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Early warning signals (EWSs) are a group of statistical time-series signals
which could be used to anticipate a critical transition before it is reached.
EWSs are model-independent methods that have grown in popularity to sup-
port evidence of disease emergence and disease elimination. Theoretical work
has demonstrated their capability of detecting disease transitions in simple epi-
demic models, where elimination is reached through vaccination, to more
complex vector transmission, age-structured and metapopulation models.
However, the exact time evolution of EWSs depends on the transition; here
we review the literature to provide guidance on what trends to expect and
when. Recent advances includemethods which detect when an EWS becomes
significant; the earlier an upcoming disease transition is detected, the more
valuable an EWSwill be in practice.We suggest that futurework should firstly
validate detection methods with synthetic and historical datasets, before
addressing their performance with real-time data which is accruing. A major
challenge to overcome for the use of EWSs with disease transitions is to main-
tain the accuracy of EWSs in data-poor settings. We demonstrate how EWSs
behave on reported cases for pertussis in theUSA, to highlight some limitations
when detecting disease transitions with real-world data.
1. Introduction
Infectiousdiseases contribute to nearlyone-thirdof theworldwidediseaseburden
[1]. Advances in public health over the twentieth century have resulted in major
successes, including the elimination of smallpox, and over a 99% reduction in
the incidence of poliomyelitis since 1988 [2]. However, the continuous threat
posed by newly emerging diseases strains public health resources and widens
inequality gaps within countries. Infectious diseases disproportionately affect
individuals from low-income countries and can trigger social and economical
instability [3]. In many cases, infectious diseases are treatable with existing medi-
cines or are preventable with vaccines, yet they continue to persist, causing
significant harm and death. Understanding when a disease has been eliminated
is a topic of global health and economic importance. If successful, limited resources
for disease management, such as vaccines, can be reallocated, and the usage of
highly toxic treatments can end.However, if infectious disease control is eased pre-
maturely it could reverse all progress towards disease elimination and result in
disease resurgence. Early detection of emergent events can allow for effective dis-
ease management and potential containment, limiting the total burden of disease.

Epidemiologists are interested in identifying two critical transitions. Firstly, a
key problem in infectious disease management is assessing if a disease has been
eliminated, thus prompting the end of a control campaign. Secondly, the ability
to assess the potential epidemic threat posed by emerging and re-emerging
diseases. The basic reproduction number, R0, is an important epidemiological
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Bifurcation. The term which describes a shift in the quali-
tative behaviour of a dynamical system’s steady state,
caused by changes in parameter values. The presence
of a bifurcation point can result in small parametric
changes leading to abrupt system state changes.
Critical slowing down (CSD). The phenomenon that a
system closer to a critical transition will take more
time to recover from perturbations, owing to the
dominant eigenvalue approaching zero.
Early warning signals (EWSs). Measurable manifestations
of CSD in dynamical time series. Candidate EWSs
are useful if they change in a consistent way on the
approach to a critical transition, such as rising autocor-
relation and variance in the fluctuations about a
system’s steady state (also known as statistical indicator
or leading indicator).
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quantity for assessing the threat of a disease; when R0 < 1 the
disease-free state is stable and disease is unable to sustain
itself without repeated extrinsic introductions, while R0 > 1
indicates that sustained transmission (including epidemics
and endemicity) is possible. Epidemiologists seek to identify
when a disease is approaching the critical threshold at R0 = 1.
Traditional mathematical modelling of infectious diseases
allows researchers to analyse the local stability properties and
capture the system’s sensitivity to changes. However, there
are many known, and sometimes fundamental, limitations of
mathematical modelling, including the following.

— Model sensitivity: Does the model accurately represent the
problem being addressed? What are the model assump-
tions? Could this model be surjective, i.e. could the
same dynamics be observed by two completely different
models?

— Parameter sensitivity: How will the model be fitted to the
data? Can all unknown parameters in the model be
fitted? How does the model handle missing data?

— Computational cost: Can results be produced quickly,
in real time, as more data become available?

— Generality to different environments, locations and
problems.

Model-independent methods, which aim to avoid these
issues, do not rely on empirically fitted models and have
grown in popularity to support evidence of disease emergence
and disease elimination. A variety of statistical methodologies
have been proposed for detecting anomalies in data in the
context of detecting infectious disease outbreaks [4,5]. These
surveillance-based approaches identify patterns of disease
outbreaks as they arise in public health data to inform the
implementation of control, specificallymethodswhich provide
sufficient time to allow interventions to take place.

Early warning signals (EWSs) are a proposed model-
independent method for detecting critical transitions, rooted
in the mathematical theory of dynamical systems, and their
use has been increasing throughout the twenty-first century.
EWSs are a group of statistical time-series signals that change
in a consistent way on the approach to a bifurcation, which
can be detected in time-series and spatial data. Methodological
approaches that detect the critical transition R0 = 1 in time-
series data can provide early evidence of infectious disease
outbreaks, and also can inform the path to disease elimination.
EWSs offer a potential computationally inexpensive and
efficient method for monitoring the status of a disease, by
detecting when a disease system shifts abruptly from one
stable state to the other. Nearly all previous work in traditional
statistical surveillance has focused on detecting ongoing dis-
ease outbreaks [6], while the generality of detecting critical
transitions with EWSs offers a dual purpose: to detect disease
emergent events and disease elimination.

Critical transitions are a feature of many complex systems.
The potential for using EWSs to anticipate events before they
occur is invaluable, and offers the ability for researchers
to change the future course of a system. Research in the
dynamical properties of a system on the approach to a critical
transition has a long history, from the first proposal of monitor-
ing the return time of a system to signal a tipping point [7]
to Hohenberg & Halperin’s [8] review of critical phenomena
known as ‘critical slowing down’ (CSD). More recently, the
phenomenon has been identified as increased autocorrelation,
variance andmagnitude of fluctuations as a system approaches
a transition, owing to the system’s slow recovery from pertur-
bations as its dominant eigenvalue approaches zero. Since real-
world systems are subject to noise, this phenomenon can be
detected indirectly from an increasing ‘memory’ in stochastic
fluctuations, resulting in changes in statistical indicators (or
EWSs) such as variance and autocorrelation [9]. Much of the
previous literature on EWSs has focused on ecological
[10–13] and climate systems [14–16], exploring leading indi-
cators of ecosystem collapse and sudden climatic shifts,
respectively; reviewed in [9]. While these indicators have
successfully predicted transitions in data [15,17] and model
simulations [18,19], potential indicators typically perform
well for some systems and poorly for others [20].

The specific characteristics of epidemiological transitions (e.g.
that they are associated with transcritical bifurcations) and data
(e.g. aggregated case reports subject to under-reporting) have
therefore required multiple theoretical studies extending the lit-
erature [21–31]. Table 1 gives an overview of the literature in
EWSs of disease transitions, summarizing all published papers
on this topic by transition studied (elimination or emergence),
with a focus on the type of infectious disease time-series data
used (incidence, prevalence or other) and whether the observed
indicators exhibited a rising or falling trend prior to the critical
transition. Bold typeface highlights if an observed indicator
was shown to be reliable prior to an epidemiological transition.
While some studies found EWSs, there are disagreements
among papers of similar epidemiological systems.

Initial research was restricted to theoretical exploration,
determining signals that are exhibited prior to a transition
in synthetic epidemiological data [21–31]. There are many
barriers to the development of EWSs with empirical epidemio-
logical data. Recently, research attention has moved towards
incorporatingmore realistic synthetic data, including reporting
errors, and the implementation of EWSs on incidence-type data
[31,33,35,44]. The first validation analysis on empirical datasets
was conducted in [39] and supports the potential of EWSswith
real-world data. This articlewill summarize the findings on the
suitability of EWSs being used in epidemiology, and in particu-
lar will discuss future avenues such as the application of these
methods to benefit programme managers for disease control.
1.1. Terminology



Time of detection and lead time. The first time that the
statistical signature of CSD is detected, and if the time
of the ‘true’ critical transition is known, the lead time
is the lag between the time of detection and reaching
the bifurcation.
Sensitivity and specificity of EWSs. Performance of indi-
cators, determined by their ability to detect a critical
transition in time series going through a transition
(true-positive rate; sensitivity), and their ability to not
detect a transition in time series that is not under-
going a transition, e.g. null datasets (true-negative
rate; specificity).
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2. Analytical derivations of EWSs
The effects of CSD can be appreciated mathematically by
deriving the statistical indicators analytically. O’Regan &
Drake [21] first presented a derivation of EWSs for epidemio-
logical systems, such as the classic one-dimensional SIS
model (susceptible–infected–susceptible model; see [45]).
The statistical indicators of the SIS system were first analysed
at steady state, and then were extended for the continuous
system [27]. The system models the prevalence of an infec-
tious disease over time, which can be described by the
deterministic equation

dI
dt

¼ bð1� IÞI � gI

¼ bI 1� 1
R0

� I
� �

, ð2:1Þ

where β is the transmission rate of the disease and I is the
prevalence at time t. This system has two fixed points: the
disease-free state (I* = 0), which is stable when R0 < 1, and
the endemic steady state (I* = 1− (1/R0)), which is stable
when R0 > 1. This system can be transformed into the trans-
critical bifurcation normal form by a change of variables
that rescale time (e.g. t0 = βt), such that

dx
dt

¼ xðrt � xÞ,

where rt = 1− (1/R0) is the bifurcation parameter. Transcriti-
cal bifurcations are one example of zero-value eigenvalue
bifurcations, whereby the dominant eigenvalue goes through
zero as the system is forced through a critical transition. CSD
was first described for fold bifurcations, which are another
family of bifurcations with this property and dominate the lit-
erature. There are a few exceptions in infectious disease
models where a Hopf bifurcation can be induced instead
[46,47], although, in general, more complex infectious disease
models can also be reduced to a transcritical bifurcation [48].
Fortunately, the trend in EWSs prior to fold, transcritical and
Hopf bifurcations is similar in most cases [49], and so we can
expect similar properties in EWSs for different classes of
infectious disease models.

Figure 1 demonstrates how the steady state of the system
changes with the bifurcation parameter R0. To derive statistical
indicators of disease transitions, the system can be perturbed
analytically by gradually forcing parameters such as the trans-
mission rate or vaccination rate over time, until the disease is
either unsustainable (R0 < 1, disease elimination) or disease
cases surge (R0 > 1, disease emergence). Changing
parameters analytically effectively mimics public health
campaigns such as hand washing, social distancing and vacci-
nation programmes. Many studies also include an external
force of infection term, ε, to allow for environmental spillover,
which is particularly important for understanding the
dynamics of disease emergence [21,23].

Under the stochastic formulation, the probability P(I, t) of
having a prevalence of I at time t is given by themaster equation,

dPðI, tÞ
dt

¼ ðE�1
I � 1ÞTðI þ 1jIÞPðI, tÞ þ ðEI � 1ÞTðI � 1jIÞPðI, tÞ,

ð2:2Þ
where T(I + 1|I) = β((N− I)I/N) + ε(N− I) are the transition
rates into the infected class and T(I− 1|I) = γI are the transition
rates away fromthe infected class. The stepoperatorEkI is defined
as EkI f ðIÞ ¼ f ðI þ kÞ, where f is an arbitrary function [50].

The theory of CSD relates to the fluctuations about a
steady state, where the statistical properties of these fluctu-
ations change on the approach to a critical transition. The
linear noise approximation [50] has been applied to epide-
miological systems to separate the fluctuations from the
steady state [21], and assumes that the fluctuations, ζ,
about the prevalence steady state, ϕ = I*/N, are expected to
be of the order of N−1/2, agreeing with the central limit
theorem

I
N

¼ fðtÞ þ zffiffiffiffi
N

p : ð2:3Þ

This linearization is only suitable when the number of
infectious individuals is sufficiently large. For emerging dis-
eases, where there are few infected individuals initially, the
stochastic dynamics are highly non-Gaussian [23]. The
birth–death–immigration process (BDI) has been adapted to
the study of emerging diseases with births representing
new infections, deaths representing the recovery of individ-
uals and immigration the spillover of a pathogen from an
external source; under this framework the transitions
are T(I + 1|I ) = βI + εN and T(I− 1|I ) = γI [23]. The BDI pro-
cess provides analytical intuition to behaviour of prevalence
for emerging diseases, but it is limited in its applicability
for established diseases at endemic steady state. The
derivations of EWSs using the master equation follows
similarly for both the BDI process and SIS model.

The Fokker–Planck equation describing the probability of
observing fluctuation ζ at time t for the SIS model can be
derived as

@Pðz, tÞ
@t

¼ ðE�1
I � 1ÞTðI þ 1jIÞPðI, tÞ

þ ðEI � 1ÞTðI � 1jIÞPðI, tÞ �N1=2 df
dt

@Pðz, tÞ
@z

¼ �ðbð1� 2fÞ � gÞ @zP
@z

þ 1
2
ðbð1� fÞfþ gfÞ @

2P

@z2
,

ð2:4Þ
or equivalently in terms of the corresponding stochastic
differential equation for ζ

dz ¼ ðbð1� 2fÞ � gÞzdtþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bfð1� fÞ þ gf

p
dWt:

Analytically, statistical indicators can be deduced by
taking moments of equation (2.4), such as evaluating the
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Figure 1. Bifurcation diagram of a typical epidemiological model. Transcritical
zero-eigenvalue bifurcation diagram for an SIS model: bifurcation occurs at
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behaviour of variance of the fluctuations (illustrated in
figure 2) to be

@hz2it
@t

¼
ð1
�1

z2
@P

@t
dz

¼ ðb� g� 2bfÞNs2 þ bð1� fÞfþ gf, ð2:5Þ

which can be simplified by evaluating at steady state, to
obtain var(ζ) = (1/N )(1/R0) for the SIS model and var(ζ) =
(ε/γ)/(1−R0)

2 for the BDImodel. The steady-state assumption
masks an important difficulty in the analysis of statistical
indicators of critical transitions, namely that a system under-
going a critical transition is not at steady state. Nevertheless,
this assumption can be viewed as a time-scale separation,
whereby the bifurcation parameter varies much slower
than the time it takes the system to equilibrate, and so, in prin-
ciple, fast components can be eliminated [51,52]. While the
time-scale separation argument provides some intuition
about general trends, such a strict separation is not observed
in epidemiological systems.

The coefficient of variation represents the ratio of the
standard deviation to the mean, and therefore statistical prop-
erties of this EWS on the approach to a critical transition
depend on whether the system is approaching: (i) disease
elimination, where the mean infections are reducing, result-
ing in an asymptotically rising coefficient of variation
(figure 2a), or (ii) disease emergence, where the mean infec-
tions are increasing (figure 2b). A consequence of using the
linear noise approximation is that the mean of the fluctu-
ations ζ is zero; for this reason derivations of the coefficient

of variation can be made from prevalence
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hI2i � hIi2

q
=hIi

by taking moments of I instead.
Another popular EWS of disease transitions is the lag-τ

autocorrelation, which is predicted to rise prior to a critical
transition from CSD. Derivations of auto-correlation have
been made in the literature using the power spectrum and
the Wiener–Khinchin theorem [21], and have been achieved
using the Fokker–Planck equation. In particular, the lag-1 auto-
correlation for prevalence is given by ACF ¼ e�jgðR0ð1�2fÞ�1Þj

for the SIS model (shown in figure 2) and ACF ¼ eðR0�1Þg for
the BDI process at steady state.
Theoretical work on EWSs of disease transitions has been
extended from this simple one-dimensional SIS model to a var-
iety of epidemiological models, including the SIR (susceptible–
infected–recovered) model [21,26], vector transmission models
[22], models with vaccination dynamics [21,29,31,37], spatial
metapopulation models [27], age-structured models [28]
and higher dimensional models, including network-based
[28,36,41], agent-based simulations [28] and coupled disease–
behaviour dynamics on multiplex networks [29,37]. In these
more complex systems, statistical properties of the fluctuations
about prevalence have been investigated by extending the
derivations described in this section.

Consistently the most popular EWSs studied, variance and
lag-1 autocorrelation, are calculated on the fluctuations of
prevalence-type data and rise prior to disease transitions
in all models [21–23,27,31], shown in figure 2. While the
coefficient of variation rises prior to disease elimination [21],
it is flat and unchanging prior to disease emergence [23].
In contrast, the coefficient of variation, variance and lag-1 auto-
correlation are constant and unchanging over time for a disease
at the endemic steady state (see electronic supplementary
material, figure S1). The non-monotonic trend in time-series
statistics prior to reaching the disease transition can be used
as the EWS of an upcoming bifurcation. The trend in some
EWSs has been found to be sensitive to the source of noise driv-
ing the perturbation, where some statistics have been shown to
decrease depending on the type of stochasticity present [24].
Notably, O’Regan & Burton [24] conclude that it is reasonable
to assume that the variance and coefficient of variation will
increase prior to disease elimination when the noise is external
and affects a system as a whole.

The focus to date has been on determining whether the
characteristics of CSD are exhibited in epidemiological tran-
sitions and more widely this work has shown evidence of
CSD in transcritical bifurcation systems. A drawback present
in these analytical studies is due to the type of epidemio-
logical data collected, as prevalence-type data (I) are rarely
collected except for closed systems (e.g. within a hospital
setting) or during prevalence surveys (a sample of the
population). Typically, incidence data are collected, which
describe the number of new infections at each time; for
example, number of new infections diagnosed each week or
month. These data are also not without limitations, as
many ‘new infections’ are not reported on the first day of
infection, but after an individual has presented themselves
at a healthcare facility. Additionally, many diseases are not
notifiable (a disease that is required by law to be reported
to government authorities), resulting in an inaccurate
representation of disease.

Significant analytical progress has begun to understand
whether EWSs calculated on incidence-type data are exhib-
ited prior to a critical transition, and whether there are
discrepancies between signals in prevalence-type data and
those in incidence-type data. Under the BDI framework, a
probability distribution for the deaths or recovery events can
be derived analytically to understand the fluctuations about
incidence. A common assumption is to monitor recoveries,
assuming that cases are more likely to be reported towards
the end of the infectious period. O’Dea & Drake [25] extend
the BDI model in the context of emerging diseases to describe
the distribution of new cases by adding an observation model
into the framework. This can be constructed using the master
equation (equation (2.2)), where I is the prevalence and nc
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(new cases) is the total number of infectious individuals who
are removed over an interval of length t,

dPðI, nc, tÞ
dt

¼ ðE�1
I � 1ÞTðI þ 1, ncjI, ncÞPðI, nc, tÞ

þ ðEIE�1
nc �ÞTðI � 1, nc þ 1jI, ncÞPðI, nc, tÞ,

ð2:6Þ
where the transition rates are the same as the earlier BDI
model (T(I + 1, nc|I, nc) = T(I + 1|I ) and T(I− 1, nc + 1|
I, nc) = T(I− 1|I )) and the master equation contains step oper-
ators in terms of I (as previously) and nc. Including a
monitoring scheme, by counting removal events, increases
the dimension of the Markov process by 1, where new
cases nc increase by 1 each time there is a removal event.
This can be solved by transforming the master equation
into a multivariate generating function in terms of prevalence
and new cases [53], and deriving analytical solutions of EWSs
from the moments [44].

Other analytical work by Southall et al. [31] considers EWSs
of disease elimination when calculated on incidence data, and
compares their approach with previous studies and with the
known traits of CSD when statistics are calculated on preva-
lence-type data. By considering stochastic models of
infectious diseases, it is known that the new infection events
(e.g. transmission events) can be estimatedbya Poisson process
with rates given by the transition probability T(I + 1|I). This
generalized theory, which holds for many counting processes
outside the scope of epidemiology, can be used to find the
EWSs from the statistical signatures of a Poisson distributed
variable. Namely, if new cases happen at a rate approximately
equal to λ(t) = T(I + 1|I)Δt, then the variance and mean are
equal and given by λ(t). This result says that when the mean
is increasing, such as prior to disease emergence, then the var-
iance in incidence will increase before the critical transition, as
expected by CSD and supporting previous work [25]. How-
ever, when the mean is decreasing, such as prior to disease
elimination, then the variance of incidence will decrease
before the critical transition. This result signifies that the
rising property of variance prior to a disease transition,
whichwas found for prevalence-type data, is not always exhib-
ited prior to disease elimination and depends on the data
collected (illustrated in figure 2a).

Furthermore, a lower lag-1 autocorrelation is observed in
incidence data compared with prevalence data (figure 2).
A formal analysis of the reduced autocorrelation of incidence
data relative to prevalence data is beyond the scope of this
review. However, it can be heuristically seen by inspecting
the transition rates of the BDI model for nc and I, which
only explicitly depend on I (equation (2.6)). Therefore, the
dependence of new incidence on previous incidence is indir-
ect (via the prevalence I, which depends on the entire history
of infections and recoveries). For prevalence, the dependence
is direct, suggesting prevalence data are more correlated than
incidence data.
3. Computing EWSs from disease data
The calculation of EWSs from real-world data requires suitable
pre-processing, such as the detrending of the data to remove the
mean (steady state) and obtain the fluctuations. In simulation
studies, this process can be done by removing the average
over replicate realizations, and it has been shown that stochas-
tic simulations produced using the Gillespie algorithm
match the theoretical predictions of EWSs shown in figure 2
[25,27,31,35]. In practice, without the availability of true repli-
cates, Gaussian detrending is often implemented. Gaussian
detrending is a moving average technique, which removes a
weightedmean over a selectedwindow size,where theweights
are taken fromaGaussian kernelwith a user-inputted standard
deviation. This method not only requires the user to select a
suitable choice of window size and standard deviation, but
also makes the assumption that the data are ergodic. This
raises a key challenge with this technique, as ergodicity only
holds for stationary time series; however, these methods will
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be implemented on data that are believed to be approaching a
critical transition. For this reason, the choice of thewindow size
and the speed a disease is approaching a critical transition are
interlinked when deciding if the assumptions of Gaussian
detrending are appropriate. In particular, O’Regan & Drake
[21] discussed the limitations of Gaussian detrending for dis-
eases that decline rapidly, finding that, even for slowly
changing diseases, smaller window sizes did not capture the
fluctuations and larger window sizes did not successfully
remove the slowly varying trend. Even with its recognized
limitations, Gaussian detrending is a popular method in the
EWS literature for disease transitions [21,22,33,40].

Recent work has begun to develop a specific detrending
method for epidemiological data. Dessavre et al. [27] present
a spatial detrending approach, which removes the mean over
multiple populations to obtain the fluctuations. Unlike
Gaussian detrending, this approach does not require any
hyperparamaters to be inputted; however, it does assume
spatial ergodicity, i.e. all subpopulations are similar. The
use of spatial data to overcome some limitations in detrend-
ing is promising, particularly for fine-scale spatial data,
such as within a county or state where the spatial ergodicity
assumption is suitable. Furthermore, O’Dea & Drake [25]
found that statistics calculated over multiple heterogeneous
realisations, where the parameter set for each realization
was sampled randomly, corresponded well with the analyti-
cal results. This simulated study could be thought of as
calculating EWSs between many non-identical locations,
supporting evidence of spatial detrending.

In addition, there is the added challenge of removing per-
iodic trends in the time series to obtain the residuals. Many
infectious diseases exhibit seasonal forcing due to climate
and human behaviour, which may dominate the behaviour
of EWSs close to the critical transition. However, Miller
et al. [33] found that it was not necessary to seasonally
detrend the time series first, noting that autocorrelation per-
formed worse with seasonal decomposition than Gaussian
detrending. It was shown that variance was insensitive to
the type of detrending (Gaussian, seasonally decomposition
or differencing), although the performance worsened with
all detrending methods when the data had high levels of
periodic forcing.
4. Performance of EWSs
Simulation studies can provide an understanding of the
performance of each EWS for different transitions. Error
rates of EWSs can be visualized by receiver operating
characteristic (ROC) curves of each signal. The sensitivity,
or true-positive rate, can be measured as the proportion of
simulations going through a transition which are correctly
identified. The specificity, on the other hand, or true-negative
rate, gives the proportion of simulations not going through a
transition that are correctly identified. The latter group of
simulations are often referred to as the null model, and
EWSs calculated on these data should not signal a critical
transition. For disease emergence, a high sensitivity is of criti-
cal importance to provide a high confidence of identifying all
disease emergence risks. By contrast, for disease elimination,
a high specificity is required to minimize falsely detecting
disease elimination in cases where it is not present.
Many methods have been proposed to measure the
performance of EWSs, such as thresholding EWSs with a
constant value [27,28], thresholding with the long-run stan-
dard deviation [13] or using Kendall’s τ statistic. Kendall’s τ
statistic is the most popular approach in the literature
[21,22,31,33–35,40], as it gives a quantitative measure of
the increasing or decreasing trend of the EWS. However,
the use of Kendall’s τ score can be problematic as it describes
the overall trend over the time period considered, with the
challenge being selecting an appropriate time period. Even
if the EWS rapidly increases and then decreases slightly, the
score may return a value of zero (indicating a constant
trend) or even a negative score (decreasing trend). Simulation
studies have considered how the performance of an EWS
behaves over different time intervals [27,28], with one study
finding that the variance and autocorrelation lag-1 did not
become predictive until 2 years before the estimated tran-
sition [28], further indicating that the choice of time interval
used to calculate Kendall’s τ statistic can impact results.

There exist various ways to determine the best time period
for empirical studies on historical data, such as using an
expert’s opinion to infer the time of transition [38], using an
appropriate mathematical model to retrospectively identify
when the effective reproduction number is 1 [28] or approxi-
mating when the system underwent a critical transition using
the rate of change of incidence [40]. In these examples,
Kendall’s τ score can be calculated on a reasonable time
period before the estimated transition. A key unanswered
question is how much data should be used to calculate
Kendall’s τ score for a real-time analysis, where the true critical
transition is unknown and not yet reached.

The choice of null model assesses the strength of an EWS
under different conditions, and many studies choose a model
at steady state where the value of R0 is fixed over time
[21,22,28,31,33,35]. A steady-state null model will describe
how good an EWS is at identifying the difference between a
system undergoing a bifurcation versus a system at steady
state. A tougher test is measuring an EWS’s ability to identify
when the system is approaching a critical transition versus
when the system is changing but not bifurcating. EWSs
which perform very well when comparing disease elimination
or emergence to a steady-state null model can struggle to dis-
tinguish between the disease transition and a time series
whichwas changing but not bifurcating [27,39]. This highlights
a serious limitation for detecting disease transitions when
using EWSs in practice. Ideally, EWSs need to be capable of dis-
tinguishing between increased transmission and increased
reporting, given the latter type of data may not be bifurcating.
The choice of an appropriate null model can change the
perceived view of accurate EWSs and the trade-off between
sensitivity and specificity will depend on whether distinguish-
ing disease transitions and steady state is enough.
4.1. How early can EWSs identify the disease transition?
Research addressing the first time when the trend of an
EWS is significant, which we name time of detection, is
limited. The time of detection refers to detecting the
statistical signatures of CSD, rather than the critical transition
itself. Reporting the time when there is evidence of
an upcoming bifurcation will allow policy makers to inter-
vene and change the current direction. For studies where
the bifurcation point is known, the time of detection can be
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used to find the lead time of each EWS. The more advanced
the warning of an approaching transition (e.g. the more
lead time), the more valuable an EWS will be in practice.

The logistic composite measure from Brett & Rohani [39] is
an EWS-based approachwhich offers the time of detection. This
method is designed for real-time implementation, where the
logistic measure is updated as new data are observed, and a
detection is triggered when the threshold criteria are exceeded.
This method not only attempts to distinguish between the null
model and disease emergence but also offers the first time there
is significant evidence of an approaching critical transition.
Their technique is tested on empirical studies of pertussis,
mumps, dengue and plague. Using synthetic data, they found
that the composite measure outperformed a single EWS, and
could inform disease emergence of pertussis in 100% of states
which did experience re-emergence, and falsely detected 30–
50% states as disease re-emergence. The presence of sporadic
outbreaks might explain this mild specificity score; however,
presenting this weakness is highly valuable information for
decision-making. This study focused exclusively on anticipat-
ing disease emergence. Given the observed theoretical
differences preceding disease elimination (see table 1 and
figure 2), it is extremely unlikely that the fitted weights would
also be appropriate for elimination. Constructing a composite
measure to serve as a leading indicator of disease elimination
thus remains an open research topic.

Drake & Griffen [13] proposed that an EWS is significant
if it exceeds two long-run standard deviations, and the time
of detection is given by the first time the signal exceeds this
threshold. This method can be computed on a composition
of EWSs, after a normalization process, and the threshold cri-
terion (referred to as 2σ) is updated as more data become
available by calculating the long-run standard deviation of
the composite measure. This general dynamic threshold is a
key advantage of this method when compared with the con-
stant threshold used in the logistic composite measure.
However, although the 2σ method has been demonstrated to
detect the onset of environmental deterioration [13], popu-
lation collapse [54], recovery of an ecosystem [55] and the
emergence of COVID-19 [43], it has not been formally vali-
dated with simulation studies of infectious data, which
remains an open topic.

Other work in identifying the time of detection using
EWSs has not been formally validated with simulation
studies, so the sensitivity and specificity of these approaches
are unknown. Without further investigation, it is not known
if these methodologies will work in general for other diseases
or with different types of collected data. One method fitted a
hyperbolic equation to the time evolution of the coefficient of
variation to identify when the statistic diverges, as this is
recognized as the location of the threshold analytically [32].
When tested on data going through a bifurcation, on average
the time of detection occurred before the true bifurcation
point, and under-reporting of case data under a binomial
framework has little effect on the results.

Another method that uses bootstrapped samples to esti-
mate the statistical significance of an observed Kendall’s τ
statistic has proven popular in the literature [10,15,56–59]
but also controversial [15,56,59]. An empirical study tested
if EWSs could indicate malaria resurgence in a historical data-
set from Kericho, Kenya [38]; using bootstrapping with
Kendall’s τ score over increasing amounts of data to calculate
the p-value of the score over time. Evidence of CSD was said
to be detected when the p-value became significant at 0.05.
Under this framework, the resurgence of malaria was pre-
dicted with a 24-month lead time with autocorrelation lag-1
and a six-month lead time with variance. However, this
method has not been tested on time-series data which are
not going through a critical transition, i.e. the method’s
specificity remains unknown.

Other studies use the Brock–Dechert–Scheinkman (BDS)
test [60], which detects nonlinear serial dependence in time
series. Dakos et al. [59] reviewed the use of the BDS test in
the context of EWSs with bootstrapping and p-values, high-
lighting the issue of approximating the null distribution with
this technique. Many articles have warned about reordering
the time series to create the null distribution,whilemaintaining
the variance andmean of the observed time series, as it impacts
the natural autocorrelation in the time series [56]. Some have
instead suggested using a model-based approach to generate
a null distribution with the same variance, mean and autocor-
relation using an autoregressive model [15]. However, White
et al. [61] questioned estimating the null distribution for simu-
lation-based models, saying that this is an inappropriate use of
statistical significance tests and concluding that p-values
should not be used to interpret results.
4.2. How do EWSs behave in a data-poor setting?
Analytical studies have shown that CSD behaviour is present
in disease models prior to a transition, but the exact behav-
iour depends on the transition. Calculations of EWSs on
real-world data, in contrast to simulation studies, are subject
to reporting errors, and are relatively short length, owing to
the frequency of observations.

Simulation studies have tested the robustness of EWSs to
reporting errors, often determining the change in the AUC
(area under the ROC curve) metric when taking binomial
samples from the data. For disease elimination, the coefficient
of variation was found to be the most robust EWS under the
effects of observation error, while the variance and autocorrela-
tion were shown to be sensitive to under-reporting [21,32].
Data which are subjected to reporting errors through negative
binomial sampling can be used to investigate the effects of
reporting probabilities where the number of new cases can
exceed the true number, representing over-reporting or false-
positive diagnoses of cases, as well as incorporating some
dispersion and clustering in case ascertainment. Indicators
of disease emergence were found to be sensitive to over-
dispersion, particularly when the reporting error is highly
overdispersed and, in contrast to studies on disease elimin-
ation, variance was the most robust and coefficient of
variation the most impacted by reporting [35]. Furthermore,
O’Dea & Drake [25] defined a robust indicator to be sensitive
to the difference between the transmission and recovery rates
of the system and insensitive to changing reporting probabil-
ities, finding that variance and coefficient of variation were
poor EWSs under the first criterion and autocorrelation lag-1
poor owing to the latter criteria.

To date, the performance of EWSs has not been investi-
gated when there are systematic biases in the sampling
processes; for example, owing to age-specific disease severity,
or increased under-reporting in specific demographic group-
ings. Understanding the impact of biased sampling on EWSs
is an essential avenue for future research.
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Furthermore, insufficient data resolution is often prevalent
in epidemiological data collection; for example, the World
Health Organization reports yearly cases of neglected tropical
diseases which are targeted for elimination by 2030 [62]. It is
unclear if EWSs can be used to assess the progress towards
these goals with such short time series (for example, case data
of human African trypanosomiasis are reported yearly and
are only available since 2000 at a high spatial resolution).
Although synthetic studies have shown the suitability of some
EWSs in large evenly spaced datasets [21,27,31,35], lower
bounds on the necessary data frequency remain an open ques-
tion. Creating evenly spaceddata from irregularly sampleddata
may introduce artificial autocorrelation [56], although studies
have shown that aggregation of case reports into weekly, bi-
weekly and four-weekly did not impact the performance of
EWSs [35]. In a study on seasonal outbreaks of bubonic
plague in Madagascar, the outbreak was detected 27 days
after the first reported case, giving a 30-day lead time before
the major outbreak in late September [39]. This study used
high-resolution daily case counts and the result suggests that
with sufficient data resolutionCSDmaybedetectable over com-
parably short time scales. Investigating the quality of data
required, for example whether the temporal range of a dataset
ismore important than the temporal resolution or sampling fre-
quency (e.g. 100months of monthly data versus 100weeks of
weekly data), should be the subject of further work.

Although longitudinal data can be noisy and low
resolution, other high-dimensional information, such as the
health zone a case was reported in, can be available. Dynami-
cal spatial data can be represented using network models,
and spatial EWSs can be investigated on the network struc-
ture which offers the potential for regional disease
transitions to be identified [27,28,36,41].

Additionally, there is limitedwork investigating the assump-
tion that CSD is only exhibited in data that are slowly changing
[12,63]. Emerging diseases can surge rapidly on a fast time
scale, for instance the emergence of the SARS-COV-2 pathogen
which causes the disease COVID-19. Although COVID-19 has
been the focus of recent studies on EWSs [40–43], further work
is required tounderstand theperformanceof EWSs subject to fac-
tors affecting the speedof adisease, sampling frequencyand time
scale of data. Indeed, the speed of disease has been explored in
simulation studies, finding that the rising autocorrelation trend
typically reaches 1 at the transition unless the system has a fast
speed of emergence [28].

Twitter data can be available at a high frequencyand spatial
resolution, and these attributes offer the potential to overcome
some of the limitations when using incidence- or prevalence-
type data. Research by Pananos et al. [34] geocoded Twitter
streams monitoring tweets about the measles–mumps–rubella
vaccine, and used EWSs to detect the rise in vaccine hesitancy.
The analysis on vaccine sentimentwas found to exhibit traits of
CSD prior to the Disneyland, Californiameasles outbreak, pro-
viding evidence that behavioural dynamics can also help
inform disease transitions and have the potential to expand
the current toolbox of EWSs.
5. Case study: emergence of pertussis in the USA
(1992–2007)

Here, we present a demonstration of how EWSs behaved for
pertussis in the USA between 1992 and 2007. Pertussis is a
highly contagious infectious disease, which became preventa-
ble by vaccine in 1942, and has been a notifiable disease in the
USA since 1922 [64]. The high vaccine uptake for pertussis
resulted in a 99% reduction in cases between 1934 and 1976
[65]; however, during the 1980s incidence began rising
rapidly [66]. Today, pertussis is considered one of the most
poorly controlled vaccine-preventable diseases in the USA
[67], and cases in 2012 were the highest recorded since 1955
[65]. Although the USA has a high vaccine uptake (nationally
increased from 64.4% to 95.9% between 1979 and 1999 [68]),
communities with higher vaccine exemption rates recorded
higher pertussis rates and between 59% and 93% of cases
occurred in the unvaccinated population during eight of the
outbreaks [69], with large outbreaks occurring in 2004,
2010, 2012 and 2014 [67].

We are interested in whether the pertussis outbreaks in
the early twenty-first century can be identified using EWSs.
We analyse the results from EWSs for different US states,
where states were categorized into very-high-risk, high-risk,
medium-risk or low-risk burden of incidence, by calculating
the 90th, 50–90th, 10–50th, below 10th percentiles, respectively,
from the observed yearly incidence records. The states with the
highest numberof years in the very-high-risk category between
1992 and 2007 were Vermont (14 years), Massachusetts
(10 years), New Hampshire (9 years) and Idaho (9 years), and
the states most often in the low-risk category were Mississippi
(12 years), Louisiana (12 years), West Virginia (7 years) and
Georgia (7 years). This dataset has previously been analysed,
where states were classified as either emerging or not using a
one-sided t-test [39]. In particular, the geographical variations
of pertussis burden from bothmethodologies are in agreement
for very-high-risk and low-risk states.

To address how EWSs behave in data-poor settings,
where cases may be reported less frequently, we focus our
analysis on the state with the highest burden of incidence
(Vermont, figure 3, left column) and the state with the
lowest burden of incidence (Mississippi, figure 3a,c,e,g). Mis-
sissippi has the highest childhood vaccination rate in the USA
[70] and is one of two US states (between 1992 and 2007)
which do not allow non-medical vaccine exemption. How-
ever, incidence of pertussis has increased recently with
sporadic outbreaks occurring in 2007 and cases rising to a
peak in 2014 [71]. In 1996, Vermont reported a state-wide out-
break of pertussis [72], and another epidemic was declared in
2012.

Figure 3 shows the time changing behaviour of the variance,
coefficient of variation and autocorrelation lag-1 for Vermont
and Mississippi (electronic supplementary material, figure S2
gives the trends for all eight states in the highest and lowest
categories). The vertical red line corresponds to external infor-
mation on the year of a state-wide outbreak, and is not used
in our analysis of EWSs. Monthly recorded cases of pertussis
were detrended using spatial detrending (solid lines) and
Gaussian detrending (dashed lines), where the hyperpara-
meters for Gaussian detrending were chosen with a window
size of 10% of the time series and the standard deviation
found using Silverman’s rule of thumb [73]. To calculate the
statistics, a moving average technique was implemented on
the detrended data, with a window size of 25% of the time
series. The inset shows Kendall’s τ score calculated on each
EWS over the time frame ½�t, 2007� for �t [ ½1991, 2003�, and
figure 4 shows Kendall’s τ score when calculated over the
entire time period (i.e. when �t ¼ 1991) for each state and EWS.
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Figure 3c,e,g shows that the EWSs and Kendall’s τ
results were largely consistent across detrending types for
regions of a very high burden of incidence (also shown in
figure 4; states labelled ‘H’), while in regions of low incidence
(figure 3d,f ,h and figure 4 labelled ‘L’) the results are con-
trasting between spatial and Gaussian detrending. Notably,
the time evolution of variance in Mississippi (figure 3d ) visu-
ally increases for Gaussian and spatial detrending; for spatial
detrending this corresponds with a Kendall’s τ score ≥0.75,
signifying the increasing trend, but for Gaussian detrending
over the same time period the score ≈0.25 (e.g. constant
trend). The overall agreement between spatial and Guassian
detrending for each state is shown in electronic supplementary
material, figure S5. In particular, we find that variance is the
most sensitive to detrending type, and autocorrelation lag-1
the least. Spatial detrending was conducted over all states in
continental USA (i.e. excluding Alaska and Hawaii), although
we stress that, owing to the geographical unevenness of pertus-
sis, this does not satisfy the spatial ergodicity condition.
Further work is needed to test a selective-spatial detrending
approach, where US states of similar pertussis or vaccination
rates are detrended together.

The inset figures (figure 3) investigate the sensitivity of
Kendall’s τ score with respect to the time frame used. In
figure 3c, Kendall’s τ score changes from weakly increasing
over the whole time series of variance to weakly decreasing
when just including the previous 4 years, reflecting the
increasing behaviour of variance from 1995 to 2003, before
it falls. This could lead to misleading conclusions if the inter-
val to calculate Kendall’s τ score is not chosen carefully.
Further studies are needed to understand the sensitivity of
Kendall’s τ score, addressing the performance of EWSs for
different detrending types and different lengths of time-
series data available.
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To provide a quantitative analysis of how Kendall’s τ score
changes when subject to less frequent reporting, we aggregate
the monthly reported data (length 203) into: bimonthly (every
two months, length 101); quarterly (every sixmonths, length 67);
triannually (every fourmonths, length 50); biannually (every
sixmonths, length 33); yearly (every12months, length16); bienni-
ally (every 2 years, length 8); triennially (every 3 years, length 6)
and quinquennially (every 5 years, length 3). For each choice of
data aggregation, we calculate the EWS with moving average
techniques, using window sizes ranging from 5% to 75% of the
length of the aggregated time series.

For the high-risk burden state, Vermont, Kendall’s τ score is
insensitive to data aggregation for variance and coefficient of
variation, and insensitive to the detrending method for all
three statistics considered (electronic supplementary material,
figure S3). However, the window size of the moving average
impacts the Kendall’s τ score, so that for window sizes between
15% and 55% of the time-series length the variance increases
(Kendall’s τ score near 1), while for window sizes greater than
55% variance strongly decreases (Kendall’s τ score near −1).
The choice of window size has been investigated by Lenton
et al. [14] as well as by Kaur et al. [40] in their study on EWSs
of COVID-19 emergence, finding that large window sizes
altered the results. In summary for Vermont, variance is
strongly increasing formost choices ofwindow sizes and aggre-
gation, coefficient of variation is weakly decreasing, and
autocorrelation lag-1 has a mixed response which perhaps can
be explained by the stochastic nature of pertussis in Vermont;
the former two indicate characteristics of disease emergence
from CSD.

By contrast, all EWSs are sensitive to detrending for
Mississippi, and detrending can influence whether the
observed trend is increasing or decreasing. However, variance
and coefficient of variation are insensitive to time aggregation,
and results are consistent when the window size is between
15% and 55%. No conclusions on the status of pertussis inMis-
sissippi can be drawn from this analysis, with spatial
detrending suggesting that all EWSs are increasing, perhaps
indicating disease elimination (althoughwewould expect var-
iance to decrease prior to elimination [31]). However, results
from Gaussian detrending—variance is weakly increasing or
flat, coefficient of variation is weakly decreasing or flat and
autocorrelation lag-1 is weakly increasing—would suggest
that Mississippi is undergoing disease emergence.
6. Discussion
EWSs offer a real-time signal of an impending disease tran-
sition; however, to use EWSs reliably in a control-
management framework, all limitations need to be identified
and communicated clearly with public health officials. Pro-
gress has been made in numerous areas, from theoretically
motivated studies identifying how EWSs behave for different
disease dynamics, data collected or stochasticity present to
numerical studies testing pre-processing techniques and
understanding the limits of EWSs with imperfect data. There
remain challenges and limitations to all methods reviewed in
this paper. In particular, we identified a few key areas, such
as drop in the specificity of EWSs when tested on data which
are changing but not approaching a transition, and the
unknown specificity of some of the detection methods pre-
sented. On the theoretical side, questions remain how best to
quantify EWS uncertainty when using moving-window esti-
mators, and how the speed of a disease and sampling
frequency are interlinked when using a moving window.

In this review, we have highlighted key theoretical differ-
ences in EWS for emergence and elimination transitions but
also the differences in objectives, requiring a high sensitivity
for EWS of disease emergence compared with a high speci-
ficity for disease elimination. Furthermore, the trend of
some EWSs changes for different data types. To minimize
error rates and improve the performance of EWSs, there is
the potential to apply EWSs to multiple datasets simul-
taneously, such as with prevalence surveys, reported case
data and Twitter streams, to provide an overview of the
status of disease. If all three data types are consistent with
their detection of a disease transition, then that provides
greater confidence in the result.

Determining which EWSs are best suited for different dis-
eases when faced with a real system remains a challenging
problem. From the EWSs reviewed here, variance is the
most sensitive to reporting errors prior to disease elimination,
coefficient of variation is the least robust indicator prior to
disease emergence and lag-1 autocorrelation is sensitive to
the frequency of data. Despite this, the declining trend of var-
iance prior to disease elimination and the rising trend prior to
disease emergence is a particularly valuable feature; monitor-
ing the trend of variance could distinguish between disease
transitions and would be beneficial for a disease which is
close to elimination and at risk of resurgence. Other poten-
tial EWSs exist and have been the subject of theoretical
studies; significant progress has begun to find the optimal
combination of multiple EWSs to give a single measure.
A composition could be adapted for different diseases and
data types, and has the potential to achieve an increased indi-
cation of a disease transition compared with a single EWS.

The application of thesemethods for use by stakeholders or
programme managers in decision-making is a key goal of this
field. For disease emergence, early detection could provide suf-
ficient time to allow control measures to be implemented
before the tipping point is met. Even if there is no lead time
of a bifurcation, i.e. an EWS becomes significant after the criti-
cal transition, there is still evidence of the disease transition
which is clearly important for policy. If the threshold has
already been crossed, EWSs can inform policymakers whether
to maintain the current control and if the disease is on the path
to elimination.

When considering the practicalities of using EWSs to
inform disease management, it is necessary to understand
the implications of bifurcation delay. Even once the disease
elimination transition has been crossed, if control measures
are maintained disease elimination becomes inevitable—it is
not immediate. Many stakeholders and public health officials
will want to know how long control needs to be maintained
to achieve this goal [32]. Distinguishing the phase of the
bifurcation anticipated by the EWS from the tail phase post-
transition is crucial. In particular, during the tail phase of dis-
ease elimination, the control needs to maintained to ensure
that R0 < 1 leads to zero infections. Alternatively, for disease
emergence the bifurcation delay is the time between the criti-
cal transition and the start of an epidemic; often a series of
minor outbreaks occur during this period which may also
be detected by an EWS [74].

How EWS analysis can be incorporated into a decision-
making framework remains an open question. The logistic
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composite method [39] is the first robust EWS-based method
which offers the potential for real-time monitoring of incom-
ing data streams of reported cases, which could trigger an
alarm when the statistical signatures of CSD are identified.
This method presents a possible system for using EWSs
during surveillance of infectious diseases.

In this paper, we have sought to review EWSs, which have
been proposed as a model-independent method for detecting
disease elimination and disease emergence, before the disease
transition is reached. The majority of the current literature
has focused on understanding if EWSs can be used to detect
disease transitions in incidence- or prevalence-type data.
However, one key issue is addressing how EWSs behave in
data-poor settings, and the importance of identifying all limit-
ations of EWSs before they can be used reliably for decision-
making. This review has shown that not all EWSs behave the
same in every setting, and their performance at detecting
CSD depends on the disease transition and on the type of
data used. The generality of a EWS is its greatest strength;
other than knowing the expected type of transition (elimination
or emergence), EWSs make few assumptions about the under-
lying dynamics of the disease. However, before an effective
toolbox of EWSs can provide reliable guidance for disease
management some further research (through a combination of
theoretical and empirical studies) is necessary to address the
ongoing challenges identified in this review. How does the
speed of the disease approaching the transition impact results?
What time frame should be considered and what quantity/
frequency of time-series data is required to be able to make
reliable decisions? How should imperfections in the data be
dealt with? The development of EWSs relies on tackling these
weaknesses, and other unknown limitations which can only
be discovered after further studies on real-world data.
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