of pCR
(43% versus 0%). In addition, panitumumab and the EGFR/
HER2 inhibitor lapatinib failed to demonstrate additional benefit
in the advanced setting independent of EGFR activation (200,
201). The paucity of accurate biomarkers predictive of sensitive
patients has led to unsatisfactory outcomes and limited clinical
utility despite increasing evidence for EGFR as the driver of
tumorigenesis in some TNBC.

Table S5 summarises ongoing trials that target these
pathways in early TNBC.
5.6. Other Oncogenic Targets
Inter-chromosomal rearrangements causing NTRK gene fusions
can result in constitutive activation of TRK proteins, which act as
oncogenic drivers through activation of cellular growth
pathways. Results from early phase trials that included
advanced NTRK fusion-positive solid tumours support the use
of larotrectinib and entrectinib in this subgroup (202, 203).
NTRK gene fusions occur at low frequency (~0.3%) among all
solid tumours (203). However, a high prevalence is observed in a
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subgroup of TNBC (16). The ETV6-NTRK3 gene fusion is
frequently found in human secretory breast carcinoma (16),
and although the vast majority of these breast tumours are
treated with local treatments, targeting TRK signalling remains
an option for cases of locally advanced disease.

Trop-2/TACSTD2 is a calcium signal transducer with
extracellular, transmembrane, and intracellular domains, and is
overexpressed in many epithelial cancers, including TNBC. It
stimulates cancer cell growth and is implicated in various metabolic
pathways. TROP-2 has also been found in stem cells of various
tissues, particularly in basal cells (204). Sacituzumab govitecan, a
humanised mAb that targets TROP2, has shown a PFS and OS
benefit in mTNBC (205). Trials are upcoming in the neoadjuvant
setting (NeoSTAR, NCT04230109), and recruiting in the adjuvant
setting (GBG102-SASCIA NCT04595565 as monotherapy and
ASPRIA NCT04434040 along with immunotherapy) for patients
with residual invasive disease after NACT.

Dysregulation of the NOTCH pathway leads to aberrant self-
renewal and transformation of mammary cancer stem cells,
resulting in tumourigenesis (206). Inhibition of NOTCH
signalling is an attractive strategy for treating TNBC given its
role in promoting EMT and cancer stem cell maintenance (207).
Preclinical and clinical studies involving g-secretase inhibitors
and mAbs against NOTCH receptors have explored its potential
utility with encouraging results, but toxicity has been limiting
(208). The subgroup of TNBCs achieving the best response to the
targeting of this pathway remains undefined.

Activation ofRAS/MAPK signalling is more frequent in TNBCs
compared to other BC subtypes, and it is typically associated with
shorter survival (209, 210). Although canonical aberrations in the
RAS, RAF, MEK, or ERK genes are not found frequently in TNBC,
amplification or mutations in these genes are described in
approximately 6% of BC overall (24). Other mechanisms for
RAS/MAK activation have also been described (211). MEK
Frontiers in Oncology | www.frontiersin.org 18
inhibitors have been trialled in unselected mTNBCs with modest
results (212, 213). Trials are underway in the locally advanced
setting that select for hyperactivation of ERK (NCT04494958) and
RAS pathway mutations (NCT05111561).

Dysregulation of the JAK/STAT3, cyclinD–CDK4/6–INK4–
Rb–E2F, TGF-b, and WNT/B-catenin pathways appears critical
in TNBC development and progression. Clinical testing of the
inhibition of these pathways in TNBC is still immature.

Table S5 summarises ongoing trials that target the above
pathways in early TNBC.
DISCUSSION

Improved understanding of tumour genomics, transcriptomics,
epigenetics , and their interaction with the tumour
microenvironment has allowed a greater insight into the true
diversity of TNBCs. Additionally, numerous advances in both
preclinical and clinical research have directed the treatment of
TNBC towards a more personalised approach. Despite the
introduction of an increasing number of novel strategies in the
clinical setting, approximately one-third of patients diagnosed
with early stage disease will have limited response to primary
treatment and face a poor long-term outcome. The underlying
complexity of TNBC and the challenges in translating
experimental science into the clinic could explain why current
management approaches remain insufficient. The current
therapeutic landscape for early TNBC is severely limited
compared to the large number of compounds in development.
Figure 1 shows the spectrum of agents with known or potential
activity in TNBC. Only a small proportion of these reach patient
care, and the pace at which these agents enter the early BC setting
remains frustratingly slow. Immunotherapy and DDR agents
lead the field with encouraging results.
A B

FIGURE 1 | Current therapeutics strategies in early TNBC. (A). Treatment spectrum (B). Treatment modalities for escalation and de-escalation.
August 2022 | Volume 12 | Article 866889

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Alba et al. Precision Treatment of Early TNBC
Predictive biomarkers are not routinely used in the clinical
management of early sporadic TNBC. The use of gBRCA
mutations to select patients who could benefit from platinum-
based chemotherapy and PARPi demonstrates how a molecular
alteration can aid patient selection for treatment. As yet, there is
no definitive evidence to either support or refute the use of
PARPi in the non-gBRCA TNBC population. An ongoing
neoadjuvant study (NCT03150576) that includes both sporadic
TNBC and BRCA-associated tumours will help elucidate the
value of gBRCA mutations in predicting the response to the
addition of PARPi to platinum-based chemotherapy (100).
Furthermore, no biomarker was predicted for benefit from
Pembrolizumab in the KEYNOTE-522 trial, despite the
encouraging response rates shown. The expected role of PD-L1 as
a biomarker of response has not been proven in the early setting
(138, 139). Substantial differences between the clonal architecture
and the microenvironment of primary and metastatic tumours
(214, 215) suggest that the role of a given biomarker should be
evaluated separately in both early and advanced settings.

A single biomarker strategy is unlikely to be successful for such a
heterogeneous disease, considering the large number of treatment
strategies already tested and the increasing evidence of molecular
complexity in TBNC. Figure 2 illustrates the variety of molecular
components currently being explored as potential biomarkers of
response and resistance. Several interactions across components
also contribute to the challenge. As an example, to adequately
characterise the relationship between host immunity and tumour, a
single determination of the extent of immune activation is expected
to be insufficient. Understanding how the immune response
modulates the intrinsic genomic architecture of the tumour and
the spatial and cellular distribution of immune cells in response to
treatment appears to be crucial. Similarly, multiple pathway
signalling, a common finding in TNBC tumours, could result in
Frontiers in Oncology | www.frontiersin.org 19
the activation of compensatory feedback loops that explain some
mechanismsof tumour evasion and resistancewhena singlepathway
inhibition is applied (216). An integrative approach including
tumour architecture, microenvironment, and pathway activation is
more likely to succeed. A pragmatic example of how an immune-
molecular profile directed approach could be implemented is
shown in Figure 3. Tumours could be classed as ‘hot’ (high
immune activation) or ‘cold’ (low immune activation) as well as
‘high-burden’ (high mutational/clonal burden) or ‘low-burden’
(low mutational/clonal burden). Hot-high burden tumours are
frequently highly proliferative and more likely to exhibit high
chromosomal instability. Increased response to cytotoxic and
immunotherapy agents is anticipated in this subgroup. The hot-
low burden group represents a subgroup in which clonal selection
has been enforced by an active immune system. This good-
prognosis subgroup is likely to require less intensive therapies
with treatments focused on targeting key drivers. In sharp contrast,
cold tumours require more comprehensive approaches that often
include treatment escalation strategies. It is possible that due to
quiescent mechanisms of tumourigenesis, cold tumours remain
invisible to the immune system. Therefore, sequential strategies
that aim to enhance the effect of the immune system are essential
in this group. In cold-low burden tumours, targeted pathway
inactivation followed by immune checkpoint inhibition could
potentially result in an augmented immune response, achieving
long-lasting control of the disease. Cold-high burden tumours
constitute a poor prognosis group with patent mechanisms of
immune evasion. Sequential strategies that include immunotherapy
followed by either chemotherapy, pathway-specific targeted agents,
or radiotherapy-targeted agent combinations are plausible options.

Response to NACT, measured as the amount of residual
disease found at surgery, has recently been used as a primary
endpoint to test novel agents in the early setting. RCB is widely
FIGURE 2 | Biomarker landscape in TNBC.
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considered a prognostic factor and is frequently used as a
surrogate endpoint for long-term outcomes, particularly in this
BC subgroup. Although it is clear from recent meta-analyses that
RCB is a better endpoint than pCR, the identification of the
molecular characteristics that explain why some tumours do not
follow the predicted outcomes (recurrences after excellent
responses or long-lasting EFS after residual disease) continues to
be a challenge. Robust evidence supports the association between
RCB score and long-term outcome in patients twho have received
NACT (79). Conversely, evidence for the predictive value ofRCB in
the context of targeted therapy is limited and requires further
investigation. Multiple other methodologies to aid the
identification of patients with higher disease relapse risk are
currently being explored. The post neoadjuvant and adjuvant
settings are an excellent opportunity to evaluate the contribution
of dynamic biomarkers (e.g., RCB, TILs) to enable an accurate
selection of patients who may benefit from escalating treatment
strategies. Pre- and post-treatment assessment of ctDNA and TME
plus integration of traditional transcriptomic and genomic
signatures or classifications are some of the more promising
approaches. Alternatively, innovative adaptive trial designs that
enable early response assessment and facilitate an early change in
management could minimise overtreatment and appropriately de-
escalate or escalate therapy when appropriate.

Several molecular predictors of response that incorporate
various ‘omic’ data to aid clinical decisions have been developed.
Limited clinical impact has been derived due to lack of
reproducibility, lengthy timeline of results, and expense. The real-
time delivery of genomic and transcriptomic results will facilitate
the implementation of adaptive trial designs and permit the
investigation of novel and existing biomarkers. There are multiple
pan-cancer studies assessing the implementation of genomics and
Frontiers in Oncology | www.frontiersin.org 20
transcriptomics into clinical care, for example, the UK 100,000
Genomes Project (217), theDutch national Centre for Personalised
CancerTreatment (CPCT) study (218), and thePersonalisedOnco-
Genomics (POG) Programme (219). The Personalised Breast
Cancer Programme (PBCP) (220) is a tumour-specific precision
medicine project that implements whole-genome sequencing data
into the real-time treatment of early and advanced breast cancer
patients. This programme ensures the delivery of high-quality
annotated genomic data to patients and clinicians while
promoting hypothesis testing and tumour-specific analysis. These
large-scale sequencing studies will add considerably to our
understanding and enable better optimisation of trial design,
response prediction, and biomarker discovery. These efforts,
combined with the promising potential of novel agents and
treatment combinations, provide us with the exciting prospect of
a tailored treatment pathway for each patient diagnosedwith early-
stage TNBC.

The ultimate aim is that every patient diagnosedwith early-stage
TNBC has a bespoke treatment pathway developed that fits their
TNBC.The individualiseduse of preclinicalmodels such as patient-
derived organoids or xenografts (221), and the implementation of
advanced radiodiagnostic techniques (222) are pivotal to achieving
this goal. This type of integrated approach requires open and clear
communication and collaboration between basic scientists,
clinicians, and other scientific disciplines, for example,
bioinformatics, mathematics, and physics, which will maximise
the chance of success and ultimately enhance patient benefit.

In conclusion, advances in tumour characterisation, real-time
biomarker/genomic testing, trial design, and drug development
provide the foundation for an era of precision treatment in early
TNBC. The development of complex strategies that integrate
multi-modal data to derive individualised care plans, should
FIGURE 3 | Proposed framework for the personalised treatment of early. TNBC.
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Summary Box 1—Biological and clinical features of TNBC

–TNBC is characterised by the absence of ER, PR and HER2 expression and is associated with high early response rates to treatment and poor prognosis.

–TNBC is a heterogeneous disease with a high level of inter and intra tumour heterogeneity.

–Multiple TNBC classifications that split TNBC tumours based on unique molecular features have been described but have yet to be incorporated into routine clinical
practice.
ront
Summary Box 2—Standard of care treatments in TNBC

−Sequential anthracycline-taxane based regimens are considered standard of care.

−Anthracycline-free chemotherapies are considered for lower risk tumours or in patients where cardiotoxicity is a concern.

−Taxane-free chemotherapy or use of an alternative microtubule stabiliser is considered in patients with peripheral neuropathy or taxane hypersensitivity reactions.

−Bisphosphonates are recommended for the treatment of operable breast cancer of all subtypes in patients with low oestrogen states, whether natural or induced.
They should particularly be considered in patients at high risk of relapse or treatment-related bone loss.
Summary Box 3—Key concepts in the current treatment of TNBC

−Chemotherapy can be given in the adjuvant or neoadjuvant setting and the same regimens are typically used. Long-term survival outcomes are similar.

−Advantages of NACT include a rapid evaluation of tumour response, prognostication using RCB scoring, and improved surgical outcomes.

−RCB is strongly associated with long-term outcomes in TNBC.

−Patients with TNBC who are at increased risk of relapse after chemotherapy in the neoadjuvant setting benefit from adjuvant capecitabine. Patients in the gBRCA
subgroup benefit from PARP inhibitors.

−Sequential liquid biopsies to assess ctDNA levels represent a possibility for monitoring treatment response in real-time.
Summary Box 4—DNA damage response: treatment strategies

−There is strong evidence to support the addition of platinum agents to NACT to improve patient outcomes, especially in high-risk and gBRCA carriers.

−Improvements in pCR and EFS rates with platinum chemotherapy combinations need to be balanced against additive chemotherapy toxicities.

−PARP inhibition causes replication stress, induces ssDNA breaks and affects the normal regulation of p53 and its downstream effectors.

−Encouraging evidence supports the efficacy of single agent PARPi in BC patients with gBRCA mutations who have no prior chemotherapy exposure.

−The group of patients with TNBC most likely to benefit from PARP inhibition in the neoadjuvant setting is yet to be established.

−Olaparib improves DFS in gBRCA carriers with high-risk HER2 negative disease following neoadjuvant or adjuvant chemotherapy.
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Summary Box 5—DNA damage response: Biomarkers

−The role of BRCA status as an independent predictive biomarker among the TNBC population in the neoadjuvant setting is unclear.

−Overall, alterations in DNA damage repair-related genes by either gene expression or presence of mutations has shown a positive association with response to
NACT and/or PARPi.

−Mutational signatures predictive of BRCA1/BRCA2 deficiency or a `BRCA-ness status` have shown a trend to positive association with response to platinum
chemotherapy. However, these results are signature specific and should be considered preliminary. Data from randomised clinical trials that prospectively assess the
value of these biomarkers is awaited.

−Higher TMB has been observed in BC tumours that harbour DDR gene mutations. Correlation with response to platinum agents is not yet established.
ront
Summary Box 6—Immune response: Treatment strategies

−Immunotherapy is of particular interest in TNBC due to the higher degree of immune activation seen in comparison to other BC types.

−TNBC is a heterogeneous disease that exhibits various degrees of immunogenicity.

−Several early stage BC trials have established PD-1 and PD-L1 ICIs as a promising treatment option in combination with chemotherapy.

−Pembrolizumab has been granted FDA approval in the neoadjuvant setting for high-risk early-stage TNBC in combination with chemotherapy and to continue as
monotherapy in the adjuvant setting (KEYNOTE-522).
Summary Box 7—Immune response: Biomarkers

–Response to ICIs appears to be independent of PD-L1 status in early TNBC.

–High TMB has been correlated with an increased likelihood of response to ICI, particularly in tumours where CD8+ T-cell levels are positively correlated with
neoantigen load.

–The role of mutational load as an independent predictive biomarker of ICI response is yet to be defined in TNBC.

–Increased TILs are associated with a more favourable response to NACT and long-term outcomes.

–Modest positive association of GE immune signatures with ICI response has been reported.

–The interaction between TMB and GE immune signatures has been shown to be a promising independent predictor of pCR.

–The dynamics of immune activation after treatment are strongly associated with long term outcome, independently of response rate.

–Tumours with defects in the mismatch repair pathways are known to have highly upregulated expression of multiple immune checkpoints and increased sensitivity to
ICI.
Summary Box 8—Other pathways: Treatment strategies

–Targeted therapies should be guided by a biomarker to best determine efficacy in the TNBC population most likely to derive benefit.

–Dysregulation of the PI3K/AKT/mTOR pathway is often observed in TNBC. Efforts to target this pathway have inconsistently shown a modest benefit.

–Targeting AR has shown some clinical benefit, and several trials are ongoing to further evaluate this. A standardised method to determine AR pathway activation is
lacking.
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consider the holistic needs of each patient to achieve a truly
personalised approach.
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AR Androgen receptor
BC Breast cancer
BL1 Basal-like 1
BL2 Basal-like 2
BLIA Basal-like immune activated
BLIS Basal-like immunosuppressed
ctDNA Circulating tumour DNA
DDR DNA damage response
DFS Disease free survival
DSBs Double strand breaks
EBCTCG Early Breast Cancer Trailist’s Collaborative Group
EFS Event free survival
EMT Epithelial-mesenchymal transition
ER Oestrogen receptor
gBRCA Germline BRCA
GE Gene expression
HR Homologous recombination
HRD Homologous recombination deficiency
ICI Immune checkpoint inhibitors
iDFS Invasive disease free survival
IntClust Integrative Cluster
iTILs Intratumoural TILs
LAR Luminal androgen receptor
M Mesenchymal-Lehmann subtype
mAbs Monoclonal antibodies
mTNBC Metastatic triple negative breast cancer
NACT Neoadjuvant chemotherapy
OR Overall response
OS Overall survival
PARP Poly ADP-ribose polymerase
PARPi Poly ADPribose polymerase inhibitors
pCR Pathological complete response
PD-1 Programmed cell death 1
PD-L1 Programmed cell death ligand-1
PFS Progression free survival
PR Progesterone receptor
RCB Residual Cancer Burden
RFS Relapse-free survival
ssDNA Single strand DNA
sTILs Stromal TILs
TILs Tumour infiltrating lymphocytes
TMB Tumour mutational burden
TNBC Triple negative breast cancer.
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