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Abstract: Colorectal cancer (CRC) has one of the highest mortality rates despite the advancement of
treatment options. Aggressive CRC remains difficult to treat owing to the activation of oncogenic
signaling pathways such as the Notch signaling pathway. The role of Notch receptors varies according
to the difference in their structures; in particular, aberrant activation of Notch1 has been attributed to
the severity of CRC. Notch1 activation in CRC is inhibited by small molecule inhibitors that target
γ-secretase, an enzyme responsible for the third and last cleavage step of Notch receptors. γ-Secretase
also produces the intracellular domain that finally carries out cellular functions by activating
downstream effectors. However, most inhibitors block γ-secretase non-selectively and cause severe
toxicity. Plant-source-derived small molecules, monoclonal antibodies, biological molecules (such as
SiRNAs), and compounds targeting the Notch1 receptor itself or the downstream molecules such as
HES1 are some of the options that are in advanced stages of clinical trials. The Negative Regulatory
Region (NRR), which plays a central role in the transduction of Notch1 signaling in the event of
ligand-dependent and ligand-independent Notch1 processing is also being targeted specifically by
monoclonal antibodies (mAbs) to prevent aberrant Notch1 activation. In this review, we discuss
the role of Notch1 in CRC, particularly its metastatic phenotype, and how mutations in Notch1,
specifically in its NRR region, contribute to the aberrant activation of Notch1 signaling, which, in turn,
contributes to CRC pathogenesis. We also discuss prevailing and emerging therapies that target the
Notch1 receptor and the NRR region, and we highlight the potential of these therapies in abrogating
Notch signaling and, thus, CRC development and progression.
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1. Introduction

Colorectal cancer (CRC) is the second most commonly diagnosed cancer in women and the
third most common in men. Annually, approximately 53,200 Americans die of CRC, accounting for
approximately 8% of all cancer deaths [1]. Despite an apparent decrease in CRC-related morbidity
in the past decade, metastatic CRC remains difficult to treat and thus has high mortality rates [2,3].
Therefore, it is imperative to develop treatment strategies that effectively target metastasis and/or its
preliminary or initiating stage, i.e., epithelial to mesenchymal transition (EMT). A critical preliminary
step in EMT is the development of cellular attributes that lead to changes in the migratory and invasive
characteristics of tumor cells, which dissociate and migrate from their originating site and metastasize
in distant parts of the human body [4].

Recent studies suggest that compared to other Notch receptors, Notch1 activation is responsible
for the aggressive induction of phenotypic and functional changes in cancer cells consistent with
mesenchymal transformation. These changes are brought about by direct regulation of Slug and
Snail, which finally leads to changes in E-Cadherin and other mesenchymal markers [5], ultimately
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leading to EMT. Moreover, Jagged-1 ligand-mediated activation of Notch1 in epithelial cells is known
to induce a similar mesenchymal transformation, suggesting that Jagged-1-mediated activation of
Notch1 signaling is important during the induction of EMT [5].

The structure and function of Notch1 in the normal gastrointestinal system have been well
documented [6–8]. Notch1 and its target gene, hairy-enhancer-of-split (HES1), are expressed more
in advanced colon tumors than in low-grade tumors [9]. Recently, we and others have shown that
NOTCH1 signaling is key to CRC progression and should be exploited clinically, especially in patients
already diagnosed with high-grade polyps or localized colon cancer [10,11]. Hence, this review focuses
on the role of Notch1 in CRC and therapies that target different Notch1 signaling by inhibiting Notch1
activation in CRC.

2. Notch Receptors: Structure and Function

It is important to understand the structure of Notch proteins and the related signaling pathways
that are involved in the regulation of the promotion, proliferation, and progression of cancer. The Notch
receptors Notch1 to 4 are transmembrane glycoproteins. Notch receptors are composed of an
extracellular domain and a transmembrane domain, followed by an intramembrane or cytoplasmic
region. The extracellular domain consists of 33 to 36 tandem epidermal growth factor (EGF) repeats
followed by the Negative Regulatory Region (NRR), which includes cysteine-rich LIN-12/Notch-related
region (LNR) and two heterodimerization domains (HD-N and HD-C). The NRR plays a critical
role in preventing receptor activation in the absence of ligand. Most surface Notch proteins are
cleaved by furin-like convertases at site 1 (S1) located within an unstructured loop protruding from
the heterodimerization (HD) subdomain, thereby converting the Notch polypeptide into a Notch
extracellular domain-Notch transmembrane and intracellular domain heterodimer held together by
non-covalent interactions between the N- and C-terminal halves of HD. S1 cleavage likely occurs in the
secretory pathway as secreted NRR modules undergo S1 cleavage [12].

The intramembrane or cytoplasmic region of Notch contains a Recombination Signal-Binding
Protein 1 for the J-kappa (RBP-J)-association molecule (RAM) domain; ankyrin (ANK) repeats, nuclear
localization signals (NLS); a transactivation domain (TAD); and a region rich in proline, glutamine,
serine, and threonine residues (PEST) sequence (Figure 1). The two most important Notch ligands,
Jagged-1 and Jagged-2, are Serrate-like ligands, named after their similar analogues, Delta and
Serrate in Drosophila melanogaster. The activation of Notch is initiated when these ligands bind
to an adjacent Notch receptor between two neighboring cells. Upon activation, Notch is cleaved,
releasing the Notch intracellular domain (NICD) through a cascade of proteolytic cleavages by the
metalloprotease, tumor necrosis factor-α-converting enzyme (TACE) and γ-secretase. In the first,
operated by the metalloproteinase ADAM 17/TACE, the extracellular domain of the Notch receptor
is removed; the second, carried out by the γ-secretase complex (containing presenilin-1/2, nicastrin,
PEN-2, and Aph-1), cleaves the NICD, which then translocate into the nucleus. The NICD subsequently
binds to transcriptional factors such as HES1 and mastermind-like-1 (MAML-1), which lead to the
activation of downstream pathways.

Notch receptors have been shown to be involved in several developmental processes, such as
neurogenesis, somitogenesis, and angiogenesis [13,14]. Transforming growth factor beta (TGFβ)-mediated
EMT also requires active Notch in the developing heart [15]. Additionally, it is essential signaling for the
generation of T cells and its regulation determines the normal or carcinogenic fate of immune cells [16].
Notch receptors have also been shown to regulate the differentiation of colonic goblet cells and stem
cells and to redirect the gut progenitor cells to differentiate, not into the lineage cells with secretory
attributes, but toward gaining an absorptive attribute [17]. Thus, Notch receptors play a vital role
in regulating the proliferation of crypt progenitor cells and the differentiation of colonic epithelial
cells. This fine adjustment of cellular attributes maintains intestinal homeostasis and is critical to its
development [18–20]. It is important to note here that different Notch receptors have demonstrated
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affinity toward specific cancer types and also function distinctly based on subtle variations in their
structure or otherwise on the strength of their activation signals.
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(HD) and proline, glutamine, serine, and threonine residues (PEST) domains.

3. Notch Receptors Have Structural and Functional Differences

The Notch family of receptors includes four types of receptors, classified as Notch1, Notch2,
Notch3, and Notch4 receptors. Notch1 and Notch2 are expressed widely in many tissues throughout
development and in adult mammals. By contrast, Notch3 is most abundant in vascular smooth muscle
and pericytes [21], and Notch4 in the endothelium [22]. These Notch receptor variants have subtle
differences in their extracellular and cytoplasmic end regions. The extracellular domains of Notch
proteins have multiple epidermal growth factor (EGF)-conserved repeats that are the actual site of
ligand binding. Specifically, the Notch1 and Notch2 proteins contain 36 arranged repeats of the
EGF-like domain, while Notch3 and Notch4 have 34 and 29, respectively. The cytoplasmic region of
Notch receptors—specifically, Notch1 and Notch2—has only a 53% amino acid similarity [23]. As in
the extracellular and cytoplasmic domains, NRR also differs in Notch1 and Notch2. The HD-N, HD-C,
and LNR-C junction contains a hydrogen bond in the Notch1 NRR, whereas a Zn2+ coordination site
is present in the Notch2 NRR. In Notch1, there is an intrahelical salt bridge and the helix is anchored to
LNR-C via a single salt bridge. In Notch2, there are several electrostatic interactions between the helix
and LNR-C. The LNR A-B linker of the Notch1 and Notch2 NRRs, a three-residue sequence from the
protective plug (to protect S2 cleavage), is not conserved [24].

These structural differences make the functions of the Notch receptor variants rather distinct.
For example, the Notch1 intracellular domain (N1ICD) is a potent activator of the Hes1 promoter, while
the Notch3 intracellular domain (N3ICD) is a much weaker activator and can repress N1ICD-mediated
HES activation in certain contexts. Studies have suggested that the differences in outcome segregating
Notch1 or Notch2 are likely to reflect outcomes dependent on the overall strength of Notch activation [23].
Also, Notch1 and Notch2 have been correlated with opposite clinical outcomes in colorectal cancer
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(CRC). Notch1 has been demonstrated to positively predict poor overall survival, while Notch2
negatively predicts poor overall survival [25]. Thus, Notch1 has been shown to promote invasiveness
by activating several pro-oncogenic factors, including CD44, Cyclin D1 (CCND1), and BCL2 Apoptosis
Regulator (BCL2). The distinct pro-oncogenic and metastatic character of Notch1 makes it a valuable
target for designing therapeutic interventions. Among the Notch receptor family (Notch1–4), Notch1
plays a major role in colon cancer. Hence, in this review, we focus only on Notch1 function in CRC.

4. The Role of Notch1 in the Proliferation and EMT

A series of recent studies has revealed that both proliferation and apoptotic events can be affected
by Notch1 signaling [26]. Activated Notch1 repressed p27 to promote cell cycle and proliferation in
cancers such as prostate cancer, adenoid cystic carcinoma, and breast cancer [27–29]. Constitutively
activated forms of Notch1 have been shown to inhibit Nuclear receptor 77 (NUR-77)-dependent
apoptosis in T cells [30]. Meanwhile, the knockdown of N1ICD resulted in the inhibition of the
proliferation of different cancer cell types, including, but not limited to, ovarian cancer, thyroid cell
cancer, and tongue cancer [31]. The inability to undergo apoptosis through physiological mechanisms
and resistance to therapeutically induced apoptosis are well-recognized features of the transformed
phenotype in many human malignancies [32]. Aberrant Notch signaling was also observed in small-cell
lung cancer [33], neuroblastoma [34], cervical carcinoma [35], ovarian carcinoma [36], and prostate
carcinoma [37]. Several lines of evidence now suggest that aberrant Notch1 activation or expression
contributes to tumorigenesis [38]. However, the distinct functions of different receptors, as mentioned
in the section above, have resulted in the suppression or promotion of tumors depending on the cell
type and context [39–41]. The first evidence of Notch’s involvement in tumorigenesis was noticed when
a small subset of T cell acute lymphoblastic leukemia (T-ALL) was found to have constitutive activation
of Notch signaling due to a chromosomal translocation of the mammalian NOTCH1 gene [42]. Due to
continuous research efforts on Notch receptors, it is now well known that Notch1 mutations are sources
of over half of all T-ALL cases [43].

Increased stemness in tumors has been attributed to EMT and several cancer models have
identified EMT as the initiating trigger of metastasis [41,44–46]. Even the Notch1 ligand Jagged-1 has
been frequently reported to be involved in metastasis in prostate, breast, and colon cancers and the
activation of NOTCH1 signaling has been shown to directly contribute to cancer cell stemness and
invasion in these cancers [47,48]. Elfriede et al. [49] successfully showed that sustained Notch1 activity
in epithelial cells is responsible for the development of a senescence-like phenotype, which ultimately
enables transmigration of tumor cells within the primary tumor and homing at distant sites. Similarly,
the over-expression of Notch1 in immortalized endothelial cells induces Snail expression, decreases
E-cadherin expression that finally culminates in the loss of contact inhibition and the acquisition of
EMT followed by oncogenic transformation [15]. EMT is induced by Jagged1 by activating Notch1,
which, in turn, regulates Slug, which is responsible for EMT. The inhibition of Notch1 has been shown
to reverse the Jagged1-induced EMT process in human breast cancer cells [46]. Jagged1-induced
Notch signaling activation resulted in the inhibition of E-cadherin expression that impairs cell–cell
adhesion and a simultaneous increase in N-cadherin, vimentin, and nuclear localization of β-catenin,
which ultimately resulted in an invasive and mesenchymal phenotype [50]. In breast cancer, the rate
of N1ICD-positive versus negative tumor epithelial cells (80% ± 10.3% versus 50% ± 12.5%) was
correlated with patients who had positive sentinel lymph nodes. In melanoma, N1ICD expression was
significantly correlated with higher rates of metastasis (stage IV tumors) and shorter progression-free
survival compared to patients with low N1ICD expression [49]. These studies suggested that Notch1
activation plays a major role in EMT and, when activated in the vasculature, presents a major risk
factor for metastasis.
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5. Notch1 Signaling in Colorectal Cancer

As discussed above, Notch signaling has been shown to play a critical role in the maintenance of
the normal intestinal epithelia [20]. At the same time, aberrant activation of Notch1 has been shown to
initiate CRC. Fre et al. [51] showed that normal Wnt signaling was necessary for the proliferative effect
of Notch signaling on early intestinal precursors. In fact, Notch and Wnt signals work together to
induce intestinal adenomas, particularly in the colon. The study underlined the potential role of Notch1
activation as an essential initial event triggering colorectal cancer [51]. In some cases, particularly
inflammation-induced carcinogenesis, Matrix metallopeptidase 9 (MMP9) upregulation in CRC cells
has been linked to Notch1 activation [52]. Other studies have shown the absolute necessity of Notch
activation for promoting vasculogenesis in intestinal tumors [53]. Over 22% of CRCs report a high
copy number gain of the Notch1 receptor that causes tumor cell-autonomous signaling with negative
prognostic value [54]. Gene array analysis has shown that Notch1 and its target HES1 were significantly
higher in advanced tumors than in low-grade tumors [9]. Another study confirmed active Notch
activation in colon tumors via in situ hybridization [55]. We have shown that the overexpression of
AKT and thus Notch1 signaling increase CRC cell proliferation and tumor burden [11].

CRC aggressiveness is associated with Notch1-induced EMT. The active role of Notch1 in EMT
is due to the close interaction of Notch1 with transcription factors such as SLUG, SNAIL, and TGF-β,
which governs EMT. This close association with transcription factors creates a tumor microenvironment
that facilitates metastasis in CRC [56]. Similarly, the constitutive activation of N1ICD in CRC cells
resulted in increased expression of the EMT/stemness associated proteins CD44, Slug, and Smad-3,
and resulted in phenotypic changes in CRC [57]. In addition, crosstalk between Notch receptors and
associated ligands has been attributed to EMT in CRC. Notch1 regulates Jagged-1 function, which,
in turn, activates Notch3, resulting in increased expression of SLUG and CD44 [57]. This leads to
EMT and stem-cell-like phenotypes in CRC. Of newly diagnosed CRC patients, 40–50% will develop
metastasis; based on the evidence that Notch1 promotes tumorigenesis and the spread of metastatic
disease in CRC, targeting Notch1 signaling gains momentum for the treatment of CRC.

6. Small Molecule Inhibitors of Notch1 Signaling

Proteolytic processing plays a vital role in the transduction of Notch signals from the extracellular
to the intracellular side of the cell. As we have already discussed, this proteolytic processing
takes place in three steps. First, a furin-like convertase matures the protein. Second, the binding
of ligands activates the Notch receptor that capitulates into a second cleavage (S2 cleavage) by a
membrane-tethered metalloprotease (ADAM) which cleaves the ectodomain a second time close
to the membrane. The remaining membrane-bound fragment becomes, by default, a γ-secretase
substrate. As γ-secretase is the enzyme that is responsible for the release of NICD after it is marked
for proteasomal degradation by the E3 ubiquitin ligases Numb and Itch, most of the Notch signaling
inhibition research has been focused on gamma secretase inhibitors (GSIs).

Depending on the structure and binding sites, GSIs can be classified into two types: (1) aspartyl
proteinase transition-state analogs as peptide isosteres that mimic the transition state of a substrate
cleavage by γ-secretase and bind competitively to the catalytic active site of presenilins; and (2) small
molecule inhibitors in which the binding site is different from the active site, possibly at the interface of
the γ-secretase complex dimer. The first kind of inhibitors interacts well with the two aspartates in the
active site but is not susceptible to cleavage by the protease (for example, difluoro ketone peptidomimetic
inhibitors such as difluoroketone-167 (DFK-167) [58]) and binds directly to the active site, while the
second type of inhibitors, such as N-[N-(3,5-difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester
(DAPT), LY-411,575, and the clinical candidate LY-450,139, binds to sites different from the active site
or docking sites and consists of non-competitive inhibitors of γ-secretase (Figure 2). These inhibitors
block the S3 cleavage of Notch receptors to inhibit Notch signaling activation [59,60].
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Figure 2. Sites of gamma secretase inhibitors’ (GSIs) binding in γ-secretase: Transition-state analogs
such as difluoroketone-167 (DFK-167) bind to catalytic site and small molecule inhibitors such as
N-[N-(3,5-difluorophenacetyl)-l-alanyl]-S-phenylglycine t-butyl ester (DAPT) that bind to sites other
than catalytic site.

GSI34, a sulfonamide analogue and a small molecule inhibitor derived from GSIs (Figure 3),
has been shown to prevent the induction of NICD by chemotherapeutic agents and inhibit HES1
activation [9]. Another GSI, DAPT induced mitotic arrest in CRC cells in combination with taxanes [61].
DAPT was also used in another study that included GSIs such as L-685,458 and Dibenzazepine (DBZ)
for their effect on CRC cell line growth or survival. Strikingly, this study was not able to elicit significant
CRC cell growth inhibition using these GSIs. However, treatment with the compounds substantially
reduced the abundance of the Val1744-NICD fragment (a Notch fragment that is highly detectable in a
subset of CRC cells) within a few hours, with the effect from DBZ treatment being more pronounced
and persistent. This result suggests that GSIs alone are not as potent in CRC but, in combination
with chemotherapy, may be effective. In the same study, a combination of GSIs and platinum-based
therapy, specifically cisplatin, was able to induce significant cell death in CRC [62]. LY3039478, an oral
Notch signaling inhibitor in advanced or metastatic cancer, has been shown to be comparatively
safe, and preliminary antitumor activity as a single agent has been recently demonstrated in CRC
patients [63]. A recent study has demonstrated that the inactivation of DLL1- and DLL4-mediated
Notch signaling resulted in a loss of intestinal goblet cells, but inducible deletion of Jagged1 has no
overt phenotype [64]. Jagged1 knockdown reduced the migration and invasive capacity of the CRC
cells in vitro and reduced tumor burden in a xenograft mouse model in vivo.

The unwanted side effects associated with GSI usage and the nonspecific nature of HES1 inhibitors
are the major obstacles preventing these inhibitors from entering clinics. Thus, plant-derived natural
compounds that may have low toxicity profiles are being explored as Notch1 inhibitor.
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engagement of the ligand lead to metalloprotease (MP) cleavage at site S2. γ-Secretase complex cleaves
Notch1 at the S3 site within the transmembrane domain. Intracellular Notch (NICD) is released from
the membrane, translocates to the nucleus, and forms a complex with CSL and MAM.

7. Natural Compounds Target Notch1 Activation

Dietary agents that inhibit Notch are considered ideal therapeutic agents and are being heavily
investigated owing to their low toxicity, high therapeutic index, and better bioavailability potential.
Small molecule inhibitors derived from compounds such as isoflavone genistein [65] found in soy
products; sulforaphane derived from broccoli [66]; quercetin found in many fruits and vegetables [67];
curcumin used as a flavoring agent [67,68]; and resveratrol found in grapes [69], peanuts, and some
berries, have been found to have some type of Notch-inhibiting activity that may be used to treat
both solid tumors as well as cancer stem cells (CSCs). In one of our studies, we demonstrated that
a small molecule inhibitor Verrucarin J (VJ) derived from natural sources successfully suppressed
Notch1-mediated epithelial to mesenchymal transition in metastatic colon cancer [11]. Withaferin A
(WA), another natural compound, has been shown to inhibit colon cancer cell growth by blocking
signal transducer and activator of transcription 3 (STAT3) transcriptional activity [70]. We have
also demonstrated the chemopreventive effect of WA on spontaneous and inflammation-associated
colon carcinogenesis models. WA inhibited the expression of inflammatory (interleukin-6, tumor
necrosis factor-alpha, and cyclooxygenase-2) and pro-survival (pAKT, Notch1, and nuclear factor
kappa-light-chain-enhancer of activated B cells; NF-κB) markers in APCMin/+ and AOM/DSS
models [10]. In another study conducted in our lab, through use of a natural compound, Psoralidin
inhibited Notch1-mediated EMT activation in Aldehyde dehydrogenase positive (ALDH+) and
ALDH− breast cancer tumors [71]. Although these inhibitors are considered comparatively safe to
use, a detailed multimodal investigation of their efficacy and toxicity would be required before their
approval as first-line therapies in colorectal cancer patients.

8. Targeting Downstream Notch1 Signaling Activators

Although the effects of the GSIs and natural molecules have shown some potential, the lack of
target specificity warrants the use of more specific treatment strategies. Targeting pathways that are
directly downstream of Notch are another viable treatment option. CRC cells that over-expressed
HES1 were more resistant to 5-Fluorouracil (5-FU) treatment in vitro [72]. Further, HES1 regulates
the invasion ability through the STAT3-MMP14 pathway in CRC cells, and high HES1 expression is
a predictor of poor prognosis of CRC [73]. HES1 expression in stage II CRC patients is correlated
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with a higher recurrence rate of the disease after chemotherapy [72]. Specific inhibitors of HES1,
such as JI051 and its derivative JI130, were tested on pancreatic cancer cell lines and in xenograft
experiments, showing suppression of cell growth and cell cycle arrest in vitro and a significant decrease
in tumor growth in vivo [74]. Although this report is in pancreatic cancer, specific targeting of the
HES1-repressive complex can also be applied to many other diseases, including CRC. Inhibitors
of HES1, such as Crenigacestat (LY3039478), have provided evidence of clinical activity in heavily
pretreated cancer patients [63].

Lenti-viral encoding Notch1 SiRNA significantly decreased Notch1 expression that resulted in the
inhibition of cell growth and also caused cell cycle arrest at the G1 phase by inducing P21 and P53
Up-Regulated Modulator of Apoptosis (PUMA) expression in CRC cells [75]. Silencing the Notch1
gene by SiRNA promoted docetaxel-induced cell growth inhibition, apoptosis, and cell cycle arrest
in prostate cancer cells [76]. Zhang et al. [77] showed that the silencing of Notch1 enhanced the
irradiation-induced cell proliferation inhibition and improved the radiosensitivity effect on CRC cells.
The use of Notch1 SiRNA in combination with prevalent chemotherapeutic options has consistently
been shown to be a better treatment option for different cancers [78].

As GSIs fail to discriminate between individual Notch receptors, monoclonal antibodies are used
that specifically antagonize each receptor paralogue and thus easily differentiate the functions of Notch1
versus Notch2 in human patients and rodent models. Specific blocking of Notch1 activation with
therapeutic antibodies such as mAb WC613 targeting the EGF-repeat region or OMP-52M51 targeting
the LNR and HD region of Notch1 have shown significant efficacy for in vitro as well as in vivo
cancer models [79]. Studies have demonstrated the complexity of Notch1 protein expression in human
solid tumors and reiterated that Notch1 expression in tumorigenesis is highly context-dependent [80].
The use of mAbs that can be highly mutant-selective and that are also context-dependent inhibitors
presents a unique and efficient strategy for Notch1 inhibition. However, treatments including the use of
GSIs, and also mAbs, are not without their limitations, which we will discuss in the upcoming section.

9. Limitations of GSIs and mAbs in Notch1 Treatment

Although GSIs are considered valuable treatment options in combination with chemotherapeutic
drugs, they are often not specific and block the processing of many other transmembrane proteins [81].
They must be given intermittently due to dose-limiting on-Notch toxicities [82]. The systemic use of the
currently available γ-secretase inhibitors is associated with various adverse effects [83]. For example,
the systemic use of LY411,575 in mice was associated with a significant loss of immature T cells [19] and
an impairment of the development of lymphoid cells [84], as well as the damaged regenerative ability
of colonic epithelial cells [19]. Other severe gastrointestinal tract toxicity, such as massive diarrhea as a
result of a marked increase in goblet cell differentiation, has also been reported [85].

These limitations of GSIs make mAbs all the more promising; however, most of the mAb treatment
regimens targeting the Notch1 extracellular domain or Notch1 ligands have shown limited efficacy
in human clinical trials. For example, OMP-52M51, in a phase I dose-escalation trial (NCT01778439),
showed limited antitumor efficacy [86], while a clinical trial for OMP-21M18/Demcizumab was stopped
due to a lack of clinical responses [87].

Hence, recently, the focus has shifted to targeting different domains of Notch1 by developing
antibodies designed to recognize the NRR region and thereby prevent the ADAM-mediated
metalloprotease cleavage. Although receptor/ligand interactions were prevented by LBD-based
antibodies in biochemical assays, these antibodies failed to inhibit the same interaction in cell-based
assays. Meanwhile, antibodies that specifically target NRR were able to inhibit Notch signaling by
downregulating the immediate Notch target gene Hes5 in both mouse and human stem cell systems [88].
Moreover, the small number of antibodies targeting the NRR region of Notch1 mostly bind to epitopes
on one face of the NRR (LNR/HD region), which has emphasized the importance of this Notch-specific
structural domain as the key to understanding how the activation of Notch1 is normally regulated [89].
The importance of this region in ligand-independent Notch1 activation, coupled with observations
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that all strong modulatory antibodies demonstrated binding with NRR, has generated enough interest
in developing a potent and selective antibody and small molecule modulators of NRR.

10. Is NRR-Notch1 an Ideal Target for Therapy?

The first proteolytic cleavage during ligand-dependent Notch activation occurs at a site called S2,
which lies within the NRR region of Notch. This cleavage prepares the Notch receptor for additional
cleavages by the γ-secretase complex. Although ligand-induced activation of Notch signaling that
involves a conformational change of the NRR is considered a major activating pathway, the activating
mutations in the NRR and/or the PEST domain of Notch1 are seen in over 50% of cancer cases [43].
Mutations in the HD domain of the NRR are known to cause constitutive activation of Notch1 whilst
having no effect on the chemical stability of Notch2 [43]. Natalie et al. (PMID: 26288744) investigated
the effect of six mutations in NRR1 and NRR2. Five of the six mutations were in the HD domain of NRR
and affected the ligand-dependent signaling of Notch, without affecting ligand-independent signaling.
These studies indicated the need to develop specific antibodies for NRR to inhibit ligand-dependent or
independent Notch signaling.

Wu et al. developed a co-crystal structure of NRR and demonstrated that stabilizing NRR
quiescence can inhibit Notch1 signaling [79]. Receptor-directed antibodies are being developed
that can antagonize Notch1, 2, and 3 by recognizing the NRR region of Notch, thereby preventing
ADAM-mediated metalloprotease cleavage [89]. Dose-dependent inhibition of Notch1 signaling,
without induction (-Jag1) or in the presence of a GSI (DAPT), was demonstrated by the antibodies that
are specific for the NRR region of Notch1 [79]. The addition of purified NRR1 but not NRR2 antigen
rescued signaling inhibited by anti-NRR1, confirming that inhibition reflected the specific binding of
anti-NRR1 to NRR1. Although ∼45% sequence similarity exists between NRR1 and NRR2, the epitope
residues are only 29% similar, elucidating the basis of anti-NRR1 specificity for Notch1 over Notch2.
Specific monoclonal antibodies targeting Notch1 signaling in the breast and colon cancer cell lines have
been developed; these mutant specific mAbs (604.107 and 604.164) impeded the growth of xenografts
from breast and CRC cells and potentiated regression of the tumors when used in combination with
Doxorubicin [90]. Antibodies targeting both normal and mutated NRR have been developed [91] and
have been shown to be potent inhibitors of Notch1 signaling. More recently, secretory expression
of NRR1 has been achieved in Escherichia coli, and a convenient model for preparing a functional
polyclonal antibody has been established [92]. In a recent study in our lab, we developed a small
molecule, ASR490, that binds with Notch1 NRR, as shown by molecular docking and CETSA studies.
The binding of ASR490 stabilizes the NRR. The binding of ASR490 with NRR resulted in significant
inhibition of activated Notch1 signaling and abrogated CRC cell growth and tumor growth in xenograft
models (data not published). Targeting the NRR of the Notch receptor undoubtedly presents an
interesting and specific immune-therapeutic option that can be utilized to inhibit ligand-dependent as
well as independent Notch1 signaling.

These studies and an ever-evolving landscape of experimental data suggest that development
of antibodies that selectively modulate the activities of NOTCH1 constitute a viable and convenient
possibility. Even in a disease setting wherein most cell types express multiple Notch receptors,
the capacity to activate and/or inhibit specific Notch receptors, either individually or in combination,
would allow for the effective management of disease and also enable an understanding of their
functional interrelationships. It is also highly possible that, in the near future, NRR-based antibody
inhibitors will limit the toxicities associated with γ-secretase inhibitors, such as secretory diarrhea.
Further development and characterization of antibody modulators of Notch activity are thus likely to
have a broad experimental and therapeutic impact.

11. Conclusions and Future Directions

Notch1 signaling is necessary to maintain intestinal homeostasis. However, an aberrant activation
(ligand-dependent or independent) disrupts the dynamic balance of Notch1-mediated regulatory
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pathways that eventually leads to the promotion and proliferation of CRC. Better characterization
of these pathways may facilitate the development of Notch inhibitors that are mutant-selective and
context-independent. This improved understanding will generate more effective GSIs, mAbs, and
inhibitors specifically targeting the NICD complex. Furthermore, the development of small-molecule
inhibitors or mAbs that specifically target a Notch isoform or stabilize the NRR of Notch1 will
circumvent such issues as off-target toxicities associated with the chronic inhibition of wild-type
Notch1. Another important aspect that needs attention is the extensive crosstalk of Notch with major
oncogenic pathways such as RAS, AKT, and NF-κB. Better characterization of these pathways and the
crosstalk between them that contributes to CRC pathogenesis is helping scientists to develop better
therapeutic treatment regimens for CRC patients. Currently, there is growing evidence and optimism
that the therapeutic targeting of Notch1 will become a mainstay of CRC treatment. It appears that the
hurdles in successfully bringing Notch1 inhibition to the clinic will be overcome in the near future.
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