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Abstract: Nanostructures are arising as novel biosensing platforms promising to surpass current
performance in terms of sensitivity, selectivity, and affordability of standard approaches. However, for
several nanosensors, the material and synthesis used make the industrial transfer of such technologies
complex. Silicon nanowires (NWs) are compatible with Si-based flat architecture fabrication and
arise as a hopeful solution to couple their interesting physical properties and surface-to-volume
ratio to an easy commercial transfer. Among all the transduction methods, fluorescent probes and
sensors emerge as some of the most used approaches thanks to their easy data interpretation, measure
affordability, and real-time in situ analysis. In fluorescent sensors, Si NWs are employed as substrate
and coupled with several fluorophores, NWs can be used as quenchers in stem-loop configuration,
and have recently been used for direct fluorescent sensing. In this review, an overview on fluorescent
sensors based on Si NWs is presented, analyzing the literature of the field and highlighting the
advantages and drawbacks for each strategy.

Keywords: silicon nanowires; fluorescent sensors; biosensors; light-emission

1. Introduction

Biosensors are each day becoming more and more important, facing the challenge of
novel devices to enable selective and high-sensitive monitoring of several diseases with the
requirement of an easy, non-invasive, and preferably out-of-hospital analysis [1]. During
the last decades, several biomarkers involved in physiological processes emerged as crucial
instruments to monitor the health state of a patient in relation to different diseases [2–6]
with a massive impact on both biomedical research and clinical applications. Biomarkers
offer the advantage of detecting the presence and quantity of specific biomolecules with
quantitative methods, measuring the hazard and the health state of the patient. Moreover,
another benefit compared to other sensing applications is the relatively easy design of
selective probes (that are often already available in nature) for biomarker specific detection.

Several biosensing approaches were studied and carried out over these years, in-
volving different transduction mechanisms, such as electrical [7,8], electrochemical [9,10],
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colorimetric [11–13], chromatographic [14,15], and optical [16,17]. Among all the biosen-
sors, optical platforms have widespread application thanks to their robustness, sensitive
measurements, absence of electrical noise, easy sample preparation, and non-destructivity
of tissues samples or cells [18–20].

In this class of platforms, fluorescent probes are some of the most common ones with
the application of different light-emitting molecules for a variety of analyses involving
metal ions [21–23], proteins [24–26], RNAs and DNAs [27–29], and so forth. Another
advantage of light-emitting assays is the possibility to be coupled with microscopy analyses
improving the sensitivity and spatial resolution and allowing analysis in vivo or inside
cell cultures [30–32]. Indeed, the development of fluorescent probes that can be precisely
located inside the cells is a highly demanded point to investigate certain biomolecule target
activity revealing their biological roles [33]. So far, several organic fluorophores have been
reported in the literature [34–36]. One of the main advantages of organic fluorophores is
their readily cost-effective availability. However, the fluorescence signal is very sensitive to
the solution, is unstable, and can be affected by photobleaching that causes information
losses. Moreover, molecules agglomeration can also induce a quenching effect, limiting the
detection efficiency and reliability of these probes [37].

Over the last few years, there was an exponential growth in interest in the application
of fluorescent nanoprobes based on semiconductor and metal nanostructures. This interest
can be ascribed to the possibilities offered by nanotechnology to improve nanomaterial
physical properties in combination to the high surface-to-volume ratio of nanostructures,
permitting them to overcome the standard sensor limits [38–42]. Among all the nanoma-
terials, thanks to their robust photostability, efficient fluorescence at tunable wavelength,
semiconductor light-emitting quantum dots (QDs) are typically known as highly fluo-
rescent nanoprobes and have been largely applied in imaging, as well as in biosensing
applications [43–49]. Nonetheless, QDs often are characterized by a complex synthesis
that results incompatible with industrial processes. Moreover, agglomeration processes in
solution affect the use of QDs making often necessary the use of capping agents that can
interfere with molecule labeling processes [50]. Additionally, QDs purification after their
tailored surface modification is a delicate step, possibilly leading to a relevant material loss
or chemical interference.

Another interesting strategy is the use of one-dimensional nanomaterial (as nanowires)
coupled with highly specific recognition ligands (organic molecules or biomolecules) for
biosensors that can be applied for several targets and even inside the cells [51–54]. Com-
pared to 0D nanomaterials, 1D structures can be functionalized with different probes for
multiple sensing [55] and its specific position can be finely controlled adopting strategies
that take advantage of microcontrollers and microscopes [56,57]. For these reasons, several
works report the interest of 1D nanostructures to realize highly sensitive and selective
sensors for chemo- and bio-targets that can be analyzed even inside a single cell, with
interesting applications in intracellular biochemical phenomena [55]. Nanomaterials are
also used as a substrate to improve the stability of dyes [52,53,58–60] and as fluorescent
quenchers in a structure called nano-molecular beacons (nanoMBs) [61,62]. Several nano-
materials, such as carbon nanotubes, graphene, and gold nanoparticles, have been utilized
as novel quenchers coupled with light-emitting molecules for the realization of nanoMBs
that found a use, for example, as highly sensitive and multiplexed sensors for DNA de-
tection [61,63–65]. Currently, nanostructured biosensors are still not sufficient to enter the
market. Without focusing on the specific reasons for each device, it is possible to find a
common explanation in the high cost of some used materials, often associated with difficult
compatibility of several synthesis approaches with the current industrial fabrication pro-
cesses. For these reasons, due to the silicon leading position in the microelectronics industry,
Si nano-sensors emerge as a likely compromise between the nanomaterial advantages and
the industrial requirements, paving a possible commercial transfer in the near future.
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Silicon Nanowire Sensing Platform

In the field of silicon nanostructures, silicon nanowires (Si NWs) have shown great
potentialities for various applications such as electronics [66–68], photonics [69–72], energy
harvesting [73–76], and bioapplications [57,77–80]. Considering the interest in 1D nanos-
tructures for biosensing, Si NWs arise as good candidates due to their convenience with
integrated circuits and microelectronics, but also due to their nontoxicity, excellent elec-
tronic/mechanical/optical properties, surface tailorability, and biocompatibility [81–85].
Moreover, it is reported in the literature that Si NW arrays could also increase the adhesion
force between substrate and cell reducing cell spreading [86–88].

By being physically locating in a single cell, the 1D fluorescence sensor could avoid
the leakage of small molecules and drift of nanoparticles for cell imaging [34]. For silicon
nanostructures, Si NWs arose as a competitive alternative as the an-choring substrate to
construct sensors for single-cell research [56,89]. In some cases, Si NWs also emerged as
a convenient substrate to improve the quantum efficiency of the fluorescent species as
reported by Mu et al. [55]. In the past, it has been reported that immobilizing the reactive
molecules onto an opportune matrix is an effective strategy to enhance the selectivity
and stability of the fluorophores [90]. The coupling of fluorescent species on Si NWs
has also been reported as convenient to improve the stability of a fluorophore for certain
application. For example, fluorescein is an interesting FDA approved fluorophore and
reduced-fluoresceamine has been used for NO detection, but low selectivity and only 2 h
stability have limited this application. Miao et al. reported on the covalently functionaliza-
tion of Si NWs with reduced-fluoresceamine as a stable fluorescent sensor for NO without
the issue of the free fluorophore [91].

Thanks to all these interesting properties of Si NWs, these 1D silicon nanostructures
have been utilized in several bio-applications, such as measurement of biochemical activity,
gene transduction, biomarker detection, nanoprobes for tumor treatment (i.e., through
hyperthermal treatments), and intracellular biomolecules delivery [79,92–95]. Among all
these studies, it is also possible to find the application of nanoparticles (NPs) decorated Si
NWs that have been intensively studied as sensor SERS, and as nanoMBs [78,96,97]. The
application of Si NWs as a field-effect transistor is the most common and most performing
type of Si NW sensor. Si NW FET sensors make possible the detection of single-molecule
(protein [98], DNA [41,99]) that is not possible by fluorescent sensors. However, for
most of the applications, this limit of detection (LOD) is not required and typically a
LOD (and working range) around nM and pM is enough [100]. Moreover, Si NW FET
sensors need microelectronics advanced equipment with an expensive and time-consuming
fabrication. Despite Si NW FET have the best LOD, fluorescent Si NW optical sensors
are a promising candidate for first screening analyses, where fast, easy-to-use, and cost-
effective platforms can be used as a rapid initial check before laboratory analyses, and can
be coupled in most cases to existing microscope equipments in combination with standard
fluorescent molecules.

As far as the fabrication of Si NWs-based fluorescent sensors is concerned, it is possible
to generalize 3 types of major Si NW applications as schematized in Figure 1. In particular,
(a) Si NWs (or a single Si NW) coupled with fluorescent biomolecules can be employed
and used as a substrate [33,34,55,56], (b) metal decorated Si NWs coupled with fluorescent
biomolecules can be used as quencher according to the structural conformation of the
functionalized material (i.e., quenching when the dye is in close proximitity to gold NP
decorated Si NWs) [96,97], (c) light-emitting Si NW directly used as biosensor based on
their photoluminescence (PL) quenching [101–103]. During the next sections, each one
of these interesting strategies will be presented, discussing their major advantages and
drawbacks and the type of applications where they have been reported so far.
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loop DNA configurations [96], and Si NWs as direct light-emitting sensors [102]. The image on the left corner is reproduced 
with permission [60], Copyright 2014, American Chemical Society. The image on the right corner is reproduced with per-
mission [96], Copyright 2014, Royal Society of Chemistry. The image on the bottom is reproduced with permission [102], 
Copyright 2018, American Chemical Society. 
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ysilyl-propylamino)-acetamide (QlOEt) for the detection of Cu2+ [55]. Several metal ions 
can be found in our body, which are involved in physiological processes. Among them, 
Cu2+ is one of the most abundant with a concentration of 100 μM in healthy cells [104,105] 
and complexed Cu2+ are implicated in important physiological processes as oxidative 
stress, biocatalysis, and several diseases [106–109]. Free Cu2+ ions are not commonly found 
inside the body, but chelated by several biomolecules such as tyrosinase, ceruloplasmin, 
and SOD1 (a copper-binding enzyme, Cu−Zn-superoxide dismutase) [104,105,110]. 
Hence, the monitoring of the complexed Cu2+ in living cells is of great interest for both 
understanding the Cu2+ roles in biological systems and its application as a biomarker [60]. 

The authors synthesize Si NWs by thermal evaporation and with a 15–25 nm crystal-
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Figure 1. Schematic representation of the main fluorescent sensors based on Si NWs. From the top left corner in clockwise
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Copyright 2018, American Chemical Society.

2. Fluorescent Sensors with Si NW as a Substrate

The first reported Si NW fluorescent sensor relies on the use of these nanostructures
as a convenient substrate to improve the stability and performance of a fluorescence ligand.
In particular, Mu et al. used Si NWs coupled with N-(quinoline-8-yl)-2-(3-triethoxysilyl-
propylamino)-acetamide (QlOEt) for the detection of Cu2+ [55]. Several metal ions can be
found in our body, which are involved in physiological processes. Among them, Cu2+ is
one of the most abundant with a concentration of 100 µM in healthy cells [104,105] and
complexed Cu2+ are implicated in important physiological processes as oxidative stress,
biocatalysis, and several diseases [106–109]. Free Cu2+ ions are not commonly found inside
the body, but chelated by several biomolecules such as tyrosinase, ceruloplasmin, and
SOD1 (a copper-binding enzyme, Cu−Zn-superoxide dismutase) [104,105,110]. Hence, the
monitoring of the complexed Cu2+ in living cells is of great interest for both understanding
the Cu2+ roles in biological systems and its application as a biomarker [60].

The authors synthesize Si NWs by thermal evaporation and with a 15–25 nm crystalline
silicon core surrounded by 1–3 nm of SiO2. Si NWs were then functionalized with about
9 × 10−6 M QlOEt and it was shown that QlOEt-modified Si NWs had higher fluorescence
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quantum yield than free QlOEt. The authors through IR measurements report that for
QlOEt-modified Si NWs there are unreacted silanol groups present at the surface of SiNWs.
An hydrogen bonding can occur between the NH group of QlOet and these uncreacted
silanol groups [55,111]. This bonding can partially suppressi the proton transfer from
the NH group to the heterocyclic nitrogen atom within 8-acylamidoquinoline framework
resulting in the higher fluorescence quantum yield of the Si NW sensor.

QlOEt was chosen due to its chemical structure, sensitive to metal ions. When a metal
ion coordinates QlOEt, its fluorescence is modified, and this is the sensing mechanism of the
reported Si NWs-based sensor. Cu2+ has strong coordination with QlOEt that determines
the selectivity of the sensor. QlOEt does not specifically chelate Cu2+. However, after
titration of various metal ions, the authors observed that the fluorescence change of QlOEt-
modified Si NW sensor in presence of Cu2+ is at least 4 times higher the one obtained with
other metal ions at the same concentration. In particular, at a metal ion concentration of
about 10−5 M, for Cu2+ fluorescence was quenched by about 80% of the starting one. For
an equal amount of Zn2+, the fluorescence of QlOEt-modified Si NWs increased by 15%,
while Hg2+, Ni2+, Co2+, and Fe2+ led to a 20% fluorescence quenching. Other metal ions,
such as Mg2+, Na+, Ca2+, K+, Pb2+, and Cd2+, produce a negligible fluorescence change
of the Si NW sensor. From these results, the authors demonstrated the selectivity of the
QlOEt-modified SiNWs for Cu2+.

The Si NW sensor shown a limit of detection (LOD) of 10−8 M, 2 orders of magnitude
better than the one of the optimized Q1OEt without Si NWs. This type of optical sensor
design was very interesting and lead to the realization of other several works by the
same group.

Systems for Macro- and Micro-Sensing

Miao et al. continue in the Cu2+ detection realizing a Si NWs-based fluorescent sensor
able to detect this metal ion in its complexed form that can be typically found in the human
body. In particular, the sensor was tested with SOD1 and liver extract. In this case, the au-
thors adopted a different functionalization involving a different fluorescent molecule. Miao
et al. covalently immobilized on the surface of Si NWs 3-[2-(2-aminoethylamino)- ethy-
lamino] propyl-trimethoxysilane (3-A) as receptor and a dansyl group (D) as a fluorophore.
In Figure 2a is shown the final Si sensor (3-AD-SiNW) and its detection mechanism is
schematized. In this application, the authors used 2 different approaches for the fabrication
of Si NWs. Thermal evaporation was adopted for the realization of Si NWs with about
6–9 nm Si core and 3–5 nm of surrounding SiO2 while a metal-assisted chemical etching
(MACE) was carried out for the realization of high density and vertically oriented Si NW
arrays with bigger Si NWs. The Si NWs were realized by MACE for array applications or
for a single Si NW sensor.

The fluorescence signal of 3-AD-SiNWs decreases increasing the Cu2+ concentration
with a linear dose-response in the 50−400 nM range and a detection limit of about 31 nM.
Concerning the selectivity, the authors report on a high binding affinity of the 3-AD-Si
NWs for the detection of Cu2+ probably due to the suitable radius and electronic structure
of the Cu2+ for the interaction with 3-A [60]. The binding affinity of the 3-AD-Si NWs
was demonstrated by several tests with other metal ions and amino acids that mimes the
possible presence of interference molecules. The selectivity has been tested also using a
complexing agent as EDTA that produce EDTA-Cu2+ complex that owns a high stability
constant [112]. The presence of EDTA or its further addition to a Cu2+ solution does not
change the signal obtained from the Si NW sensor demonstrating that the 3-AD-SiNWs
own a high binding affinity with Cu2+. The binding affinity of the functionalization was
demonstrated by the authors also by using the combination of 3-A and D molecules (3-AD
molecules) tested with Cu2+ in the supporting information of [60].
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Figure 2. (a) Working principle of the Si NW fluorescent sensor for the detection of Cu2+ [60]. (b) Fluorescence spectra of
the Si NW sensor acquired for different concentrations of SOD1 [60]. (c) Dose-response curve in terms of fluorescence as a
function of mU/mL of SOD1 for the Cu2+ detection by the Si NW fluorescent sensor [60]. (d) Schematic representation of
the HCL fluorescent sensor based on the use of a single Si NW on the tip of a micropipette [34]. (e) Fluorescence spectra
obtained for different concentrations of HCl. In the inset to e) the complete calibration curve obtained is reported [34].
(f) Part of the dose calibration curve where the response can be fitted by a linear trend [34]. (a–c) are reproduced with
permission [60], Copyright 2014, American Chemical Society. (d–f) are reproduced with permission [34], Copyright 2018,
WILEY-VCH.

Commonly, different amino acids (as Cys, His, Glu, etc) can easily bound Cu2+ [105]
and the sensor was tested with these and other biomolecules showing negligible interfer-
ence. All these tests demonstrated the high selectivity of the sensor for Cu2+. This Si NW
sensor was tested with SOD1, a copper-binding enzyme that is used by our body against
oxygen radicals [104], to simulate a real condition where the Cu2+ is present in complex
form. The sensor perfectly worked in presence of SOD1 with a fluorescence quenching that
for each 1.11 U/L SOD1 is comparable to that of 1.0 nM of Cu2+. The obtained fluorescence
intensity and the calibration curve are shown in Figure 2b,c, respectively. Moreover, the
sensor was tested in a more complex (and real) matrix to prove its affordability. In particu-
lar, since Cu overload can be found in the liver [104] the authors tested the 3-AD-SiNWs to
detect the Cu2+ (in its free form and complexed) in prepared mouse liver extract demon-
strating a linear response of photoluminescence (PL) quenching to the liver extract. Finally,
the authors shown a chip sensor as an array of functionalized Si NWs for the detection in
real-time and in situ of free and complex Cu2+ inside apoptotic HeLa cells.

H2S and NO are two of the main endogenous gaseous transmitters in the human body.
H2S has a critical role in various physiological processes, in regulating intracellular redox,
and in disease signaling processes [113,114]. Wang et al. report on the realization of a Si NW
sensor functionalized by naphthalimide azide derivative for H2S detection [18]. The authors
demonstrated the selectivity of the sensor for H2S among other biologically reactive sulfur,
oxygen, and nitrogen species. A linear dose-response curve in the 0–40 mM concentration
range was found. Moreover, a H2S detection in real-time and in situ monitoring from HeLa
cells was reported [18].

For what concern NO, as endogenous gas the nitric oxide has an important role
as a cardiovascular and nervous systems messenger [115,116]. Miao et al. realized a
Si NW fluorescent sensor for NO detection based on the reduced-fluoresceamine light
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emission [91]. In this case, Si NWs are used to improve the selectivity and the stability of
the fluorescein which is commonly used as a direct sensor in these applications. The sensor
was tested with other endogenous gas and reactive species demonstrating its selectivity
for NO detection. In this case, the reaction with the NO causes the turn-on of the light
emission of the sensor (and not a quenching). A working range of 0–2.2 mM was obtained
and the possibility to operate in a real matrix as liver extract was obtained. Moreover,
the authors shown the possibility to obtain a fine spatial resolution by using a single Si
NW-based sensor [91].

Another sensor based on the coupling of Si NWs and the fluorescein group was
designed by Wang et al. to detect the alkaline phosphatase (ALP) [33]. An anomalous
and high concentration of this enzyme in human serum is usually associated with several
diseases such as liver dysfunction, breast, and prostatic cancer, etc. [117,118]. A high
selectivity among other enzymes and biomolecules along with a linear dose-response curve
in the 0.0175–0.3 U/mL range of ALP were obtained. Moreover, the authors shown high
spatial resolution analysis by using a single NW sensor for intracellular measurements [33].

Cao et al. report on the fabrication of a Si NW sensor for an important reactive
species, hypochlorous acid (HClO) [34]. HClO plays a critical role against pathogens in
our body [119,120] and can be also found in dissociate hypochlorite ion form (ClO-) [121].
A high concentration of HClO can be associated with different important diseases such
as cardiovascular disease and cancer [122–124]. The authors fabricate a Si NW sensor for
HClO based on the functionalization of nanowires with IR780 as a fluorescent ligand. In
particular, the authors show the HClO sensing inside living cells using a micromanipulator
to insert a single NW sensor inside HeLa cells, as depicted in Figure 2d. Si NWs were
realized by Chemical Vapor Deposition (CVD), for in vitro experiments, and MACE for
array experiments, and the single NW sensor application. The sensing mechanism is due
to the one-electron oxidation [125], probably resulting in the cleavage of the polymethine
chain in IR780 that causes the quenching of the fluorophore light emission as a function of
its concentration. The PL quenching obtained increasing the concentration of HClO from 0
to 140 µM is shown in Figure 2e and its inset. A linear response curve was found for the
working range of 0–50 µM, as shown in Figure 2f. The selectivity was demonstrated by
testing the sensor with some of the main metal ions and reactive species that can be present
in the human body reporting a negligible signal variation. Si NW sensors were successfully
tested not only with the direct target recognition, but also in a system that mimes the
HClO production of our enzymatic system [126,127], demonstrating the ability to detect
hypochlorite in living organisms. As schematized in Figure 2d, the authors reported on
the possibility to load the tip of a micropipette with a single Si NW sensor that can be
micromanipulated to be inserted inside cells for fluorescence imaging through confocal
microscopy analysis [34]. This result opens the route to the intracellular application of a
single Si NW sensor that can be used in intracellular systems.

Concerning the detection of other important metal ions in our body, Chen et al.
realized a Si NW-based fluorescence sensor for Ca2+ [56]. Calcium ion is an important
messenger in cells, and it is related to several cellular activities and fundamental processes
in neurons [128,129]. In this case, the sensor work as a ratiometric sensor based on the
use of two fluorescent species, a ruthenium-based dye with red emission as the reference
molecule, and the Fluo-3 with green emission as the light-emitting probe. The selectivity
was demonstrated with respect to several metal ions and reversible detection of Ca2+ is
reported. The authors also demonstrate in this case the use of a single Si NW fluorescent
sensor loaded in the tip of a micropipette for intracellular sensing. In particular, by a
micromanipulator and confocal microscopy analysis, the sensor was able to recognize the
difference between the Ca2+ concentrations in the cell body and the neurites with a high
spatial resolution [56].

The use of Si NWs as a substrate to improve the stability, selectivity, and sensitivity of
different fluorescent species, and for different applications has been highlighted. In Table 1
all the sensors discussed in this second section are reported highlihting the probe, targe,
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matrix, and LOD. The LOD shown by these sensors is commonly in the nM–µM range but
in any case, able to surpass the direct fluorophore use and enough for real applications.
This class of sensors shows great potentiality in biological studies with the possibility to
replace standard fluorophores and showing real-time and in situ detection for intracellular
analyses. Indeed, the realization and use of a single Si NW sensor capable to be finely
located for high spatial resolution imaging of dynamical biomolecules activity is extremely
interesting. These Si NWs-based light-emitting sensors may found a commercial transfer
as fluorescent probes thanks to their superior performances, their easy use with the current
biological equipment (as the confocal microscopy), and the interest in a Si-based platform.

Table 1. Si NW as a substrate coupled with fluorophores.

Probe Target Matrix LOD Refs.

N-(quinoline-8-yl)-2-(3-triethoxysilyl-
propylamino)-acetamide

(QlOEt)
Cu2+ Buffer 10 nM [55]

3-[2-(2-aminoethylamino)-ethylamino]
propyl-trimethoxysilane (3-A) as receptor and a

dansyl group (D) as a fluorophore
Cu2+ Buffer, liver extract,

cell culture 30 nM [60]

Naphthalimide azide derivative H2S Buffer, cell culture mM [18]

reduced-fluoresceamine NO Buffer, liver extract,
cell culture mM [91]

reduced-fluoresceamine alkaline phosphatase
(ALP) Buffer, cell culture 0.0175 U/mL [33]

IR780 HClO Buffer, cell culture µM [34]
Ratiometric detection with ruthenium-based
dye as the reference molecule and Fluo-3 as

the probe
Ca2+ Buffer, cell culture - [56]

3. Fluorescent Sensors with Si NW as a Quencher

Molecular beacons are probe molecules exhibiting a characteristic stem-loop structure
where 5′ and 3′ ends are preserved in proximity [130,131]. When the molecular beacon
probe hybridized with the DNA target corresponds a structural conformational change
that separates the 5′ and 3′ ends. A commonly transducing strategy for these probes is
detecting the fluorescence from a fluorophore at one end of the probe that is suppressed
by a quencher in the original stem-loop structure before the target capture [130]. Indeed,
at the beginning, due to the stem structure, the quencher is very close to the fluorophore
suppressing its light emission. Upon the specific hybridization between the target (RNA or
DNA) a conformational change in the MBs happens increasing the distance between the
quencher and the fluorophore, and so restoring its light emission [96]. The use of molecular
beacons is very interesting due to the high selectivity, multiplexed detection capability, and
for the possibility to discriminate single base mismatch in DNA.

As elicited in the introduction the use of nanomaterials as quenchers in nanoMBs
founds interesting applications in the literature [61,63–65]. Au NPs are one of the most
used nanostructures for the realization of nanoMBs with a quenching action of 2 orders
of magnitude higher than the one obtained by organic quenchers [65,132]. Among all
the possible strategies, Au NPs decorated silicon NWs can be used as high-performance
quenchers in nanoMBs permitting to obtain highly sensitive and selective sensors with
multiplexed capability [96]. AuNP-decorated silicon nanowires demonstrated a high
quenching efficiency (QE > 90%). Moreover, the large surface-to-volume ratio offered by
the Si NWs, the know-how of silicon surface chemistry, and the interest of a silicon-based
platform make these Si NW sensors promising for stem-loop applications. The sensing
mechanism is the typical one of molecular beacons. An on–off switch of the light-emission
based on the decorated Si NW (quencher) and the fluorescent molecule (fluorophore)
distance follows the disruption or formation of the stem-loop configuration in the presence
of targets. The high-surface volume ratio of Si NWs is a critical point for the enhanced
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sensitivity of these sensors, but it is also used to enable multiplexed of different DNA
strands [97].

Su et al. report the first example of silicon-based nanoMBs [96]. Arrays of 4 µm
length Si NW with about 170 nm diameter were fabricated by MACE approach and further
decorated by AuNPs through a reduction reaction [78,133]. The Au NPs decorated Si NWs
were then detached by ultrasonic treatment. An advantage of the use of Si NWs compared
to free Au NPs is the stability in presence of higher salt concentrations in aqueous solutions.
Indeed, in the tested range (10−2–10−1 M), Si NW nanoMBs are stable while free Au NPs
gradually aggregate, increasing the salt concentrations. Stem-loop structures of Si NW
nanoMBs with DNA probe coupled with FAM, Cy5, and ROX were realized obtaining more
than 90% quenching of the fluorophore emission for each case. The hybridization occurring
between the target DNA and the Si NW nanoMBs causes the conformational change of
the stem helix with a spatial displacement between the fluorophore and the decorated Si
NW. Instead, the increase of fluorophore-Si NW distance decreases the quenching action
of the Au NP decorated Si NWs restoring the light emission. As a result, an increment
in the acquired light signal is related to the target concentration and a pM LOD was
demonstrated. This detection limit is 3 orders of magnitude better than the one of other
nanoMBs and free Au NPs [61,65,134]. Another interesting aspect of these nanoMBs is their
advantage to discriminate single-base mismatch. Indeed, base mismatch causes a slight
difference in the conformational change upon the hybridization, hence causing a slightly
different distance between quencher and fluorophore. The signal variation produced by a
single-base mismatched DNA can be of about 20% compared to the fully complementary
target. This high sequence specificity is very interesting for applications involving mutated
genes [61,132,135] and even with a concentration of 10 nM of target DNA, a single-base
mismatch can be detected.

Multiplexed detection is a required strategy for several applications such as for the
simultaneous detection of several tumor-suppressor genes in early phase cancer [136,137].
The authors demonstrate the multiplexed detection of three types of tumor-suppressor
genes (exon segments of p16, p21, and p53 genes) by using 3 DNA probes labeled with
FAM, Cy5, and ROX. The use of fluorophore with excitation and emission well separated
among them permitted to distinguish the detection of the different targets [96]. These
results were promising for the realization of a novel type of silicon-based nanoMBs with
pM detection and multiplex analysis capability.

Xie et al. demonstrated the realization of Si NW nanoMBs for stem-loop DNA sensing
with multiplexing detection for DNA and metal ions as Hg2+ [97]. In Figure 3a, the
schematic diagram of Si NWs-based nanoMBs functionalization and sensing mechanism
is reported for DNA and Hg2+ detection. Si NWs were fabricated by MACE and after a
functionalization involving glutaraldehyde (GA) and APTES (silane-treatment) are ready
to be assembled with the DNA probes tagged with fluorophores [138]. Si NWs guarantee
more than 90% of quenching efficiency in the closed stem-loop configuration for DNA
and the interaction with the DNA restores the light emission. On the contrary, the sensing
mechanism is the opposite for metal ions. For Hg2+ detection, after the GA and silane-
treatment Si NWs were modified with Cy5-tagged thymine-rich DNA Strands. In this
case, the presence of Hg2+ ions favors the closing of the DNA structure by thymine–Hg–
thymine base pair formation causing the PL quenching of the Si NW nanoMBs [139–141].
As shown in Figure 3b the authors demonstrate a wide range of DNA detection from 1 pM
to 1 nM. Moreover, in the paper is discussed the possibility of a naked eye detection (just
as an on-off signal) with a high concentration of 1 mM for easy-to-use devices for early
analysis applications. The sensor demonstrated high selectivity as reported in Figure 3c.
The calibration curve obtained for DNA is shown in Figure 3d with an almost linear
dose-curve response. The capability of these Si NW nanoMBs to discriminate single-base
mismatch was also reported as visible by the PL quenching in Figure 3e and integrated in
Figure 3f. In particular, by the integrated PL is possible to observe a variation of about 72%
of signal between complementary target and single-base mismatch. The kinetic of light
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signal restoring due to the capture of the specific DNA target is reported in Figure 3g with
saturation in 1 h. Multiplexing capability can be achieved also in this case by modifying
the Si NW with different fluorophore tagged DNA probes. The authors demonstrated the
multiplexed detection of three tumor suppressor genes by using Cy5, ROX, and FAM. For
what concerns the detection of Hg2+ a working range of 5 pM-5nM was reported. The
selectivity was tested with different more than other 11 interfering metal ions such as Ca2+,
Cd2+, Mn2+, Ni2+, Fe2+, etc., with negligible interference in Hg2+ detection.
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non-complementary DNA (NC) [97]. (c) PL integrated signal for the different concentrations of DNA target, background,
and non-complementary DNA [97]. (d) Dose-response curve obtained as the integrated PL signal as a function of the DNA
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and single-base mismatch DNA signal [97]. (f) Integrated PL reporting the clear difference between complementary target
and single-base mismatch DNA [97]. (g) Kinetic of the fluorescence restoring as a function of the conformational change of
the Si NW nanoMB sensors [97]. Figure reproduced with permission [97], Copyright 2014, Royal Society of Chemistry.

The use of Si NWs as a quencher in a stem-loop DNA nanoMBs platform demonstrated
improved stability in salt aqueous solution, high-quenching efficiency, and multiplexed
analysis capability with an industrially compatible platform. Table 2 shows all the discussed
Si NW nanoMBs results reporting the probe, targe, matrix, and LOD.

Table 2. Si NW as quencher in nanoMBs.

Probe Target Matrix LOD Ref.

DNA probe–FAM Complementary DNA–tumor suppressor
genes (p16, p21, p53) Buffer 50 pM [96]

DNA probe–CY5 Complementary DNA–tumor suppressor
genes (p16, p21, p53) Buffer 50 pM [96]

DNA probe–ROX Complementary DNA–tumor suppressor
genes (p16, p21, p53) Buffer 50 pM [96]

DNA probe–FAM Complementary DNA–tumor suppressor
genes (p16, p21, p53) Buffer 10 pM [97]

DNA probe–ROX Complementary DNA–tumor suppressor
genes (p16, p21, p53) Buffer 10 pM [97]

DNA probe–CY5 Complementary DNA–tumor suppressor
genes (p16, p21, p53) Buffer 10 pM [97]

T-rich mercury-specific
oligonucleotide

(MSO) tagged with Cy5
Mg2+ Buffer 5 pM [97]
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The LODs shown by these sensors are commonly in the nM–pM range with an
improvement of 3 orders of magnitude compared to the most common Au NPs-based
nanoMBs. This class of sensors shows great potentiality in biological studies involving
DNA base mismatch permitting to resolve even a single base mismatch compared to the
complementary target. These Si NW-based light-emitting sensors can be realized with
low-cost approaches [96,142–144] coupling improved performances to the interest of a
Si-based platform and so resulting very interesting for DNA detection and studies.

4. Fluorescent Si NW Sensors

Light-emitting Si nanowire recently emerged as an interesting route in the field of
fluorescent Si NWs-based biosensors. Silicon is an indirect bandgap semiconductor but it
is possible to obtain light emission from 0D or 1D nanostructures with suitable dimensions
for the quantum confinement effect. The realization of silicon quantum dots or nanocrystals
is extensively reported in the literature due to their high surface-to-volume ratio along with
their bright, stable, and tunable luminescence [145,146]. On the contrary, the fabrication
of room temperature (RT) light-emitting Si NWs is scarcely reported due to the complex
synthesis to obtain these smaller diameters and a high aspect ratio. In particular, this
can possibly be ascribed to the difficulties of standard nanotechnology approaches to
fabricate Si NW with core dimensions smaller than 10 nm, as required to obtain quantum
confinement effect [142]. Recently the use of a thin metal layer in metal-assisted chemical
etching (MACE) demonstrated the realization of quantum confined Si NWs that emit light
at room temperature by quantum confinement effect [20,147].

This MACE approach for the fabrication of luminescent Si NWs is compatible with the
current microelectronics equipment and cost-effective compared to other methods as deep
reactive ion etching coupled with state of art lithography to obtain similar dimensions [142].
In particular, the group of Irrera et al. demonstrate that by thin-film MACE it is possible to
obtain quantum confined Si NWs with diameters smaller than 10 nm, and a high density
(about 1012 NWs/cm2). All these aspects drove the first application of these structures as
direct fluorescent platforms in the field of Si-based biosensors whose sensing mechanism
relies on the NW photoluminescence (PL) quenching due to the non-radiative levels
introduced by the captured target.

In particular, light-emitting Si NW sensors were applied for the detection of different
biomarkers such as proteins and DNAs [101–103,148]. A Si NWs-based fluorescent sensor
was demonstrated for the detection of the C-reactive Protein (CRP), a main cardiovascular
biomarker typically measured in blood in the range of 1–100 µg/mL by immunoturbidi-
metric or other clinical standard procedures [149,150]. The detection of CRP can permit
avoiding a myocardial infarction monitoring the health state of a patient. Several studies
report on the possible analysis of saliva for a non-invasive analysis that can reduce hospital
queue and recovery time pushing the monitoring even at home. However, a working range
for CRP concentration of 10−5–10−2 µg/mL is required limiting the application of standard
approaches [151]. In Figure 4a is reported the sensor functionalization and involves the
use of the biotinylated specific antibody for the CRP (anti-CRP) linked by streptavidin
onto the Si NW surface for the CRP detection. The Si NW sensor was then tested with
different concentrations of CRP ranging from 10−9 to 100 µg/mL [101]. In Figure 4b, the PL
spectra acquired at RT of the sensor tested in the buffer solution without CRP is reported
in black. In the same figure, the PL response of the sensor to CRP concentration going from
10−8 to 10−1 µg/mL is reported. It is possible to observe as increasing PL quenching of
the platform for higher CRP concentrations. In these works [101,103], the authors attested
through lifetime measurements that the PL quenching can be ascribed to the introduction
of new non-radiative levels by the CRP capture, thus reducing the fluorescence. This Si NW
PL quenching is the sensing mechanism, and the integrated light signal can be correlated
to the CRP concentration as schematized Figure 4c. The calibration curve is reported in
Figure 4d showing the integrated PL Intensity normalized with respect to the signal of the
sensor without any protein (grey bar) as a function of the CRP concentration. In particular,
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a detection limit of about 1.6 fM was obtained with a wide operating range. High selectivity
was attested in human serum (orange point) and by other negative tests involving other
non-specific proteins [103]. This working range permits the application of this label-free
sensor for saliva concentration of CRP with a great interest for a point of care non-invasive
application. Indeed, the correlated health risk is reported at the bottom of Figure 4d. After
the realization of a CRP saliva sensor, by slightly changing the functionalization the same
authors demonstrated another platform for blood CRP concentrations [101].

Nanomaterials 2021, 11, x FOR PEER REVIEW 12 of 21 
 

 

biomarker typically measured in blood in the range of 1–100 μg/mL by immunoturbidimetric 
or other clinical standard procedures [149,150]. The detection of CRP can permit avoiding a 
myocardial infarction monitoring the health state of a patient. Several studies report on the 
possible analysis of saliva for a non-invasive analysis that can reduce hospital queue and re-
covery time pushing the monitoring even at home. However, a working range for CRP con-
centration of 10−5–10−2 μg/mL is required limiting the application of standard approaches [151]. 
In Figure 4a is reported the sensor functionalization and involves the use of the biotinylated 
specific antibody for the CRP (anti-CRP) linked by streptavidin onto the Si NW surface for the 
CRP detection. The Si NW sensor was then tested with different concentrations of CRP rang-
ing from 10−9 to 100 μg/mL [101]. In Figure 4b, the PL spectra acquired at RT of the sensor 
tested in the buffer solution without CRP is reported in black. In the same figure, the PL re-
sponse of the sensor to CRP concentration going from 10−8 to 10−1 μg/mL is reported. It is pos-
sible to observe as increasing PL quenching of the platform for higher CRP concentrations. In 
these works [101,103], the authors attested through lifetime measurements that the PL quench-
ing can be ascribed to the introduction of new non-radiative levels by the CRP capture, thus 
reducing the fluorescence. This Si NW PL quenching is the sensing mechanism, and the inte-
grated light signal can be correlated to the CRP concentration as schematized Figure 4c. The 
calibration curve is reported in Figure 4d showing the integrated PL Intensity normalized with 
respect to the signal of the sensor without any protein (grey bar) as a function of the CRP 
concentration. In particular, a detection limit of about 1.6 fM was obtained with a wide oper-
ating range. High selectivity was attested in human serum (orange point) and by other nega-
tive tests involving other non-specific proteins [103]. This working range permits the applica-
tion of this label-free sensor for saliva concentration of CRP with a great interest for a point of 
care non-invasive application. Indeed, the correlated health risk is reported at the bottom of 
Figure 4d. After the realization of a CRP saliva sensor, by slightly changing the functionaliza-
tion the same authors demonstrated another platform for blood CRP concentrations [101]. 

 
Figure 4. (a) Si NW sensor functionalization for the detection of CRP [103]. (b) PL spectra as a function of different CRP 
concentrations. (c) Schematic representation of the Si NW quenching (sensing mechanism) as a function of the CRP con-
centration. (d) Dose-response curve obtained as the PL signal of the sensor normalized to the reference signal (obtained 
without CRP) as a function of the CRP concentration. (e) Si NW sensor functionalization for HBV detection [102]. (f) PL 
spectra of the Si NW sensor tested with different copies of HBV in buffer. (g) Dose-response curve obtained as the PL 
signal of the sensor normalized to the reference signal (obtained without HBV) as a function of the HBV copies in 100 μL 
of buffer (blue points) or human serum (orange points) [102]. (a–d) are reproduced with permission [98], Copyright 2018, 
Springer. (e–g) are reproduced with permission [102], Copyright 2018, American Chemical Society. 

Figure 4. (a) Si NW sensor functionalization for the detection of CRP [103]. (b) PL spectra as a function of different
CRP concentrations. (c) Schematic representation of the Si NW quenching (sensing mechanism) as a function of the CRP
concentration. (d) Dose-response curve obtained as the PL signal of the sensor normalized to the reference signal (obtained
without CRP) as a function of the CRP concentration. (e) Si NW sensor functionalization for HBV detection [102]. (f) PL
spectra of the Si NW sensor tested with different copies of HBV in buffer. (g) Dose-response curve obtained as the PL signal
of the sensor normalized to the reference signal (obtained without HBV) as a function of the HBV copies in 100 µL of buffer
(blue points) or human serum (orange points) [102]. (a–d) are reproduced with permission [98], Copyright 2018, Springer.
(e–g) are reproduced with permission [102], Copyright 2018, American Chemical Society.

This fluorescent Si NW sensor was also tested for DNA detection realizing a sen-
sor for Hepatitis B Virus (HBV), the major cause of liver disease and liver cancer in the
world [152,153]. Quantitative real-time polymerase chain reaction (PCR) is the gold stan-
dard for DNA analysis involving the amplification of its number of copies but requires
expert personnel, a specialized laboratory and it is expensive in terms of cost and time.
Novel detection methods are demanded for applications that does not need the perfor-
mances of PCR but instead rapid analysis, easier sample treatment, and lower cost [154].
This fluorescent sensor does not require any PCR amplification (PCR-free) or chemical
tagging of the target (label-free). In this case, after a silane-treatment of the surface with
GOPS the Si NWs were functionalized by using two probes (P1, P2) that are the specific
genome sequence complementary to the HBV. The use of two probes complementary for
the head and the tail of the HBV genome guarantee a cooperative hybridization to the
target improving the selectivity and affordability of the measure. The final sensor and its
interaction with HBV is schematized in Figure 4e. In Figure 4f, the Si NW PL response
in the buffer to a different amount of HBV cps are reported. The sensor was tested in the
typical PCR calibration range from 2 cps to 105 cps over a 100 µL of solution. As for the
previous case, increasing the HBV number of copies (cps) follows an increase of the PL
quenching. The sensor response was also tested in human serum where a high number of
possible interference biological species are present. In Figure 4g, the sensor dose–response
curve obtained for both buffer (blue dots) and human serum (orange dots) is shown. This
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calibration curve was obtained as the integrated PL intensity normalized to the signal
acquired by the sensor in the respective matrix (buffer or serum) as a function of the HBV
cps. The perfect agreement between the values obtained in buffer and the one obtained
in serum is a strong demonstration of selectivity. However, the selective response of the
sensor was also demonstrated with a high concentration (2000 cps) of mycobacterium
tuberculosis (MTB) as a non-specific target that does not produce any variation compared
to the reference signal (sensor without HBV). The sensor shows a remarkable LOD was of
2 HBV cps on the same order as the best quantitative real-time PCR equipment. Finally, the
authors demonstrated the use of the sensor with real HBV genome extracted from infected
human blood in a buffer matrix. Real DNA has different bases lengths compared to the
cloned genome due to the clone realization process. Indeed, the real DNA is about 2 times
shorter than the laboratory cloned sequence, and so it may be more complex to detect
independently from the transduction method [100]. For real HBV, a LOD of 20 cps was
obtained, comparable to the real-time PCR limit.

In Table 3, all the light-emitting Si NW sensors results discussed in this section are
reported underlining the probe, targe, matrix, and LOD. This fluorescent Si NW sensing
platform shows remarkable performances with a LOD of fM for proteins and few copies
for DNA surpassing other fluorescent Si NW strategies. However, it is not the LOD
the advantage of this class of sensor. Indeed, compared with other Si NW sensors as Si
NWs FET or others state of the art optical platform as photonic crystal, their detection
performances are slightly inferior. Despite that, the simple realization, easy-to-use, and
cost-effective fabrication of these fluorescent sensors coupled with their performances make
them interesting as point of care devices for first analyses outside specialized facilities.
The advantage on the other reported fluorescent Si NW sensor is the direct use of light-
emitting NWs that does not need to be coupled with other fluorescent species. However,
light emission from a single NW has not yet been proven to be enough for single NW
fluorescent cells.

Table 3. Light-emitting Si NWs.

Probe Target Matrix LOD Refs.

Antibody C-reactive protein Buffer/Serum fM [101]
Primer Hepatitis B Virus (DNA) Buffer/Serum 2–20 copies [102]

Antibody Small extracellular vesicles Buffer 105 Ex/mL [148]

In general, the novelty of this platform requires additional tests to attest the sensor
reliability. While the other fluorescent Si NW sensor seems to find their best used coupled
with the current analysis technologies (as confocal microscopy), this type of fluorescent
NW sensor seems promising for the realization of sensing devices that can be widely
used outside biomedical laboratories with high sensitivity and selectivity for several
biomarker detections. It is important to highlight that as for the other presented platforms,
all the reported results were demonstrated in the laboratory. At the moment, a stand-
alone portable device able to manage both the Si NW sensor excitation and detection was
not reported.

5. Future Perspective

All the presented Si NW fluorescent sensors are characterized by advantages and
drawbacks. In Table 4, all the main results of this review are summarized reporting the
principal characteristics of the discussed sensors such as target, expertise required for the
readout, average LOD, and some other interesting information as notes.
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Table 4. Comparison between different fluorescent Si NW sensors.

Sensor Target Expertise Required Average LOD Note Ref.

Si NWs as a substrate Metal ions,
endogenous gases

Low in macro/High
in micro µM-nM Can be used for cell imaging Table 1

Si NW nanoMBs DNAs High nM-pM Distinguish a single base
mismatch Table 2

Light-emitting
Si NWs

Proteins, DNAs,
vesicles Medium fM for protein, few

DNA cps
Does not need other

fluoroscent molecules Table 3

Additionally, as future perspective on these technologies, we would like to stress a
few keypoints regarding the importance of developing a Si-based sensor which could be
easily implemented in the industrial production lines at a low-cost and with outstanding
performances arising from the peculiar properties of 1D nanostructures. Indeed, Si NWs
offer a huge surface to volume ratio combined with dense array fabrication and a variety
of device configurations. The role of Si NW in fluorescent sensors is of great interest
and shows huge potential for easy-to-use sensing devices. Nonetheless, possibly due
to technological limits, the research in this field is still at the beginning compared to
other trasnsductions involving Si NWs (i.e., electrical, electrochemical, etc.). In terms of
technological transfer most of the presented state of the art reach the 4th technological
readiness level (TRL) achieving the realization of component or board validation in a
laboratory. In the future, demonstrating the importance of these technologies will be critical
to reach an industrial large scale production for the nanostructures and the realization of a
whole system prototype validated in real operational environment.

6. Conclusions

In this paper, we have reported an overview on fluorescent sensors based on Si NWs. Si
NWs offer the interesting possibility to couple the nanostructure advantages with a Si-based
solution. Indeed, the strategic role of silicon in the microelectronics industry combined
with the high surface-to-volume ratio and the innovative properties of nanostructures is a
promising strategy in the biosensing field.

The fluorescent transduction of Si NW sensor has been explored due to the interest
in this sensing mechanism and to the possibility of coupling Si NW fluorescent sensor to
the already used fluorescent equipment. In particular, we have presented the most used
Si NW-based fluorescent approaches such as Si NWs employed as substrate and coupled
with several fluorophores, Si NW quenchers in stem-loop configuration, and Si NW as
direct light-emitting sensors. For each platform, the detection performances, advantages,
and drawbacks have been discussed. The biosensing field poses exciting challenges still
far from being addressed and, in this scenario, fluorescent Si NWs arise as a promising
silicon-based strategy.
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