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ABSTRACT

Class I and II aaRS recognition of opposite grooves
was likely among the earliest determinants fixed in
the tRNA acceptor stem bases. A new regression
model identifies those determinants in bacterial tR-
NAs. Integral coefficients relate digital dependent to
independent variables with perfect agreement be-
tween observed and calculated grooves for all twenty
isoaccepting tRNAs. Recognition is mediated by the
Discriminator base 73, the first base pair, and base
2 of the acceptor stem. Subsets of these coeffi-
cients also identically compute grooves recognized
by smaller numbers of aaRS. Thus, the model is hi-
erarchical, suggesting that new rules were added to
pre-existing ones as new amino acids joined the cod-
ing alphabet. A thermodynamic rationale for the sim-
plest model implies that Class-dependent aaRS sec-
ondary structures exploited differential tendencies
of the acceptor stem to form the hairpin observed in
Class I aaRS•tRNA complexes, enabling the earliest
groove discrimination. Curiously, groove recognition
also depends explicitly on the identity of base 2 in
a manner consistent with the middle bases of the
codon table, confirming a hidden ancestry of codon-
anticodon pairing in the acceptor stem. That, and
the lack of correlation with anticodon bases support
prior productive coding interaction of tRNA minihe-
lices with proto-mRNA.

INTRODUCTION

The genetic coding language is implemented by
fitting––stereochemical recognition––of the 3D struc-
tures of transfer RNAs (tRNAs) specific for each amino

acid into complementary pockets in the surfaces of the
appropriate one of the 20 aminoacyl-tRNA synthetases
(aaRS). Ideally, only a truly complementary tRNA–aaRS
pair will attach an amino acid to tRNA, assuring that the
correct amino acid forms a chemical bond with the correct
tRNA––that which has the corresponding anticodon.
Formation of correct amino acid–tRNA bonds therefore
translates the genetic code. In reality, mischarging errors
resulting from error-prone recognition of both amino
acid and tRNA doubtless occurred with higher frequen-
cies as the coding system was forming and progressively
drove the selection of higher specificity complexes and
error-correcting mechanisms (see Figure 5 of reference 1),
reducing mischarging to levels observed today.

Division of both tRNA and synthetase structures into
complementary domains (2) and the demonstration that
fragments of synthetase catalytic domains called Urzymes
retain a full functional repertoire (3) despite being too small
to interact with both acceptor stem and anticodon strength-
ened earlier proposals (4) that genetic coding began with an
‘operational RNA code’ embedded in tRNA acceptor stem
bases that directed recognition by a cognate aaRS. Further,
evidence that the aaRS all diverged from a single bidirec-
tional gene encoding ancestral Class I and II amino acid ac-
tivating catalysts in-frame on opposite strands (5) strongly
suggested that acceptor-stem bases also dictated the initial
division of tRNAs into those specific for Class I and Class II
aaRS substrates. Because they determine synthetase recog-
nition of tRNA, details of the operational RNA code––how
the acceptor-stem bases differentiate between aaRS Classes
and more generally how they relate to amino acid physi-
cal chemistry and aaRS Class recognition––are thus crucial
steps toward understanding the origin of genetic coding.

The operational RNA code was initially a hypothetical
proposal, essentially without details (2,6). Several subse-
quent efforts have failed to provide those details (7–9). An
important analysis by Shaul (8) subsequently provided a
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comprehensive description in the form of complex trees
whose branches are regression models that lead to decisions
on classification. The actual details, however, remain en-
crypted by the provenance of the tree branching, and thus
are difficult to use in a practical sense.

Our previous work used more explicitly-targeted re-
gression modeling to establish associations between aaRS
tRNA base recognition and various properties of the
canonical twenty amino acids (10,11) to establish that
tRNA bases embed amino acid physical chemistry into
tRNA and revealed that amino acid sizes are encoded by
bases in the acceptor stem, whereas their polarities are
encoded by anticodon bases. Additional distinctions en-
coded by the tRNA acceptor stem identity-determining
bases include the discrimination between �-branched and
unbranched, as well as carboxylate and aliphatic side chain
functional groups.

Crystal structures of aaRS•tRNA complexes (12) have
contributed two essential qualitative aspects of recognition.
(i) Class II aaRS bind to the tRNA major groove in a man-
ner that does not distort the 3′ acceptor terminus, whereas
Class I aaRS approach via the minor groove and thus must
somehow distort the tRNA 3′-terminus into a hairpin, al-
lowing the terminal adenosine to turn back into the aaRS
active site, which leads to acylation of the 2′-, rather than the
3′-OH group. (ii) Crystal structures for tRNA complexes of
aaRS specific for aromatic amino acids from both Class I
(TrpRS; (13,14); TyrRS; (15)) and Class II (PheRS; (16))
show that they recognize grooves opposite to those recog-
nized by the rest of their Class. The groove recognized by
each aaRS thus constitutes a dependent variable expected to
be related to the independent variables derived from tRNA
bases. There is a rich, but somewhat inconclusive literature
on the ability of proteins to recognize sequence informa-
tion from the two grooves of nucleic acids (17–20). Thus,
aaRS recognition of cognate tRNA acceptor stems raises
fundamental questions. At the time of our previous work
(10,11), we tried to identify patterns of bases that discrim-
inated between either Class or Groove recognition. Persis-
tent attempts failed, as noted further in RESULTS.

Our recent in-depth consideration of the key role of an-
cestral bidirectional aaRS coding (1,21) prompted us to re-
visit this question. Those studies emphasized the impor-
tant possibility that the contemporary genetic code likely
arose stepwise from a much simpler code implementing a
substantially reduced alphabet by gradually incorporating
additional amino acids that may not previously have been
distinguishable, and hence would require distinctive modi-
fications of the recognition rules to enable selective recog-
nition by newly differentiated aaRS. Thus, the most recent
expansions of the genetic code may have come long after the
Class or groove recognition had served its original purpose,
and hence may have overwritten the recognition signals for
such amino acids while necessarily preserving groove recog-
nition.

For this reason, we re-examined the regression modeling
with particular attention to identifying and rejecting out-
liers among the amino acids. Various modeling attempts
were more or less successful in predicting tRNA groove
recognition for 12–16 of the amino acids. A breakthrough
came when we realized that the same rules might apply

differently to different groups of related amino acids, and
decided to test combinations of the base-related predic-
tors with descriptors based on selective groups of amino
acids. Including a binary descriptor for one such group,
those––valine, isoleucine, and threonine––with �-branched
side chains, elevated the success dramatically, both in scope
and statistical significance. Coefficients for all bases except-
ing the four topmost bases were identically zero. Our sur-
prising conclusion is that groove recognition elements for all
twenty amino acids can be consistently attributed, with high
statistical confidence, to the four topmost acceptor stem
bases if we simultaneously specify the �-branching.

Curiously, coefficients for base 2 are pivotal to groove def-
inition and implications for each of the four bases relate
readily to the first two columns of the codon table, con-
taining codon middle-bases U for minor groove (Class I)
recognition and C for major groove (Class II) recognition.
Thus, base 2 appears to represent an underlying image of
the codon middle base as suggested by published models in
which the anticodon triplet immediately precedes the Dis-
criminator base (22,23). The acceptor stem code specifying
aaRS groove recognition rounds out a set of models for the
‘operational RNA code’, the details of which have never
been articulated. We therefore summarize and update those
models here.

MATERIALS AND METHODS

tRNA Sequences, relevant crystal structures and identity el-
ements

Bacterial tRNA sequences. Unpublished studies associ-
ated with our previous analysis of the tRNA acceptor stem
bases (11) had suggested that bases −1, 1, 2, 72 and 73 might
form a complete ‘code’ for the groove recognition by aaRS.
That database, however, was restricted to bases that had
been previously assigned as identity elements (24), leaving
multiple absences that compromised tests for groove specifi-
cation (in fact, that design matrix was actually quite sparse,
as 49% of its cells were empty). Acceptor-stem sequences
were therefore collected from all bacterial tRNAs in the
2009 database, ‘tRNAdb 2009: compilation of tRNA se-
quences and tRNA genes’ (25). tRNAs for each amino acid
are represented in our data table by 3–14 sequences, there
being more sequences generally for amino acids with multi-
ple isoacceptors. Restriction to bacterial sequences was thus
a compromise. It provided multiple sequence alignments in
which the Discriminator base (26), the 1–72 bp, and base 2
were almost entirely unambiguous at the expense of reduc-
ing the redundancy of the dataset and excluding a signif-
icant majority of known tRNA sequences analyzed in (8)
and (9).

Further justification for using only bacterial tRNAs
came from the fact that ancestral reconstructions of aaRS
Urzyme sequences produced a substantially stronger codon
middle-base pairing frequency, suggesting that bacterial
synthetase sequences retain a clearer signal of their remote
ancestry (27). As we hoped to characterize structures and
events as close as possible to the earliest genetic coding re-
lationships, the clarity of that signal may be advantageous.
The resulting patterns identified from bacterial tRNA se-
quences lend consistency to that choice. Models described
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below for recognition patterns for specific types of amino
acids (amino acid sidechain size, �-branching, carboxylate,
and aliphatic sidechains) were, however, based on the pre-
viously published identity elements (24).

X-ray co-crystal structures. Giegé and Springer (12) cite
aaRS•tRNA co-crystal structures for 14 of the twenty aaRS
of bacterial origin. Although aaRS•tRNA co-crystal struc-
tures should provide complementary information, not all
complexed aaRS crystal structures provide relevant data.
A fair percentage show the tRNA interacting via the an-
ticodon loop without an interpretable configuration for
the entire acceptor stem (e.g. 1H3E, 1H4Q, 1J1U, 1QU3,
2AKE, 2XSL, 2CSX, 4KR3, 4QEI, 4RQF, 4RQE, 1SET,
4YYE) or show the acceptor stem interacting with an edit-
ing domain (e.g. 1GAX, 5AH5) and hence are not useful for
our purposes. Co-crystal structures did, however, empha-
size a key unanswered question quite central to the origin
of genetic coding: what factors underlie the discrimination
between the faces of the tRNA acceptor stem recognized by
each aaRS Class?

Identity elements. Considerable effort has been devoted to
estimating the relative strengths of the tRNA ID elements
summarized in Table 1 (12,24). One might expect, a pri-
ori, that this database too might complement the tRNA se-
quence alignments when addressing the question of groove
recognition. However, quite surprisingly as outlined below,
the tRNA sequences and especially the topmost four bases
in the acceptor stem contain sufficient information to ac-
count completely for the correct groove recognition by all
20 bacterial aaRS, independently of either the structural
data or the experimental data on relative strengths of ID
elements.

Regression modeling

As in our previous study (11), each base was represented by
two binary flags, derived from whether base N was a pyrimi-
dine (1) or a purine (–1), i.e. (N,Y/R), and whether it could
form three (1) or two (–1) hydrogen bonds in a base pair,
i.e. (N,≡/=). Columns of these predictors, together with the
Class, and groove recognized by the cognate aaRS form the
design matrix in Supplementary Table S1, in which each row
corresponds to a different amino acid. No differentiation is
made between isoacceptors. Both groove definition and the
binary predictor columns were treated as continuous vari-
ables in the statistical analysis. There is, in principle, noth-
ing wrong with this procedure, although logistic regression
is often preferred. Our case differs from others because am-
biguous indications for a small number of the bases (i.e. the
1–72 bp in isoleucyl-tRNAs; Figure 1) require a third value
in the design matrix, which in this case is 0.

A comprehensive set of regression models was gener-
ated and assessed using the JMP (28) stepwise regression
module, together with the design matrix in Supplemen-
tary Table S1, testing possible predictors and their two-
way interactions. As we had previously observed, our first
attempts to identify coefficients that correctly predicted
the groove recognized by cognate tRNAs revealed a small
number of outliers leading to a poor fit between actual

Figure 1. tRNA acceptor-stem bases considered in the analysis of aaRS
groove recognition. Pyrimidines are colored with primary colors, purines
with their respective complements. Cubes adjacent to each tRNA represent
the availability of aaRS•tRNA co-crystals showing productive acceptor-
stem interactions in prokaryotes (open) or other (gray) organisms. The
width of the circle for each discriminator base indicates its strength as com-
piled by Giegé and Eriani (50). Note the following idiosyncratic features:
(i) tRNALeu, tRNAPhe, tRNAThr and tRNAHis have identical bases in all
four positions; (ii) tRNAAsp and tRNASer similarly share identical signa-
tures; (iii) tRNAHis has a unique extra G at position –1; (iv) tRNAIle has
a completely ambiguous first base pair.

and observed recognition groove. The outliers prominently
included isoleucine, valine, and threonine, the three with
branched amino acid side chains. Thus, a new binary col-
umn was added to the design matrix to identify branched
(1) or unbranched (0) side chains. As a control, we also in-
cluded a column defining amino acids with carboxylate side
chains. No significance was ever detected for that column in
any of our stepwise searches.

A well-known hazard of using stepwise regression to se-
lect models from a larger number of predictors than de-
pendent variables––as is the case if we consider all two-way
interactions––is that there will always be a very large num-
ber of models that fit the smaller number of dependent vari-
ables exactly, so there is no way to ensure that any model
is unique. We believe this problem is unavoidable in our
case, because the main effects themselves cannot achieve
an R2 value greater than 0.22. Furthermore, as the canoni-
cal amino acids necessarily limit us to twenty simultaneous
equations, many of the higher-order effects are necessarily
collinear with (i.e. aliased to) the main effects and two-way
interactions.
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Table 1. Comparison of ID elements identified by Giegé (24) with those identified by Rodin (9) and Shaul (8). Although Giegé’s compilation is more
detailed, the more recent analyses show essentially no discordances with that list.

Amino
acid Class Giegé Rodin Shaul Discordancea

Val I A73; G3:C70; U4:A69 A73; 3:70; 4:69 A73 ––
Ile I A73; C4:G69 A73; C4:G69; A73, C4:G69 ––
Leu I A73; C 3:G70; A4:U69 A73 A 73 ––
Met I A73; G2:C71; C3:G70; U4:A69 A73; U4:A69 A73; C2:G71; U4:A69 ––
Cys I U73; G2:C7I; C3:G70 U73; G2:C71; C:G70 U73 ––
Tyr I A73; C1:G72 A73; C1:G72 C1:G72 ––
Trp I G73; A1:U72; G2:C71; G3:C70 G73; A1:U72; G2:C71; G3:C70 G73, G2:C71 ––
Glu I G1:C72; U2:A71 G1:C72 A73; G1:C72; U2:A71, C4:G69 ––
Gln I G73; U1:A72; G2:C71; G3:C70 G73; U1:A72; G2:C71; G3:C70 G73, G2:C71, G3:C70; G4:C69 ––
Arg I A/G73 A/G73 A/G73 ––
Ser II G73; C72; G2:C71; A3:U70 G73; C72; G2:C71; A3:U70;

G4:C69
G73; C72; G2:C71; A3:U70;
G4:C69

––

Thr II U73; G1:C72; C2:G71; G3:C70 U73; G1:C72; C2:G71; G3:C70 U73; G1:C72; C2:G71; G3:C70 ––
Pro II A3; G72 A3; G72 A3; G72 ––
Gly II U73; G1:C72; C2:G71; G3:C70 U73; G1:C72; C2:G71; G3:C70 U73; G1:C72; C2:G71; G3:C70 ––
His II C73; G-1 C73; G-1 C73; G(-1 ––
Asp II G73; G2:C71 G73; G2:C71 G73 ––
Asn II G73 G73 G73; U1:A72 (?)b

Lys II A 73 A 73 A 73 ––
Phe II A73 A73 A73 ––
Ala II A73; G2:C71; G3•U70; G4:C69 A73; G2:C71; G3•U70; G4:C69 A73, G2:C71, G3:U70 ––

aThis column identifies possible discrepancies between the three authors.
bThe U1:A72 base pair is identified only by Shaul, and thus could represent a discordance and thus is indicated by a (?).

To avoid this problem to the extent possible, we paid par-
ticular attention to selecting, from among the models (all
highly similar) that gave the best fit between observed and
calculated values of the dependent variable, that model with
the highest proportion of main effects (6/11 of predictors
for our model for the groove recognized) and the fewest ad-
justable parameters (here, 12). Thus, while we cannot rig-
orously exclude the possibility that there exists a superior
model, we have conducted a wide and comprehensive search
to ensure that the one described here is most probably the
best. We reinforced that conclusion by prying apart the hi-
erarchical nature of the groove recognition model.

Cross-validation

We previously used the two non-canonical amino acids se-
lenocysteine and pyrrolysine for cross-validation. The 2009
database (25) lacks any bacterial tRNAPyl sequences, leav-
ing just a single tRNA outside the training set, making it im-
possible to use the prediction R2 as a metric. An analogous
reason makes the Jackknife procedure (29) problematic. For
that reason, we elected instead to use a conventional resam-
pling method of iteratively leaving out a selected percent-
age of the amino acids randomly chosen to serve retroac-
tively as the test set. Cross-validating models identified by
stepwise regression in this way also presents subtle difficul-
ties because the network of connections between acceptor
stem bases and synthetase groove recognition is initially (i)
unknown and (ii) idiosyncratic because the same acceptor
stem bases are also used to form codes for amino acid phys-
ical properties and hence for recognition by specific aaRS
(11).

For these reasons, omitting some amino acids from the
training set may remove crucial information about the pat-

tern of aaRS groove recognition without reducing the abil-
ity of the model to correctly predict the training set. Our
choice, facilitated by the ability in JMP to select random
partitions of the data, was therefore to construct 101 parti-
tions between training (17 amino acids) and test (3 amino
acids) sets. As the regression coefficients are estimated by
inverting the matrix describing the simultaneous equations,
one for each amino acid (tRNA type) in the training set, the
process is sensitive to collinearities among the coefficients,
a condition referred to as a singularity. Such singularities
are especially likely if the training set is depleted of a par-
ticular type of amino acid. For this reason, we saved the
predicted values, test set amino acids, and the R2 value for
each test set in a separate JMP database. Then, using this
secondary database, we could examine the dependence of
the test set R2 metric on its components. That dependence
provided an indication of how critical each of the twenty
canonical amino acids was to the training set, from which a
rational cross-validation emerged for the optimal regression
model.

RESULTS

AARS groove recognition appears to reside in the uppermost
bases of the tRNA acceptor stem

We previously (10,11) described regression models for four
properties of the amino acid side chains––(i) their size and
whether or not they have (ii) carboxylate, (iii) aliphatic or
(iv) �-branched side chains––based on consensus ID ele-
ments in the tRNA acceptor stem. Repeated efforts to find
satisfactory regression models relating the groove recog-
nized to the multiple descriptors for each ID element failed
to account satisfactorily for any reasonable subset of the
tRNAs. Nevertheless, we obtained crucial information by
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deleting the outliers––tRNAs for those amino acids that
were uncorrelated by the various unsuccessful models. Suc-
cessively eliminating outliers produced models dominated
by the topmost four unique bases of the acceptor stem, and
without significant contributions from bases lower down
the acceptor stem.

As discussed in METHODS, the sparseness of the design
matrix drawn from the consensus ID elements appeared to
have eliminated information necessary to reproduce the cor-
rect groove recognized by the corresponding synthetases.
For that reason, we chose to look for groove-recognition
rules using a more complete design matrix based on bac-
terial tRNA multiple sequence alignments to fill in missing
specifiers for all of the topmost four bases from the tRNA
sequence database (25).

The resulting database is usefully presented graphically
(Figure 1). It has never been obvious that the limited in-
formation in Figure 1 should suffice to differentiate recog-
nition mechanisms for Class I and II aaRS. In particular,
there are multiple redundancies such that only 14 of the 20
isoaccepting tRNAs have distinct patterns and several of
the redundancies entail recognition from opposite grooves.
In fact, the base compositions of the patterns recognized by
the major and minor grooves are nearly indistinguishable
(supplementary §A; Supplementary Figure S1). We never-
theless develop evidence that there is a hidden and statis-
tically significant pattern that discriminates absolutely be-
tween the grooves recognized by the twenty aaRS when cou-
pled to the identification of the three amino acids valine,
isoleucine and threonine, having �-branched side chains.

Patterns illustrated in Figure 1 can be represented by a
design matrix with twenty rows, one for each amino acid,
and 13 columns. Each base from Figure 1 is represented
in Supplementary Table S1 by two columns as described
in METHODS. These independent variables are supple-
mented by one additional column containing a binary code
designating whether (1) or not (0) the side chain is branched
at the �-carbon. The final column is the variable, Gi,obs, that
designates the groove recognized by the cognate aaRS (Fig-
ure 2). With the exception of tRNAs for aromatic amino
acids, Class I aaRS recognize the minor groove (1) and Class
II aaRS recognize the major groove (–1).

That design matrix defines a set of simultaneous lin-
ear equations, expressing the equality between the cognate
groove, Gi, and linear combinations of the independent
variables, or predictors, Pi:

Gi, obs = β0 +
∑

i, j

(βi Pi + βi j Pi Pj ) + ε (1)

where ε is the residual error to be minimized. As can be seen
in the design matrix (Supplementary Table S1) independent
parameters, Pi, are all either –1, 0 or 1. Their contributions
to the dependent variable Gi,obs, differ, depending on their
coefficient, β i. The cross terms, indicated by β ij, imply that
the contribution factor j makes depends on the value of fac-
tor i.

The highly multivariate Equation (1) has a very large
number of possible solutions, of which the (unknown) op-
timal subsets include those that: (i) use a minimum number
of coefficients, β i, β ij, in order to (ii) minimize the sum of

Figure 2. Superposition of the acceptor stems available from co-crystals
containing relevant configurations of the 3′-CCA terminus. The 3′-
terminal adenosine is shown as colored spheres; Class I tRNAs are colored
different shades of green; Class II different shades of blue. Those for aro-
matic amino acids (Phe, Trp) are colored shades of red as they penetrate
the population of the opposite class.

squares of the differences between predicted and observed
Gi values: �i(Gi,pred – Gi,obs)2, and (iii) do so with the most
statistically significant coefficients, i.e. those with the small-
est overall P-values of their Student t-tests. Criterion (i) is
inversely related to the number of degrees of freedom, DFE,
remaining to estimate the statistical error. The squared cor-
relation coefficient, R2 must improve as additional degrees
of freedom are used to estimate additional coefficients. Cri-
teria (ii) and (iii) often improve together, but just as often
behave in contradictory ways requiring a trade-off. Thus,
the choice of an optimum model involves elaborating and
testing amongst many models that differ in the number and
combination of independent variables and deciding which
of these best satisfies criteria (i)-(iii).

JMP (28) provides an excellent interactive stepwise multi-
ple regression search procedure. Multiple alternative path-
ways through this algorithm––the automatic search driven
by JMP itself; manually stepping through the selection of
descriptors; and specifying first the two descriptors defining
base 2 and their interaction, followed by manual identifica-
tion of additional descriptors in order of descending esti-
mated P-values––produced the model summarized in Fig-
ure 3 and Tables 2 and 6. The model satisfies all three of the
aforementioned criteria: (i) the model requires only 11 of the
total degrees of freedom; (ii) the predictors explain all of the
variation in observed groove recognition and (iii) all 11 co-
efficients have Student’s t-test P-values with log(Worth) val-
ues between ∼56 and 60, far greater than those (log(Worth)
= 2 ≥ P = 0.01) required for reasonable statistical signifi-
cance (Figure 3B). Another way to consider the last point is
that the coefficients are defined with standard errors <10−7

of their magnitude (Table 2B); i.e. the fit is perfect, as can be
verified by referring to Supplementary Table S2. The high
number of degrees of freedom (8) and the fact that a major
fraction of the coefficients are main effects greatly reduce
the likelihood that there are other models superior to the
one in Table 2B.
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Figure 3. Regression model relating tRNA groove recognition to tRNA
acceptor-stem bases. (A) Actual versus Predicted Groove values for the
twenty amino acids. Blue dots designate minor groove (1), red diamonds
designate major groove (–1) interaction. (B) Log(worth) values plotted for
each predictor. Worth is equal to the negative log of the P-value. The blue
vertical line indicates a probability of 0.01 of observing a Student’s t-test
as large as that actually found for the model.

Table 2. Statistics for the regression model in Figure 2. A. Analysis of
variance. B. Coefficients of the regression model and their statistical sig-
nificance. The logWorth is equal to the negative base10 logarithm of the
P value. Colors in Table 2B highlight a hierarchical partition of coeffi-
cients. Green entries are presumably the oldest and account for 14 of the 20
canonical amino acids; red and blue entries came later to encode distinc-
tions between �-branched amino acids (red) and asn, pro, and lys (blue),
as discussed in the section on hierarchies.

Figure 4. Distribution of R2 for 24 random 30% subsets of amino acids
based on coefficients estimated for the complementary training set. All val-
ues were identically 1.0.

The model depends critically on including a variable sep-
arating branched from unbranched sidechains and its in-
teractions with 2(Y/R) and 72(≡/=). Without these terms,
which have among the largest log(Worth) values, the overall
R2-value for a comparable model was ∼0.62 and no t-test
probabilities were significant.

Cross-validation analysis identifies several idiosyncratic tR-
NAs

We used a conventional 85%/15% resampling algorithm
to test the robustness of predictions based on the regres-
sion model in Figure 3 and Table 2. The 85% partition
of the data (i.e. 17 amino acids) was used to train the re-
gression model––that is, to determine the best fit values
of coefficients––and then evaluated the squared correlation
coefficients for both the training set and the 15% test par-
tition not used to estimate coefficients. Even this procedure
was not without some complications, arising from idiosyn-
crasies, some of which are identified in the Figure 1 legend.
As a consequence, many randomly selected training sets ex-
hibited singularities, arising from algebraic equivalence of
linear combinations of multiple predictors that allow the
training set to be fitted without generating information nec-
essary to fit the test set. Thus, they compromise the evalua-
tion of the corresponding test sets.

Values estimated for coefficients in Table 2B by fitting to
101 randomly selected 85% training subsets gave R2 values
identically equal to 1, convincingly demonstrating the in-
ternal consistency of the coefficients. Of these partitions, 71
led to singularities. R2 values for the remaining 30 test sets,
shown in Figure 4, were also identically 1, confirming the
robust predictive power of coefficients estimated for train-
ing sets without singularities.

All 101 training set compositions were analyzed by a sec-
ondary regression analysis of the R2 metric as a function of
the training set compositions to identify significant sources
of singularities (Table 3). From this table we can infer that
the dominant predictor of singularities is the absence of �-
branched side chains from the training set. Other predictors
include the absence of amino acids proline, histidine and
glutamate, from the training set.
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Table 3. Regression model identifying significant contributors to singularities in randomly selected training subsets containing ∼15% of the 20 canonical
amino acids. The R2 value for this model is 0.56; the logWorth is the negative logarithm of the P-value.

Term Estimate Std Error t Ratio LogWorth

Branch –0.57 0.06 –8.96 13.5
Pro –0.59 0.10 –5.77 7.0
His –0.44 0.10 –4.51 4.7
Glu –0.42 0.10 –4.10 4.1
Pro*Branch 0.52 0.14 3.77 3.5

The model for groove recognition is hierarchical, suggesting
that ancestral patterns were overlaid as new amino acids were
added to the coding alphabet

The idiosyncratic tRNAs––Pro, His, Glu, Val, Ile,
Thr––suggest that incorporating their cognate amino
acids into the code required some ‘overwriting’ of the earli-
est ‘rules’ by which their aaRS recognized cognate tRNAs.
This possibility is elaborated further in the Discussion, and
thus merits support. To develop such support, we examined
the structure of the regression model to identify whether
hierarchical subsets using fewer coefficients could predict
the groove recognized for smaller subsets of amino acids
(Supplementary §B). We systematically eliminated predic-
tors from the full model to identify outlying amino acids
that could no longer be fitted. This procedure produced
two notable results.

First, removing the distinction of �-branched side chains
eliminated three coefficients from Table 2B, leaving a model
with 8 coefficients that correctly predicted the groove recog-
nized by 17 of the 20 aaRS. Notably, the coefficients for that
model had values identical to those in the full model. Thus,
although the major subset of 17 and the three �-branched
amino acids obey different rules, the underlying structure of
the model was the same. The three new coefficients required
to correctly predict the groove(s) recognized by aaRS for �-
branched side chains, red in Table 2B, did not alter the re-
maining coefficients. The interactions of �-branching with
2,Y/R and 72,≡/=, together with an offset to the constant
term, simply changed the manner in which the existing rules
were applied to tRNAs for �-branched amino acids. Thus,
those three coefficients are independent of the remaining 8
and could have been accumulated at any point––even quite
early––in the evolution of the code.

Second (Supplementary §C; Supplementary Table S3), a
subset of 2 coefficients correctly predicts the grooves for 13
of the remaining aaRS. Those two coefficients, {1(Y/R) and
2(Y/R)*73(Y/R)}, green in Table 2B, imply the same rules
in the entire hierarchical set of rules. Supplementary Table
S3 provides details of this model. tRNAHis uniquely has a
Guanosine in the –1 position at the 5′-terminus. A third
coefficient allows calculation of the groove recognized by
HisRS by similarly providing an offset to the intercept. The
outlying amino acids for this model are Asn, Pro and Lys,
in addition to the �-branched amino acids.

Figure 5 summarizes the hierarchy embedded in the re-
gression model for groove recognition. This nesting, and
the fact that most numerical values for coefficients do
not change as new predictors are incorporated to pre-
dict grooves recognized by AsnRS, ProRS, LysRS and the
aaRS for amino acids with branched side chains, argue that

Figure 5. Hierarchy in regression models for groove recognition. Coeffi-
cients are diagrammed schematically using a circle to represent each base,
as indicated by the key at the bottom left. Each circle is divided into quad-
rants. The top two quadrants represent the choice between pyrimidine and
purine; the bottom the number of hydrogen bonds made when the base
pairs. Red arrows indicate two-way interactions. The grooves recognized by
fourteen of the twenty aaRS can be predicted (perfectly) using only three
coefficients (top). Additional amino acids (bold) require additional coef-
ficients, indicated in the middle and bottom schemes. The hierarchy does
not necessarily imply an evolutionary succession.

regression modeling has uncovered significant aspects of
the ancestral division of tRNAs cognate to the two aaRS
Classes. Note, however, that the hierarchical nesting of re-
gression models may not necessarily indicate the order in
which amino acids were incorporated into the coding alpha-
bet.

Rules arising from the (1(Y/R) = 1) and
(2(Y/R)*73(YR) = –1) coefficients are summarized in
Table 4. That these rules entail only whether the four
topmost bases are pyrimidines or purines, choices that can
be distinguished from both grooves (17,19,30), together
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Table 4. Rules for groove recognition according to two coefficients (1(Y/R) and 2(Y/R)*73(Y/R)

Minor Groove (1) Major Groove (–1)

Base 1 is pyrimidine Base 1 is a purine
Base 2 is a pyrimidine and Base 73 is a purine Base 2 and 73 are both pyrimidines
Base 2 is a purine and Base 73 is a pyrimidine Base 2 and 73 are both purines

with the fact that the Class I hairpin determines whether
a tRNA will bind via the minor groove, suggest that these
rules arise from thermodynamic effects of base stacking on
RNA helical stability (31–33), which destabilize the helical
path of the 3′-terminal extension relative to the hairpin,
thus favoring the hairpin recognized by aaRS that interact
via the minor groove. This question is developed further
in supplementary §D. Table 5 summarizes two different
estimates consistent with the hypothesis that the rules in
Table 4 reflect a slightly increased thermodynamic tendency
of tRNA substrates recognized via the minor groove to
form the characteristic 3′-terminal hairpin. Further work
is certainly required to confirm and further delineate the
thermodynamic implications of the rules in Table 4.

We next develop the notion that contrasting secondary
structural elements in ancestral Class I and II aaRS would
have reinforced the slightly different thermodynamic ten-
dencies of the acceptor-stem bases to form the hairpin.

The structural biology of aaRS•tRNA complexes yields
insights into the Class-dependent bifurcation of tRNA
acceptor-stem structures

The hierarchical rules predicting the groove recognized by
aaRS for cognate tRNAs suggest that the initial separation
between ancestral tRNA substrates of Class I and II aaRS
may have had a thermodynamic basis that distinguished
tRNAs with a smaller free energy difference, �(�G3′conf),
between the extended and hairpin conformations of the 3′
CCA terminus. The partial structural database tends to sup-
port this hypothesis, as the differences between major and
minor groove recognition can be linked to gross structural
differences, rather than to detailed interactions. Thus, the
partial structural database reinforces the thermodynamic
hypothesis.

We have already noted that despite the abundance of
synthetase•tRNA co-crystals, the structural database is
nevertheless inadequate for our purposes because only
eleven complexes (Supplementary Table S4) show the 3′-
CCA terminus interacting with the catalytic apparatus. Of
those, only seven have been co-crystallized with aminoacyl-
5′AMP or an analog. The available structures suggest few
details that could explain how the topmost acceptor-stem
bases lend themselves to the observed conformational dif-
ferences. Nevertheless, comparison of Figures 6-7 with Fig-
ure 8 confirms that specific secondary structures in the two
aaRS Classes provide complementary surfaces that may ex-
ploit the small thermodynamic differences between cognate
tRNA 3′-terminal conformations.

There is considerable variation in the detailed configura-
tions of the induced hairpin necessary for productive inter-
action with the minor groove (Figure 6). In all cases, base
C74 is flipped out of the way of the 3′-terminal C75-A76,
which are stacked in all cases. In the two Class IA com-

Figure 6. AARS•tRNA complexes interacting from the minor groove side.
PDB IDs and amino acids are as indicated. Active-site ligands are ab-
breviated as follows: LSS, 5′-O-(L-leucylsulfamoyl)adenosine; Arg, argi-
nine; GSU, O5′-(L-glutamyl-sulfamoyl)-adenosine; FYA, adenosine-5′-
[phenylalaninol-phosphate]. Class I secondary structures depicted by color
include a homologous section of connecting peptide 1 (CP1), slate; the
‘specificity-determining helix’ teal; and the base of the helix from the sec-
ond crossover of the Rossmann fold, containing the signature GxDQ,
salmon), and in the case of PheRS the Motif-2 loop (slate) and Motif-3
(yellow). Electrostatic influences of the dipole moments of various helices
are indicated on the helices of 5OMW Leu. Side chains that interact with
the tRNA 3′-terminal adenosine (A76) are indicated by number. Note that
in the 1U0B (CysRS) complex the 3′-terminal adenosine occupies an un-
productive position close to the HIGH catalytic signature, suggesting that
in the absence of aminoacyl-5′-adenylate, the adenine ring finds a site sim-
ilar to that normally occupied by the adenine ring of the adenylate, under-
scoring its potential binding affinity for the heterocycle. Inset in 2ER8 Gln
shows the interaction between A76 and a conserved aromatic side chain at
the N-terminus of the specificity-determining helix.

plexes (5OMW Leu and 1F7U Arg) however, the discrim-
inator base faces away from the active site, whereas in the
two Class IB complexes (3AKZ Glu and 2RE8 Gln) it is
stacked on bases C75 and A76. Stacking on C75 in the latter
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Figure 7. Interactions of Class I aaRS with the phosphate group of the
3′-terminal adenosine. The hairpin structure orients this phosphate group
so that it points toward the N-terminus of the specificity-determining he-
lix. Hydrogen bond distances shown suggest that, except in the case of
5OMW Leu, these interactions may be strong. In 1F7U Arg, the interac-
tion is reinforced by a salt bridge between the phosphate group and R350.

cases introduces a C2′-endo configuration of the Discrimi-
nator base 73 ribose.

Despite these variations, however, all 3′ terminal hair-
pins entail proximity of the unpaired 3′-terminus to
the N-termini of multiple �-helices (Figure 6). Two of
these––those referred to elsewhere (34) as the specificity-
determining and second-crossover helices (Figure 7)––arise
from within the Class I Urzymes, and are thus likely more
ancestral. The electrostatic potential field from the unpaired
peptide NH groups (35) may facilitate formation of the hair-
pin by destabilizing the extended helical path of the 3′ CCA
extension. The most distinctive and reproducible of such in-
teractions is that between the specificity-determining helix,
and the A76 phosphate group (36). This interaction orients
the phosphate oxygen atom toward the N-terminus of that
helix in four of the five Class I complexes (Figure 7), but
is missing in the CysRS complex, in which the 3′-terminal
adenosine interacts with the HIGH sequence which, for that
reason, is likely artefactual.

On the other hand, the Motif-2 loop in each of the Class
II complexes (Figure 8) covers and protects the 5′-terminal
base-pair with the N-to-C polypeptide chain direction run-
ning antiparallel to the 5′-3′ direction of the 3′-terminal
RNA strand in a manner anticipated by ((37); see 5E6M
in Figure 8). The net dipole moment of the loop is expected
to be relatively small, as that of an antiparallel �-hairpin is
negligible (38). Its electrostatic properties should thus not
perturb the tRNA acceptor stem appreciably. Notably, this
structural motif coincides with the Class II Protozyme (5),
and hence is also the oldest structural motif in Class II
aaRS.

Side-chain interactions in the aaRS•tRNA complexes
are, for the most part, idiosyncratic excepting a small num-

Figure 8. AARS•tRNA complexes interacting from the major groove side.
PDB IDs and amino acids are as indicated. Active-site ligands are ab-
breviated as follows: AMP, adenosine 5′ monophosphate; GAP, glycyl-
adenosine-5′-phosphate; AMO, aspartyl-adenosine-5′-monophosphate;
Trp, L-tryptophan. Class II secondary structures depicted by color include
the Motif-2 loop (slate), Motif-3 (yellow), and a loop that occurs prior to
Motif-2 (salmon), and in the case of TrpRS, the base of the helix from
the second crossover of the Rossmann fold (salmon) and a segment of
CP1 (slate). Side chains that interact with the tRNA 3′-terminal adeno-
sine (A76) are indicated by number. Antiparallel helix directions of the
Motif 2 loop and the 3′-CCA terminus are shown as dashed arrows on
5EM6 Gly. Helix dipoles indicated for 2DR2 Trp suggest that the reorien-
tation of the tRNATrp acceptor stem has moved it to a position that mini-
mizes electrostatic disruption of the RNA double helix. Insets in 1QF6 Thr
and 5E6M Gly show interactions of A76 with a conserved aromatic side
chain N-terminal to the Motif 2 loop and a conserved arginine from Motif
3.

ber of possibly conserved interactions with the 3′-terminal
A76. The latter are expanded in schematics associated with
2RE8 Gln (Figure 6), 1QF6 Thr, and 5E6M Gly (Figure
8). In each case, the base associates with a conserved aro-
matic side chain, which, in the case of Class I association, is
also associated with the non-polar face of the ribose (39).

Class II active sites use a pair of conserved arginine side
chains to ‘clamp’ the adenosine of ATP in place (40). The
two arginine residues appear also to interact with the 3′-
terminal adenosine (Figure 8). In two cases (5E6M Gly,
1FQ6 Thr) this adenosine fits between the Motif 2 argi-
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Table 5. Stabilities in free energy estimated for the acceptor stems of 14
isoacceptors that obey rules in Table 4. Of eight possible configurations
consistent with these rules, five are observed among known bacterial tRNA
isoacceptors and are boxed. Configurations predicted to bind aaRS via
the major groove are colored RED; those predicted to bind via the minor
groove by forming a 3′-terminal hairpin are colored BLUE. Stabilities of
double-helical configurations are estimated from averaged stacking ener-
gies compiled in (31), scaled separately for (A,C,G) and (U) to computa-
tional estimates for RNA (33). �(�G)stck energies are the difference be-
tween the total stacking energies of the five bases implicated by the rules in
Table 4 and that contributed only by the discriminator base (D), which are
the two entries in the third column of each box. Estimates are confirmed
qualitatively by the average values for minihelices estimated using Mfold
(71) as described in the text.

Stacking     (Mfold)   Stacking     (Mfold) 

(D) Pu -1.14   (D) Pu -2.11   

Pu Pyr     Pyr Pu     

Pu Pyr -4.9   Pu Pyr -4.39   

A,D,S,W,Y      M,Q      

Δ(ΔG)stck  -3.7 kcal/mol   Δ(ΔG)stck  -2.3 kcal/mol   

(D) Pyr -1.62   (D) Pu -1.14   

Pu Pyr     Pu Pyr     

Pyr Pu -6.2   Pyr Pu -3.90   

G,      L,E,T,H,F,R      

Δ(ΔG)stck  -4.6 kcal/mol   Δ(ΔG)stck  -2.8 kcal/mol   

      (D) Pyr -1.62   

      Pu Pyr     

      Pu Pyr -5.35   

      C      

    <Δ(ΔG)>  -1.45   Δ(ΔG)stck  -3.7 kcal/mol -0.97 

nine and an aromatic side chain conserved in a position N-
terminal to the Motif 2 loop.

Interactions with the Discriminator base 73 divide into
two groups, one (Leu, Arg, Trp, Ala, Asp and Gly) for which
nearest approach distances average 3.9 ±0.7 Å for multi-
ple distances, some of which make arguably specific interac-
tions with the C6 substituent of the base, and another (Gln,
Cys, Glu, Thr, Phe) for which the closest approach averages
10.3 ±1.1 Å. Notably, these groups do not correlate with ex-
perimental determinations of the strengths of the Discrim-
inator base (24), agreeing in only 3 of 11 cases. Such poor
correlation may arise either from inappropriate interpreta-
tions of experimental data or from the fact that static X-ray
crystal structures sampled inappropriate configurations, so
little can be concluded from the comparisons.

DISCUSSION

We highlight here the combinatorial power of three accep-
tor stem bases: 1, 2 and 73. The notion that these bases
play such a central role in determining which groove is rec-
ognized by cognate aaRS has an interesting antecedent in
studies of single mutations near the CCA terminus of the
su+

III tyrosine suppressor tRNA (41). Both in vivo suppres-
sion and in vitro aminoacylation with TyrRS and GlnRS
were used to assay the effects of mutating those bases. Some,
but not all mutations to bases 1, 2, 72 and 73 changed the

aminoacylation specificity from TyrRS (major groove) to
GlnRS (minor groove), in keeping with what we report.

Whence the ‘Operational RNA Code’?

Primordial differentiation of the aaRS into Classes was likely
a precondition for symbolic coding (1,21). In turn, recog-
nition elements differentiating tRNAs cognate to ances-
tral Class I and II aaRS must therefore also have been
among the earliest informational signals to be embedded
into tRNA acceptor-stem sequences. Groove recognition el-
ements in Table 2B and the resulting rules in Table 4 there-
fore appear to be a sine qua non for the emergence of genetic
coding via an operational RNA code. The fundamental so-
lution to this problem appears to be that tRNA acceptor-
stem sequences fall into two sets, one of which has a slightly
greater thermodynamic tendency than the other to form the
3′-terminal hairpin enabling recognition of the CCA termi-
nus from the minor groove. Ancestral aaRS Urzymes were
then able to provide secondary structural elements that re-
inforced that distinction, giving rise to primordial, simulta-
neous, differentiation of amino acid types, aaRS and cog-
nate tRNAs. That simultaneity is a non-trivial requirement
for the emergence of symbolic coding. It reinforces the cen-
trally important conclusion that the evolution of aaRSs
was necessary and sufficient to embed protein folding rules
(1,10,11,42) into the tRNA acceptor stem bases.

The 3′-terminal CCA tag on each tRNA must interact
productively with each synthetase. Thus, bases that could
function in aaRS Class differentiation begin with the Dis-
criminator base (26) and the first base-pair of the stem.
The patterns illustrated in Figure 1 belong to a broader set
of coding relationships whose existence was proposed by
Giegé (4) and re-iterated in (2). The latter authors coined
the phrase ‘Operational RNA code’ to describe the pu-
tative acceptor stem recognition by cognate aaRS, with-
out, however, specifying any relationships between acceptor
stem base configurations and specific groups of amino acids.
We previously reported (10,11) the identification of statisti-
cally significant relationships between identity elements for
aaRS recognition and the sizes and particular subsets (�-
branched, aliphatic, carboxylate) of amino acids.

It was not possible in that previous study to identify
patterns anywhere in the tRNA sequences that partitioned
the amino acids correctly into substrates for the two aaRS
Classes. That frustrating failure left a substantial gap in
how we consider the operational RNA code. Filling that
gap is more pressing in light of the accumulated evidence
(1,3,27,43,44) that the two aaRS Classes co-evolved from a
single, bidirectional ancestral gene (5) that encoded a Class I
precursor on one strand, and a Class II precursor, in frame,
on the opposite strand.

An important implication of that simple, binary ances-
try is that the earliest genetic coding consisted of just two
amino acid type-to-codon assignments. The fact that amino
acid size correlates so closely to patterns of acceptor stem
bases (11) raised the obvious possibility that the two code-
words were used operationally by ancestral aaRS to distin-
guish between large and small side chains, in keeping with
a decisive primordial differentiation of the synthetases into
Classes (45).
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Table 6. Regression models for amino acid size and explicit side chain properties. All three models had R2 = 1.0; none had non-zero intercepts. Data from
these tables are compared schematically in Figure 9. The logWorth is equal to the negative logarithm of the P value.

Term Estimate Std Error t Ratio LogWorth

Size
73,≡/=1,Y/R 3.42 0.17 20.51 8.1
2,Y/R*70,≡/= 1.56 0.13 12.3 6.2
Groove –0.79 0.11 –7.48 4.4
–1,Y/R –1.97 0.34 –5.82 3.6
72,≡/= 0.99 0.18 5.57 3.5
70,≡/= 0.65 0.13 5.08 3.2
73,≡/=*2,Y/R 0.73 0.17 4.39 2.8
2,Y/R –0.59 0.15 –3.9 2.4
73,≡/=*Groove –0.34 0.10 –3.38 2.1
73,≡/= –0.25 0.13 –1.99 1.1
�-Branched
4,Y/R 0.85 0.040 21.34 10.2
3,Y/R –0.50 0.040 –12.6 7.6
70,≡/= –0.28 0.023 –12.03 7.3
2,Y/R 0.25 0.023 10.72 6.8
2,≡/=*3,Y/R 0.49 0.048 10.24 6.6
2,≡/= 0.25 0.027 9.12 6.0
2,Y/R*70,≡/= –0.27 0.030 –8.89 5.9
Carboxylate
2,Y/R*71,≡/= –0.75 3.1E-09 –2.0E+08 94.8
2Y/R 0.75 3.4E-09 2.2E+08 94.2
73,≡/=*3,Y/R 0.5 2.6E-09 1.9E+08 93.5
3,Y/R 0.5 2.6E-09 1.9E+08 93.5
71,≡/= 0.5 3.2E-09 1.6E+08 92.5
73,≡/=*71,≡/= 0.5 3.2E-09 1.5E+08 92.4
Aliphatic
1,≡/= –1 9.9E-09 –1.0E+08 78.6
2,Y/R 0.125 4.5E-09 2.8E+07 76.3
4,Y/R 1 5.0E-09 2.0E+08 75.6
72,≡/= 0.875 8.7E-09 1.0E+08 75.6
73,Y/R*2,Y/R 0.5 4.3E-09 1.2E+08 73.5
70,≡/=*72,≡/= 0.5 8.1E-09 6.2E+07 73.2
73,≡/=*2Y/R 0.375 6.6E-09 5.7E+07 70.3
2,Y/R*3,≡/= –0.25 8.6E-09 –3.0E+07 70.0
73,≡/=**72,≡/= –0.125 5.6E-09 –2.0E+07 69.1

From another perspective, however, the functional recog-
nition of any code embedded in tRNA bases reflects a one-
way transfer of information from the tRNA, ultimately to
the synthesis of aminoacylated tRNA. Thus, it is possible
that the apparently complementary nature of tRNA recog-
nition by aaRS is incomplete, and that the operational code
can be extracted only from the tRNA bases themselves.
Even if that is true from a contemporary perspective, how-
ever, the complementarity of tRNA•aaRS complexes them-
selves implies a detailed co-evolution of both polymeric
forms over the entire duration of their co-existence.

Thus, specific recognition between elements of two sets
necessarily implicates members of both sets (7). The hypoth-
esis that the aaRS co-evolved with their cognate tRNAs, has
been articulated in detail for the more recent co-evolution
of several synthetase tRNA complexes (36,46,47) and re-
mains an article of faith for earlier evolution. Reconstruct-
ing the remotely coupled ancestries of aaRS and cognate
tRNAs during the expansion of the genetic code has, how-
ever, seemed inaccessible, especially absent details of the op-
erational RNA code.

The unusually strong statistical significances reported here for
coefficients in Tables 2, 4, and 6, together with the extensive
cross-validation of Table 3 (Figure 4) imply that the relation-
ships implicit in these tables are meaningful. It also is quite

unusual that a solution of twenty simultaneous equations
relating a binary-valued dependent variable exists that re-
quires only 12 discrete-valued independent variables. More-
over, the coefficients in Table 2B are themselves discrete-
valued as they all have either integer or half-integer val-
ues. These are properties of a system of digital equations.
We note that this result is consistent with the fact that the
system we have analyzed is fundamental to biology’s com-
putational code operating system (1,48). These features of
the regression analysis and their resonance with structural
and thermodynamic analysis compose persuasive evidence
that the hierarchical groove-recognition model does repre-
sent important components of the operational RNA code.

The operational RNA code is a palimpsest, helping to elude
previous attempts to define it. Evidence summarized in (1)
that genetic coding began with a binary code that differ-
entiated only between amino acids from Class I vs those
from Class II implies that the sine qua non of the opera-
tional code lay in the discrimination by Class I and II aaRS
of acceptor-stem base patterns that dictated recognition of
the minor and major acceptor-stem grooves. Tables 2B, 5,
and 7 appear to furnish those details, rounding out an ear-
lier description of the operational code summarized in Table
6 (10,11).
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Since the codon/amino acid assignment table was worked
out (49), the essential puzzle has been the ‘operational code’
by which the aaRS recognize cognate tRNAs. For this rea-
son, transfer RNA has remained the subject of substan-
tial experimental and bioinformatic analysis, culminating
in comprehensive Classification and Regression Tree (8)
and Bayesian network (9) analyses. However, direct rela-
tionships between the recognition elements used by aaRS
and the twenty canonical amino acids remain somewhat
encrypted within those network treatments. They must be
teased out in more detail (11) in order to fully under-
stand the operational code. Pal and others (7) concluded
that Class-specific tRNA sequence features do exist, al-
though not in terms of strictly conserved nucleotides as had
been anticipated. Thus, important information about aaRS
Class-specific recognition was somehow hidden in tRNA se-
quences and thus inaccessible to traditional statistical meth-
ods.

Previous analyses differed from ours fundamentally in
three respects. First, they sought Class-specific determi-
nants, whereas we sought groove-specific elements. Second,
they examined the entire sequence of tRNAs from all three
domains, whereas we examined only a small portion of
the acceptor stem of bacterial tRNAs. Finally, they imple-
mented a classification algorithm, whereas we used multi-
ple regression models that included up to two-way coupled
interactions. A key decision that enabled the present anal-
ysis was to use groove recognition, rather than Class, as
the dependent variable in the regression. It appears signifi-
cant that when considered together with the distinction be-
tween amino acids with �-branched side chains, the small
set of acceptor-stem bases illustrated in Figure 1 are neces-
sary and sufficient to define without ambiguity the groove
recognized by all 20 canonical aaRS. Similarly, the sparse
matrix of identity elements compiled by Giegé is also nec-
essary and sufficient to define four binary partitions of the
canonical amino acids with similar precision (Table 6).

Our methods appear to have uncovered layers of mean-
ing that accrued as the genetic code––and the number of
distinct isoaccepting tRNA genes––expanded (Figure 5).
Thus, like a rubbed-out medieval manuscript that was over-
written, it appears to be a palimpsest, making it harder to
decode it. The operational RNA code is defined by coeffi-
cients in Tables 2 and 6

The operational RNA code emerges from this work as a set of
five overlapping distinctions between groups of amino acids
that can each be identified, statistically, with rules arising
from specific patterns of acceptor stem bases. As noted
in Materials and Methods, coefficients in Table 2 derive
from a full experimental matrix involving the topmost four
acceptor-stem bases from all twenty tRNAs, whereas those
in Table 6 were estimated from a sparse matrix represent-
ing identity elements identified throughout the topmost five
base pairs in the acceptor stem together with the Discrim-
inator base 73 (10,11). Regression models in Table 6 have
been updated from those described previously (11) to cor-
rect inadvertent errors in the design matrices identified dur-
ing the extensive cross-referencing that accompanied cre-
ation of Supplementary Table S1 and Table 2B. No sub-
stantive changes have arisen, although the model for size in

Figure 9. Elements of the ‘Operational RNA Code’ (10,11). Coding prop-
erties of the tRNA acceptor stem are represented schematically, to illus-
trate graphically relationships from each regression model in Tables 2B
and 6. Bases that do not contribute to the respective regression model are
omitted. Interpretation of the schematic key is given in Figure 5.

Table 5 differs slightly from that in (11). Coefficients for all
models are summarized visually in Figure 9, in the manner
of Figure 5, to illustrate their location within the acceptor
stem, and how they define the operational code. Details of
this work (Figures 5 and 9, supplementary §B and §C, Sup-
plementary Tables S2–S3) reinforce our previous discussion
of the coding properties of acceptor stem bases (10,11).

The presumptive acceptor-stem coding elements in Ta-
bles 2,5,6 and Figure 9 differentiate both cognate aaRS
and the corresponding amino acids according to different
characteristics––the groove recognized by the aaRS, the size
of the side chain, and whether or not it is �-branched, car-
boxylate, or aliphatic. Their idiosyncrasy, together with the
hierarchy illustrated in Figure 5 strongly suggest that tRNA
acceptor stem bases form a palimpsest in which ID ele-
ments have been successively overwritten to accommodate
new amino acids to the alphabet.

The operational RNA code is fully-defined by acceptor-stem
bases

One might have expected that 3D structural data from the
tRNA•aaRS co-crystals structures would be necessary to
elucidate these tRNA coding properties. It is possible that
such 3D data could be used to build a complementary
analysis to that of the bases, but that possibility appears
to remain beyond our current resources as the structural
database remains too small to support statistically rigorous



Nucleic Acids Research, 2018, Vol. 46, No. 18 9679

identification of the complementarity-determining amino
acid side chains at aaRS–tRNA interfaces. The present
work began with the summary data provided by Geigé (25).
Updates (12,50) represent primarily expansions of the id-
iosyncratic variation observed in archaea and eukarya and
thus are not expected to alter our conclusions (see Table 1).

Several considerations make us confident that conclu-
sions presented here merit consideration in their own right.
(i) The substantially higher residual signal of ancestral
middle-codon base pairing in bacterial aaRS sequences (27)
implies that the translation systems in Eubacteria lie closer
to the root than those in Archaea and Eukarya. (ii) The
comprehensiveness, high internal consistency (Figure 3),
and robust cross-validation (Figure 4) of our regression
modeling of groove recognition signals in bacterial tRNA
acceptor stems furnish exceptionally strong statistical sup-
port. (iii) The resonance of our conclusions with previously
described models for the origin of tRNAs from molecular
fusion events (22,23,51–54) provides mutually reinforcing
support for both types of modeling.

Testing the Operational RNA codes can clarify the origins of
translation

Further validation of these codes can be sought by (i)
establishing their generality, (ii) testing them using de-
signed experiments and (iii) using them to constrain joint
sequence reconstruction of aaRS•tRNA pairs from both
aaRS Classes in search of evidence for simpler ancestral
coding alphabets.

How well do the codes in Figure 9 generalize to archaeal and
eukaryotic tRNAs? The extensive consistency of three pre-
vious compilations of tRNA identity elements across do-
mains (Table 1) is important evidence for the generality of
models derived from them. Testing the model for groove
recognition with a broader sequence database is, however,
problematic because the additional sequence ambiguities
across domains will deplete the design matrix (Supplemen-
tary Table S1), but would nevertheless be worthwhile to
highlight interesting outliers.

Digital aspects of the operational codes suggest testing them
with designed experiments using incomplete factorial sam-
pling. Mutagenesis and commercial RNA synthesis have
both made combinatorial experimental design (55) a practi-
cal option. We have shown that aaRS Urzymes will aminoa-
cylate full-length tRNAS (3) and are currently investigating
the extent to which they aminoacylate minihelices (56,57).
The activity with which Urzymes acylate minihelices may
be sufficient to permit high-throughput analysis of combi-
natorial designs to test specific predictions of these codes.

Patterns identified in this work should constrain multiple se-
quence alignments in the reconstruction of ancestral tRNA
sequences. Although derived from contemporary multiple
sequence alignments, they furnish constraints that may help
resolve ambiguities, particularly as reconstructed sequences
approach ancestral nodes where two related amino acids
fuse into a single precursory amino acid type. In this way,
they may help map out plausible joint ancestries of the Class

I and II aaRS tRNA substrates. Such work will, however,
require enhancing computer algorithms used for sequence
reconstruction (58).

Rules arising from interaction between the two bits of base
2 (i.e. 2,Y/R*2,≡/=) are closely related to contemporary
codon middle bases, identifying an early image of the codon-
anticodon interaction in the acceptor stem

An important thread in the literature on the origin of
the tRNA molecule entails the notion that the operational
RNA code first began coding as ancestral minihelices, and
later duplicated and fused in some fashion to produce full-
length, mature tRNAs (2). A recurrent element of that
thread (22,23,51–54) is the persistent evidence that the 3′
end of the acceptor stem, just 5′ to the Discriminator base,
often contains three bases similar to the anticodon (54).
Among the predictors in Tables 2 and 7 only the interaction
between the two bits for base 2 (2,Y/R*2,≡/=) uniquely
associates each individual base with a specific groove (Ta-
ble 7).

This unique specification of the bold-faced entries in
Table 7 is evidently related to the middle codon bases.
Amino acids with U as the codon middle base are rec-
ognized by PheRS, LeuRS, ValRS, IleRS, and MetRS via
the minor groove of their cognate tRNAs; those with a C
are recognized by SerRS, ProRS, ThrRS, and AlaRS via
the major groove; codons with middle base A are recog-
nized by TyrRS, HisRS, AsnRS, LysRS, and AspRS via
the major groove; and those with middle base G are rec-
ognize by CysRS and ArgRS via the minor groove. Thus,
groove recognition by 16 of the 20 aaRS occurs consistently
with the rule implied by the bold-faced coding elements
in Table 7. Thus, the relative importance of base 2 in the
tRNA acceptor stem is conspicuously consistent with both
aaRS:tRNA pairing and the codon table!

It is noteworthy that the logWorth values for base 2-
related coefficients in Tale 2 are statistically highly signifi-
cant despite the fact that the actual bases that those rules
imply cannot be identified directly by inspection of Figure
1. For example, only two of the twenty amino acids have
codon middle bases consistent with rules adduced in the
previous paragraph. Of those tRNAs that code for second-
column amino acids, only tRNAThr actually has C as base
2; similarly, tRNACys is the only tRNA from the fourth col-
umn that actually has G as base 2. None of the first-column
tRNAs have U, and none of the third-column tRNAs have
A as base 2.

Regression analysis appears to have uncovered another
underlying correlation distinct from the rules in Table 5,
that also has been overwritten by other rules implicit in
Table 2B that modify significantly the meaning of base 2
in contemporary sequences. It is tempting to suggest that
rules that overrode base 2-dependent rules occurred sequen-
tially, after the rules implied by the (2,Y/R*2,≡/=) inter-
action had functioned at an earlier stage. This result unex-
pectedly confirms previous work of Di Giulio (22,23) and
Rodin and Ohno (53,54) by suggesting that the tRNA ac-
ceptor stem retains a palimpsest of the anticodon. The im-
age of the codon-anticodon interaction in the tRNA accep-
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Table 7. AARS groove recognition rules implied by the topmost four acceptor-stem bases

Term Estimate Implications

Intercept –0.5
�-branched –2.5 Coeff > 0; �-branched = > minor groove

Unbranched = > major groove
–1,Y/R 2 Coeff >0; Base −1 purine = > major groove

Base −1 pyrimidine = > minor groove
1,Y/R 0.5 Coeff > 0; Base 1 pyrimidine = > minor groove

Base 1 purine = > major groove
2,Y/R 1 Coeff > 0; Base 2 pyrimidine = > minor groove

Base 2 purine = > major groove
2,≡/= 1 Coeff > 0; Base 2 G,C = > minor groove

Base 2 A U = > major groove
72,≡/= –0.5 Coeff < 0; Base 72 G/C = > major groove

Base 72 A/U = > minor groove
�-branched*2,Y/R –4 Coeff < 0; Branched sc with Base 2 = C,U = > major groove

Branched sc with Base 2 = G,A = > minor groove
1,Y/R*72,≡/= –0.5 Coeff < 0; C = G = > major groove;

G = C = > minor groove
A = U = > major groove
U = A = > minor groove

2,Y/R*73,Y/R –1 Coeff < 0; Base 2 = C,U and Base 73 = C,U = > major groove
Base 2 = C,U Base 73 = G,A = > minor groove
Base 2 = G,A Base 73 = C,U = > minor groove
Base 2 = G,A Base 73 = G,A = > major groove

2,Y/R*2,≡/= –1 Coeff < 0; C = > major groove
U = > minor groove
G = > minor groove
A = > major groove

�-branched*72,≡/= 4.5 Coeff > 0; Branched sc with Base 72 G, C = > minor Groove
Branched sc with Base 72 A, U = > major Groove

tor stem raises the key question of whether or not ancestral
tRNA minihelices interacted with proto-mRNAs.

Did minihelices interact with proto-mRNAs?

Could tRNA minihelices once have been capable of sym-
bolic information transfer from RNA sequences into
rudimentary coded polypeptides according to codon se-
quences in proto-mRNAs and hence been important
evolutionary intermediates in the transition from pri-
mordial stereochemically-based information transfer into
computationally-based genetic coding (1)? Others (59) have
postulated alignment of minihelix pairs via complemen-
tary hydrogen bonding between bases in exposed minihe-
lix loops. That ingenious idea was supported by experimen-
tal data on complex formation. However, without a mecha-
nism to transfer information from proto-mRNA to an anti-
codon present in the minihelix, it could not have functioned,
via ancestral aaRS selection, to embed the information now
evident in Tables 2B and 6 into the tRNA acceptor stem.
Moreover, if the operational ‘code’ contained no image of
the anticodon, one would then need to postulate a hidden
level of coding communicating acceptor stem sequences and
the anticodon, thereby violating a parsimony principle.

Two additional requirements would have to have been
met in order for the anticodon image in tRNA minihe-
lices to interact specifically and productively with potential
codon sequences in proto-mRNA.

(i) The minihelix would have to form a triple helix with the
proto-mRNA such that the major groove of the minihe-
lix 3′-terminus ran antiparallel to the codon. The minor
groove of RNA double helices is notably ambiguous, as it

is used to validate formation of Watson-Crick base pairs
in the 30S ribosomal decoding mechanism (17,60) via for-
mation of the A-minor motif. However, unique informa-
tion can be read from the DNA and conceivably also
from the RNA major groove (19,30). Sequence-specific
triple helical configurations were studied by Roberts and
Crothers (61), who noted marked compositional effects
ranging over ∼10 kcal/mole for formation of 12-base
DNA and RNA polypyrimidine strands binding to 28-
base hairpins constructed with 12-base polypurines at
the 5′-terminus. More recent NMR experiments char-
acterized the structures and stability of a triple-helical
RNA in which Watson-Crick base pairs formed between
two antiparallel strands connected by a tetraloop formed
sequence-specific Hoogstein pairs with a designed se-
quence 3′ to the double stranded region (62). Comple-
mentary base pairing of the third strand occurred over
7 bases in that structure, albeit between parallel strands,
which makes it a poor model for codon–anticodon in-
teraction. Comparable experiments might be done using
antiparallel arrangements of complementary sequences.
Roles for triplex RNA helices in contemporary organisms
have also been recently reviewed (63).

(ii) Codon-dependent polymerization of amino acids would
also require that successive minihelices aligned in se-
quence be capable of juxtaposing their 3′-aminoacylated
terminal adenosines appropriately to permit reaction be-
tween them. Class I aaRS:cognate tRNA complexes have
shown that the 3′-CCA terminus is conformationally flex-
ible, making an abrupt hairpin to embed the terminal
adenosine into the active site, despite primary interac-
tions with the minor groove (12). The added length of the
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DCCA terminus would appear twice in such complexes,
and would need to span only the length of a codon. It may
therefore have served to juxtapose the 3′-acyl-adenosine
moieties of successive minihelices, giving rise to a codon-
informed sequence of polyaminoacids at a stage of molec-
ular evolution prior to the displacement of coding func-
tion from the acceptor stem by the advent of the riboso-
mal 30S subunit.

Thus, neither of these requirements is entirely implausi-
ble, in light of published work.

This discussion poses many new questions––e.g. (i) What
is the origin of the DCCA 3′-terminal extension of tRNA
acceptor stems? (ii) Was it present at the time synthetases
began to acylate minihelices? (iii) Did codewords using the
two purines as middle bases accompany those with pyrim-
idines as middle bases or did these two events occur se-
quentially? (iv) Was the original readout confined to a sin-
gle strand, or was bidirectional coding used in some way
from the beginning? Reading of putative messages by acy-
lated minihelices also is equally suited to either strand of
a double-helical RNA molecule. Thus, it is consistent with
bidirectional coding as outlined by Rodin and Rodin (53,64)
and implied by the evidence that the first aaRS were pro-
duced from bidirectional genes (5). Despite the need to an-
swer these questions, the additional validation of an image
of the codon-anticodon interaction in the tRNA acceptor
stem given here strengthens previous suggestions that the
transfer RNA molecule evolved in at least two stages, both
of which may have functioned in codon-directed protein
synthesis with or without participation of proto-ribosomes
(65,66).

Moreover, we emphasize that the remote ancestry of ge-
netic coding in a peptide/RNA cooperation that imple-
mented a reduced 2- or 4-letter alphabet (1) mandates that
the operational code in the tRNA acceptor stem co-evolved
with the aaRS. The consistency of the full set of rules in
Table 2B with the reduced set in Table 4 therefore rein-
forces our conclusion that the acceptor stem must have con-
tained an image of the anticodon from the very beginning
of codon-directed protein synthesis.

Expansion of the simple operational code, the advent of the
anticodon, and stages of protein evolution

As the code expanded from a binary code to the contem-
porary universal code specifying 20+ amino acids new ad-
ditions to the alphabet appear to have made it necessary to
modify the simplest rules summarized in Table 4. Changes
necessary to enhance discrimination between variant syn-
thetases that assumed specificity for new amino acids also
eventually created the conflicting rules evident in the con-
trasts between Table 7 and Figure 1. These changes to the
operational code also may have overwritten the original
meaning of base 2 as the middle codon base.

Figure 5 might be seen as a putative model for succes-
sive incorporation of new amino acids into the genetic code.
Six of the first eight amino acids on the list suggested as
the earliest amino acids by the multivariate analysis of Tri-
fonov (67) are included in the set of 14 amino acids. How-
ever, the aromatic amino acids, plus histidine and methion-

ine are also included in our smallest subset, but are the most
recent additions to the code according to Trifonov. Notably,
the branched amino acids all appear early in Trifonov’s lists,
but require a different set of rules for groove recognition.
Thus, although aspects of the evolution of the code may be
revealed by the succession in Figure 5, there are alternative
explanations for the separation of the 20 amino acids into
successive subsets. For example, the code may actually have
accumulated aromatic amino acids late, but rotation of the
subclass C aaRS about the acceptor stem to approach cog-
nate tRNA acceptor stems via opposite grooves (68) may
have allowed them to obey the simplest rules (i.e. 2 coeffi-
cients) without ambiguity.

More likely in our view, increasing ambiguity of the an-
ticodon image in the acceptor stem enhanced the selective
advantage of exporting the anticodon itself to a separate
location in a larger tRNA molecule, so that the operational
code could continue to assume enhanced precision without
interfering with the anticodon itself and inadvertently cor-
rupting the coding table. Moreover, anticodon bases signif-
icantly influence recognition by many of the aaRS in the
contemporary ‘operational code’ by encoding the polarity
of amino acid side-chains (10,11).

The simplicity of the four choices of amino acid types en-
abled by the operational code (Figure 9) and the fact that
some of the rules evident from the analysis are actually
buried in contemporary acceptor-stem sequences suggest
an alternative temporal order to the appearance and evolu-
tion of protein secondary and tertiary structures. The initial
two codewords for large and small amino acid side chains
enabled the search for proto-mRNAs with binary patterns
(69), which may already have begun to discriminate between
extended �- and �-helical structures. That distinction would
have been reinforced by adding selections for �-branched
and aliphatic versus polar side chains, leading to a finer dis-
tinction between the two types of chain segments. Adding
the anticodon, with its new precision for side-chain polar-
ity would then have enabled a tuning of differences between
core and surface residues (10,11), stabilizing and continuing
to shape the evolution of protein tertiary structures.

There is an appealing continuity in this model for codon
development, arising initially from aaRS groove discrimina-
tion in the acceptor stem. Thus, characteristics of the oper-
ational code are consistent with recent suggestions that pro-
tein structures evolved coordinately with the alphabet size
and that the evolution of the genetic code also traces the
discovery of protein folding rules (1). Correlations between
secondary and tertiary structures of ribosomal proteins and
the estimated order of rRNA additions motivated a similar
hypothesis from an entirely different direction (70). Those
authors postulated staged protein evolution, earlier stages
marked initially by the absence of secondary structures, fol-
lowed by the presence of �-, then �-structures, and then only
after a prolonged development of secondary structures, by
the emergence of tertiary structures. Their hypothesis, as-
sumes co-evolution of protein folding with the genetic code,
but makes no reference to how properties of the genetic code
might have undergone comparable development. Thus, the
present work furnishes a necessary complement to their ob-
servations.
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Watson–Crick base-pairing swept aside the conceptual
mystery of genetic inheritance in a single stroke, leaving
codon-dependent translation as arguably the quintessen-
tial remaining mystery of evolutionary molecular biology.
Because it entails such numerous, diverse, and non-trivial
problems––the need to (i) mobilize ATP to activate amino
acid carboxylate group for protein synthesis; (ii) protect ac-
tivated amino acids until they could acylate tRNA; (iii) es-
tablish specific recognition of transfer RNAs by aaRS, i.e.
from complementary polymer families, and (iv) differenti-
ate them simultaneously into cognate pairs; (v) build the
codon table by adaptive radiation of cognate aaRS/tRNA
pairs; (vi) rapidly stabilize an optimal coding table and
(vii) make the codon table consistent with protein folding
rules––the origin of genetic coding and protein synthesis
cannot be described with anything like the elegant preci-
sion and finality of the origins of inheritance. In this work,
we have tightly constrained the manner in which the oper-
ational code came into being, by identifying relationships
between acceptor stem bases and cognate aaRS, rational-
izing their effects in structural and thermodynamic terms,
and relating them to the universal code.

In summary, the regression analyses presented here sug-
gest that detectable patterns from the operational RNA
code have survived in today’s tRNA/aaRS recognition
complexes, supporting the inference that the distinct accep-
tor stem conformations leading to major or minor groove
recognition are largely determined by thermodynamic dif-
ferences in base stacking free energies. It also confirms a
hidden ancestry of codon-anticodon pairing in the accep-
tor stem. That ancestry implies that the earliest synthetase
recognition identity elements in acceptor-stem minihelices
also could have participated in codon-dependent polymer-
ization of amino acids employing a code similar to the uni-
versal genetic code, establishing a basis for continuity be-
tween that code and much simpler ancestors, for whose par-
ticipation we argued previously (1).
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26. Crothers,D.M., Seno*,T. and Söll,D.G. (1972) Is there a discriminator
site in transfer RNA? Proc. Nat. Acad. Sci. U.S.A., 69, 3063–3067.

27. Chandrasekaran,S.N., Yardimci,G., Erdogan,O., Roach,J.M. and
Carter,C.W. Jr. (2013) Statistical evaluation of the Rodin-Ohno
Hypothesis: Sense/Antisense coding of ancestral Class I and II
Aminoacyl-tRNA synthetases. Mol. Biol. Evol., 30, 1588–1604.

28. SAS. (2015) V.13.1 ed. SAS Institute, Cary.
29. Efron,B. (1979) Bootstrap method: another look and the Jackknife.

Ann. Stat., 7, 1–26.
30. Travers,Andrew and Muskhelishvili,G. (2015) DNA structure and

function. FEBS J., 282, 2279–2295.
31. Yakovchuk,P., Protozanova,E. and Frank-Kamenetskii,M.D. (2006)

Base-stacking and base-pairing contributions into thermal stability of
the DNA double helix. Nucleic Acids Res., 34, 564–574

32. Freier,S.M., Kierzek,R.D., Jaeger,O.A., Sugimoto,N.,
Caruthers,M.H., Neilson,T. and Turner,D.H. (1986) Improved
free-energy parameters for predictions of RNA duplex stability. Proc.
Nati. Acad. Sci. U.S.A., 83, 9373–9377.

33. Brown,R.F., Andrews,C.T. and Elcock,A.H. (2015) Stacking free
energies of all DNA and RNA nucleoside pairs and dinucleoside
monophosphates computed using recently revised AMBER
parameters and compared with experiment. J. Chem. Theory
Comput., 11, 2315−2328.
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50. Giegé,R. and Eriani,G. (2014) eLS. John Wiley & Sons, Ltd,
Chichester, 1–18.

51. Di Giulio,M. (2004) The origin of the tRNA molecule:implications
for the origin of protein synthesis. J. Theor. Biol., 226, 89–93.
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