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Aims Most clinical risk stratification models are based on measurement at a single time-point rather than serial measure-
ments. Artificial intelligence (AI) is able to predict one-dimensional outcomes from multi-dimensional datasets.
Using data from Global Anticoagulant Registry in the Field (GARFIELD)-AF registry, a new AI model was developed
for predicting clinical outcomes in atrial fibrillation (AF) patients up to 1 year based on sequential measures of pro-
thrombin time international normalized ratio (PT-INR) within 30 days of enrolment.

...................................................................................................................................................................................................
Methods
and results

Patients with newly diagnosed AF who were treated with vitamin K antagonists (VKAs) and had at least three
measurements of PT-INR taken over the first 30 days after prescription were analysed. The AI model was con-
structed with multilayer neural network including long short-term memory and one-dimensional convolution layers.
The neural network was trained using PT-INR measurements within days 0–30 after starting treatment and clinical
outcomes over days 31–365 in a derivation cohort (cohorts 1–3; n = 3185). Accuracy of the AI model at predicting
major bleed, stroke/systemic embolism (SE), and death was assessed in a validation cohort (cohorts 4–5; n = 1523).
The model’s c-statistic for predicting major bleed, stroke/SE, and all-cause death was 0.75, 0.70, and 0.61,
respectively.
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...................................................................................................................................................................................................
Conclusions Using serial PT-INR values collected within 1 month after starting VKA, the new AI model performed better than

time in therapeutic range at predicting clinical outcomes occurring up to 12 months thereafter. Serial PT-INR values
contain important information that can be analysed by computer to help predict adverse clinical outcomes.
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Introduction

In chronic diseases such as atrial fibrillation (AF) risk stratification
using prediction models is useful for clinical decision-making. Several
models predict clinical events such as stroke and bleeding.1–3 The
CHA2DS2-VASc and HAS-BLED scores are widely used to select
suitable AF patients for oral anticoagulation (OAC).4–6 However,
some of the variables in these scoring systems are not consistently
related to outcomes.7 Novel machine learning technology has facili-
tated the development of more accurate models such as the Global
Anticoagulant Registry in the Field (GARFIELD)-AF risk model.8

However, these models incorporate data obtained at a single time-
point, baseline. Although computers can process multi-dimensional
data such as changes of variables over time, few models have used
these inputs to predict future clinical events.9,10

Vitamin K antagonists (VKAs) continue to be prescribed for the pre-
vention of stroke in patients with AF, despite the more recent intro-
duction of non-VKA oral anticoagulants (NOACs).11,12 The VKAs are
the only recommended choice of OAC for AF patients with haemo-
dynamically overt mitral stenosis and mechanical heart valve. Clinicians
adjust the dose of VKA based on an individual patient’s prothrombin
time international normalized ratio (PT-INR) at each visit. Time in
therapeutic range (TTR) is widely used to standardize the effects of
VKA therapy over periods beyond 6 months.13–17 Various bleeding
risk scores feature a TTR component to enhance accuracy,18 and
TTR has predictive power for thrombotic and bleeding events.19,20

However, information on serial changes in PT-INR during early-phase
VKA therapy, which may reflect many occult clinical characteristics of
patients such as genotype,21,22 concomitant medications,23 and life-
style,24 were not included in these TTR-based models.

Advances in artificial intelligence (AI) using recurrent neural net-
works allow the identification and translation of multi-dimensional
data including time-series data directly into meaningful models.25

Herein, we describe a new AI model for predicting clinical outcomes
over 31–365 days after patient enrolment. The model evaluates seri-
ally measured PT-INR within the first 30 days of treatment only with-
out other clinical parameters, using data from the largest
multinational prospective registry in AF, GARFIELD-AF. The predict-
ive accuracy of the AI model was compared with that of TTR. The
working hypothesis was to test whether serially measured PT-INR in
early phase can provide information to predict future clinical events.

Methods

Design
The AI model was derived from prospective GARFIELD-AF data gath-
ered in adults with newly diagnosed AF.26 Three independent AI models

were developed with the same composite of neural network structure
with multi-dimensional patient-level PT-INR values obtained within the
first 30 days after starting treatment. The model tabulated the clinical
events of major bleed, ischaemic stroke/systemic embolism (SE), and
death occurring within days 31–365.

Registry population
The GARFIELD-AF is an ongoing, international, prospective registry of
newly diagnosed patients with AF at risk of stroke. The study design,
baseline characteristics, and main results have been published.26–29

Eligible patients were adults aged >18 years who had been diagnosed
with non-valvular AF within the previous 6 weeks and had at least one
risk factor for stroke as judged by the investigator. Risk factors were not
pre-specified in the protocol. Any use of antithrombotic agents was
shared decision between clinicians and patients only. Patients with a tran-
sient reversible cause of AF and those for whom follow-up was not envis-
aged were excluded. The present analysis was conducted in patients
enrolled in GARFIELD-AF cohorts 1–5 between March 2010 and August
2016. Data were extracted from the study database in November 2017.

Study population
Patients who received anticoagulation therapy with VKA and had three
or more PT-INR measurements within the first 30 days after enrolment
were included in the model. Patients were excluded if they had experi-
enced any outcome events such as serious bleeding or stroke or died
within the first 30 days. In this analysis, day of first visit was set as day 0.
Patients from cohorts 1–3 (recruited between March 2010 and October
2014) were included in the derivation cohort whereas those in cohort 4–
5 (recruited March 2014 to August 2016) comprised the validation co-
hort. This study design was considered stringent because each
GARFIELD-AF cohort exhibited substantial differences in terms of partic-
ipating countries, use of anticoagulants, and outcomes.11

Follow-up
Collection of follow-up data occurred at 4 monthly intervals based on
medical records and, sometimes, telephone interviews up to 24 months.
The incidence of ischaemic stroke, transient ischaemic attack (TIA), SE,
acute coronary syndrome, hospitalization, death (cardiovascular and
non-cardiovascular), chronic heart failure (CHF; occurrence or worsen-
ing), and bleeding (severity and location) was documented. An audit and
quality control programme was applied, and data were examined for
completeness and accuracy by the co-ordinating centre (TRI, London,
UK). By design, 20% of all electronic case report forms in the GARFIELD-
AF registry were monitored against source documentation at sites over
the 8 years of recruitment and follow-up.

Outcomes
Outcome measures used in this analysis were major bleeding, stroke/SE,
and all-cause death occurring between days 31 and 365. Major bleed was
classified by investigators according to International Society on
Thrombosis and Haemostasis definition.30 Stroke/SE was defined as a
combined Endpoint of ischaemic stroke, SE, and TIA.

302 S. Goto et al.
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Artificial intelligence model
The structure of neural networks for the AI model is shown in Figure 1A.
To deal with serial data on raw PT-INR measurements, the AI model was
constructed by stacking multiple layers of special neurons that can deal
with time-dependent data, namely one-dimensional convolution layer
and long short-term memory (LSTM) layer. The LSTM layer transfer rec-
tified data to each neighbouring neuron.31 This structure allows the layer
to learn time-dependent data in sequential order.

The neural network model was trained independently for each out-
come event. For training, PT-INR measurement patterns for each individ-
ual patient were converted to a 30 dimensional PT-INR vector as shown
in Figure 1B. All PT-INR measurements obtained within the first 30 days
were input to the model. The measured PT-INR value was inserted into
nth element of the 30 dimensional vector, where n is the number of days
after starting VKA. Un-measured data-points were filled with 0. Each vec-
tor for patients was labelled with the occurrence of outcome (0 for no
event and 1 for event for all three outcome measures) within days 31–
365. The neural networks were trained with the multi-dimensional data-
set of the PT-INR vector and outcome label as shown in Figure 1C.

Model training
The process of model training is shown in Figure 2. The training was per-
formed using only patient data from the derivation cohort. The derivation
cohort was further split into training (70%) and testing (30%) datasets.
The training was performed for 500 epochs and each training epoch
included a mini-batch of 455 patients randomly selected from the training
dataset. Conceptually, the performance of the model is designed to im-
prove by training with longer epochs. However, this approach can also
result in overfitting. To avoid this pitfall and select the model with best

performance, the model was evaluated using the testing dataset at the
end of each epoch. The final model was that which performed best with
the testing dataset. The performance was measured by calculating the c-
statistics of the prediction model for all the data in testing dataset. No
data from validation cohort were used for training.

Model validation
The derived models were validated by inputting the 30 day PT-INR
vector and obtaining prediction scores for each outcome. Predicted
outcomes were compared with the actual clinical course for each indi-
vidual patient in the validation cohort. Receiver operating characteris-
tic (ROC) curves were drawn to evaluate the predictive value of the
model. The threshold to achieve overall best accuracy for the model
was determined and the model’s sensitivity and specificity calculated at
that threshold. To test the ability of the model to discriminate between
high- and low-risk patients for each event, three sets of Kaplan–Meier
plots were drawn for event rates stratified as high and low risk with
the threshold.

Figure 1 Structure of the neural network and input data for the
model. Schematic illustration of the neural network model (A).
Vector of 30 prothrombin time international normalized ratio
measurements for 4708 patients used as input to the model (B).
The element at nth dimension of the vector holds the prothrombin
time international normalized ratio value measured on day n. Un-
measured data-points were filled with 0. These pairs of prothrom-
bin time international normalized ratio vectors labelled with out-
come for each patient were used for model training (C). 1D
convolution, one-dimensional convolution; PT-INR, prothrombin
time international normalized ratio; LSTM, long short-term
memory.

Figure 2 Model training process. Schematic illustration of the
training process. Datasets are indicated with yellow, processes
indicated with blue, and models derived in each epoch indicated
with light red. The derivation cohort was further split into train-
ing dataset and testing dataset. The training was performed by
mini-batch method using 455 as batch size. For each epoch, the
derived model was compared with the best model derived with
previous epochs using the testing datasets. The training was per-
formed for 500 epochs and the best model using the testing data-
set selected.

New AI prediction model in AF 303
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Ethics
All trial protocols were approved by independent ethics committee and
hospital-based institutional review board. The registry was conducted in
accordance with the Declaration of Helsinki, local regulatory require-
ments, and International Conference on Harmonisation-Good
Pharmacoepidemiological and Clinical Practice guidelines. All patients
provided written informed consent to participate.

Statistical analysis
The neural network was constructed and trained using Keras framework
version 2.1.6 (https://keras.io) and TensorFlow version 1.8.0 as back-
end.32 The neural network was trained using the back-propagation super-
vised training algorithm. The loss function that was previously reported
to reflect the c-statistics33 was minimized using the RMSprop optimizer.

The c-statistics, the threshold to achieve best accuracy and corre-
sponding accuracy, sensitivity, and specificity of the model at the thresh-
old with its 95% confidence intervals (95% CI) were calculated by
bootstrap procedure with 2000 bootstrap rounds using the pROC pack-
age of R version 3.5.1.34 Comparison of ROC curve between the AI
model and TTR was performed similarly with pROC package. Kaplan–
Meier plots were produced using the survival package of R. All P-values
were calculated by log-rank test; a P-value <0.05 was considered statistic-
ally significant.

Results

Patients
The flowchart of patient selection is shown in Figure 3. Of 14 437 de
novo AF patients treated with VKA, 4806 had at least three PT-INR
measurements within the first 30 days and were included in the ana-
lysis. Ninety-eight patients were excluded (92 with an outcome event
within the first 30 days and 6 with missing information). Of the re-
mainder, 3185 were eligible for inclusion in the derivation cohort and
1523 in validation cohort. Baseline characteristics are displayed in
Table 1. There was no substantial intergroup difference in terms of
patients’ sex, age, body mass index, and left ventricular ejection frac-
tion. Patients with at least three PT-INR measurements during initial
30 days were slightly less likely to have paroxysmal AF and CHF than
those with fewer than three INR measurements. No difference in

baseline characteristics was noted between derivation and validation
cohorts.

Predictive value of artificial intelligence
model
The ROC curve compiled for the validation cohort (Figure 4A)
revealed that the AI model had a statistically higher predictive value
compared with TTR with c-statistics for major bleeding and all-cause
death 0.75 and 0.61, respectively (both P = 0.01 vs. TTR). A similar
trend albeit nonsignificant was observed for stroke, with a c-statistic
0.70 (P = 0.08 vs. TTR). Forest plots of 95% CI for AUC of ROC
curves (Figure 4B) show that the AI model performed better than ran-
dom; c-statistics for major bleed, stroke, and all-cause death were
0.75 (95% CI, 0.62–0.87), 0.70 (95% CI, 0.56–0.83), and 0.61 (95% CI,
0.54–0.67), respectively, whereas TTR was not significantly different
compared with random (for same outcomes: 0.47 [95% CI, 0.32–
0.61], 0.47 [95% CI, 0.31–0.64], and 0.48 [95% CI, 0.42–0.54], re-
spectively). Table 2 shows the accuracies, sensitivities, and specificities
for the best thresholds derived from the ROC curve for major bleed,
stroke, and all-cause death. The model showed good predictive ac-
curacy for major bleeding with a sensitivity 0.79 and specificity 0.78.
These results were similar for the training dataset (Supplementary
material online, Table 1 and Figure 1A, B).

Survival analysis
Kaplan–Meier plots stratified by risk determined from the AI model
are shown in Figure 5. The threshold of prediction score was calcu-
lated for each event to achieve the best accuracy according to the
ROC curve. The best thresholds for major bleed, stroke/SE, and all-
cause death were 0.27, 0.44, and 0.49, respectively. Note that these
output values from our model are arbitrary numbers related to risk
of future events but not actual probabilities. Patients who had a
model output higher than or equal to threshold were classified as
high risk and the remainder were low risk. Among 1523 patients in
the validation cohort, 354 were classified high risk for major bleeding,
738 for stroke, and 560 for death. High-risk patients had higher cu-
mulative event rates (major bleed, stroke/SE, and all-cause death)
compared with low-risk patients.

The same analysis was performed for the derivation dataset. No
threshold calculations were performed for the derivation dataset and
the same thresholds obtained from the validation dataset were used
for this analysis. The results were similar, supporting the robustness
of the threshold (Supplementary material online, Figure 2).

Discussion

We created a new method to convert early time-series measure-
ments of PT-INR to a long-term prediction model. The novel AI
model, constructed with neural networks including one-dimensional
convolution and LSTM, garnered useful information from the raw
PT-INR values, and measurement dates over 30 days after VKA initi-
ation and converted this to predict major bleeding events over the
next 11 months. Although TTR is widely used to standardize VKA
therapy over the long term,14–17 its accuracy for predicting future
thrombotic/bleeding events is low.35 A previous report showed that
GARFIELD-AF patients with 1 year TTR <65% had worse outcomes

Figure 3 Patient selection. Schematic illustration of patient selec-
tion process. PT-INR, prothrombin time international normalized
ratio; VKA, vitamin K antagonist.
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than those with greater values.36 Within 30 days, TTR has low pre-
dictive power because early-phase PT-INR values vary greatly due to
a number of influencing factors including genetics,21,22 choice of com-
mercial thromboplastin and coagulometer device,37–39 and patients’
lifestyles.40 With the use of AI, we show here the presence of import-
ant information in raw PT-INR patterns over first 30 days that can
predict clinical events occurring from days 31 to 365.

Multiple useful models exist to predict clinical outcomes in patients
with AF.1–3,8,41,42 However, most use single time-point data.
HAS-BLED score, on the other hand, does include time-series data
on PT-INR in the guise of labile PT-INR, which is expressed by TTR.3

Our AI model using time-series PT-INR values has better predictive
power than TTR for major clinical events, at least in the early phase
of VKA initiation. Even with multi-dimensional data including 31 data-
sets our AI model output is a prediction score given as a single value.
Thus, output of the new model may be included in conventional scor-
ing models by introducing a cut-off, similarly to integration of TTR.18

The ROC analysis in validation cohort revealed that our AI model
has modest predictive power with a best c-statistic 0.78, for major
bleeding. However, the model could be usefully incorporated into
previous models and thereby improve their accuracy, as has been
done with TTR.18 Our prediction model could expand to automatic
prediction of clinical outcomes from multi-dimensional data when
incorporated into electrical patient recording systems, for example.
Since our models are able to predict clinical outcomes in the early
phase of treatment, they may discriminate patients who are unsuit-
able for VKA therapy and suggest switching them to NOACs, which
are associated with lower bleeding risk compared with VKA.

Our novel AI model comprising a neural network can efficiently
connect multiple time-dependent measurements to clinical outcomes

to form a prediction model. Although in this study, the network
was used only to learn PT-INR patterns as specific target, the same
structure may have the ability to convert other multi-dimensional
time-dependent measurements to prediction models. Therefore,
the network may provide a new means to incorporate time-
dependent data in prediction models.

Output values from our AI model are related to risk of future
events but not their probability. Therefore, calibration of the model
with typical Hosmer-Lemeshow goodness-of-fit (GOF) test is not
feasible.

Study limitations
Several limitations of this analysis should be noted. First, validation of
the AI models was performed using datasets derived from the
GARFIELD-AF registry. External validations of the AI model were
not conducted. Thus, validity of this model beyond GARFIELD-AF
patients is unknown. On the other hand, large dissimilarities between
cohorts 1–3 and 4 and 5 were noted, suggesting that our model is suf-
ficiently robust to apply in daily clinical practice. Prothrombin time
international normalized ratio within 30 days may be influenced by
concomitant dosing with parenteral anticoagulants. However, our
model attempted to account for all influencing factors beyond the
effects of VKA. We hope that other researchers will test our model’s
performance in external datasets.

Second, the AI model was trained only with PT-INR data and did
not include other information such as sex, age, biomarkers, concomi-
tant drugs, or other serially measured values. Although consecutive
patient data were analysed, unrecognized confounders may exist.
Many other known risk factors for adverse outcome events were not
considered in our models.

.................................................................................

....................................................................................................................................................................................................................

Table 1 Patients’ baseline demographics and clinical characteristics

�3 PT-INRs (N 5 4708) 0–2 PT-INRs (N 5 9630) �3 PT-INRs subgroup

Derivation (N 5 3185) Validation (N 5 1523)

Sex, n (%)

Female 2085 (44.3) 4330 (45.0) 1420 (44.6) 665 (43.7)

Male 2623 (55.7) 5300 (55.0) 1765 (55.4) 858 (56.3)

Age at dx, years 72.1 (9.9) 70.0 (10.7) 72.2 (9.7) 72.0 (10.2)

BMI, kg/m2 28.7 (5.9) 28.1 (5.7) 28.6 (5.7) 29.0 (6.1)

LVEF, % 53.7 (12.9) 55.7 (12.7) 53.2 (13.2) 54.7 (12.2)

Type of AF, n (%)

New 2409 (51.2) 4087 (42.4) 1706 (53.6) 703 (46.2)

Paroxysmal 798 (16.9) 2207 (22.9) 567 (17.8) 231 (15.2)

Permanent 877 (18.6) 1514 (15.7) 487 (15.3) 390 (25.6)

Persistent 624 (13.3) 1822 (18.9) 425 (13.3) 199 (13.1)

CHF, n (%) 721 (15.3) 2149 (22.3) 466 (14.6) 255 (16.7)

CAD, n (%) 878 (18.6) 1896 (19.7) 511 (16.0) 367 (24.1)

ACS 461 (9.8) 872 (9.1) 292 (9.2) 169 (11.1)

CHA2DS2-VASc 3.4 (1.5) 3.3 (1.5) 34 (1.5) 33 (1.4)

HAS-BLED 1.4 (0.9) 1.4 (0.9) 15 (0.9) 14 (0.9)

Values are mean (SD) unless specified otherwise.
ACS, acute coronary syndromes; AF, atrial fibrillation; BMI, body mass index; CAD, coronary artery disease; CHF, congestive heart failure; LVEF, left ventricular ejection
fraction.

New AI prediction model in AF 305
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Third, by selecting only patients with >3 PT-INR measurements
within 30 days, two-thirds of the entire cohort were excluded, which
could introduce selection bias. Furthermore, patients do not necessar-
ily remain stable after day 31 and our model cannot capture changes

at time-points later than day 31. Future studies will examine the im-
pact of time periods beyond 30 days in relation to AI risk prediction.

Fourth, although our results suggest the presence of crucial infor-
mation within the PT-INR measurement pattern to predict patients’
clinical course, the nature of that information is unknown. It might be
present in the target PT-INR value, PT-INR fluctuations, PT-INR
measurement frequency, or elsewhere.

Fifth, the c-statistics, sensitivity, and specificity of our models are
far from perfect. Further studies to improve predictive accuracy pos-
sibly by adding other clinical characteristics and measurements are
necessary.

Sixth, statistical significance was not achieved in either the derivation
or validation cohort in comparison with TTR for prediction of all-cause
death and stroke. This could be explained by low numbers of events
limiting statistical power. Moreover, even though the number of deaths
observed was not low, they could have been caused by factors not

Figure 4 ROC analysis of the artificial intelligence model. Comparison of receiver operating characteristic curves compiled from artificial intelli-
gence model and time in therapeutic range (A). Comparisons were performed using stratified bootstrap method with 2000 bootstrap rounds. Forest
plots of area under curve of the receiver operating characteristic curve for each outcome (B). The 95% confidence intervals were calculated by strati-
fied bootstrap method with 2000 bootstrap rounds. AUC, area under curve; CI, confidence interval; ROC, receiver operating characteristic.

.................................................................................................

Table 2 Best predictive accuracies and corresponding
sensitivities and specificities (95% CIs) for validation
cohort

AI Accuracy Sensitivity Specificity

Major bleed 0.78 (0.40–0.92) 0.79 (0.50–1.00) 0.78 (0.39–0.93)

Stroke 0.53 (0.24–0.98) 0.85 (0.31–1.00) 0.53 (0.23–0.99)

All-cause death 0.64 (0.51–0.69) 0.63 (0.50–0.76) 0.65 (0.50–0.70)

AI, artificial intelligence.
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.

related to anticoagulation. Validation of the model in larger cohorts
with higher numbers of events may demonstrate better predictive
power for death and stroke. Despite these limitations, our results sug-
gest that serially measured PT-INR values within 30 days contain infor-
mation enabling us to predict serious bleeding outcomes up to 1 year.
Trained AI may thus be able to detect individuals at high risk for major
adverse cardiac events early in the treatment course.

Conclusions

In AF patients treated with VKA, we developed new AI models to
predict all-cause death, stroke, and major bleeding events occurring

between months 2 and 12. The models’ predictive accuracy was
greatest for major bleeding, followed by all-cause mortality and
stroke/SE. Our results imply that AI can capture important informa-
tion to predict future outcomes from early-phase PT-INR
measurements.

Supplementary material

Supplementary material is available at European Heart Journal –
Cardiovascular Pharmacotherapy online.
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according to artificial intelligence model for major bleed (A), stroke/
systemic embolism (B), and all-cause death (C). The threshold for
risk stratification was made by that which gave the best accuracy in
the validation cohort for each outcome according to the receiver
operating characteristic curve. The P-values were calculated by log-
rank test. AUC, area under curve; ROC, receiver operating
characteristic.

New AI prediction model in AF 307

https://academic.oup.com/ehjcvp/article-lookup/doi/10.1093/ehjcvp/pvz076#supplementary-data


..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

.
References
1. Lip GY, Nieuwlaat R, Pisters R, Lane DA, Crijns HJ. Refining clinical risk stratifica-

tion for predicting stroke and thromboembolism in atrial fibrillation using a novel
risk factor-based approach: the euro heart survey on atrial fibrillation. Chest
2010;137:263–272.

2. Gage BF, Waterman AD, Shannon W, Boechler M, Rich MW, Radford MJ.
Validation of clinical classification schemes for predicting stroke: results from the
National Registry of Atrial Fibrillation. JAMA 2001;285:2864–2870.

3. Pisters R, Lane DA, Nieuwlaat R, de Vos CB, Crijns HJ, Lip GY. A novel user-
friendly score (HAS-BLED) to assess 1-year risk of major bleeding in patients
with atrial fibrillation: the Euro Heart Survey. Chest 2010;138:1093–1100.

4. JCS Joint Working Group. Guidelines for pharmacotherapy of atrial fibrillation
(JCS 2013). Circ J 2014;78:1997–2021.

5. January CT, Wann LS, Calkins H, Chen LY, Cigarroa JE, Cleveland JC, Jr, Ellinor
PT, Ezekowitz MD, Field ME, Furie KL, Heidenreich PA, Murray KT, Shea JB,
Tracy CM, Yancy CW. 2019 AHA/ACC/HRS focused update of the 2014 AHA/
ACC/HRS guideline for the management of patients with atrial fibrillation.
Circulation 2019;140:e125–e151.

6. Kirchhof P, Benussi S, Kotecha D, Ahlsson A, Atar D, Casadei B, Castella M,
Diener HC, Heidbuchel H, Hendriks J, Hindricks G, Manolis AS, Oldgren J,
Popescu BA, Schotten U, Van Putte B, Vardas P, Agewall S, Camm J, Baron G,
Esquivias W, Budts S, Carerj F, Casselman A, Coca R, De Caterina R, Deftereos S,
Dobrev D, Ferro JM, Filippatos G, Fitzsimons D, Gorenek B, Guenoun M,
Hohnloser SH, Kolh P, Lip GY, Manolis A, McMurray J, Ponikowski P, Rosenhek
R, Ruschitzka F, Savelieva I, Sharma S, Suwalski P, Tamargo JL, Taylor CJ, Van
Gelder IC, Voors AA, Windecker S, Zamorano JL, Zeppenfeld K. 2016 ESC
Guidelines for the Management of Atrial Fibrillation Developed in Collaboration
with EACTS. Europace 2016;18:1609–1678.

7. Lip GYH, Skjøth F, Nielsen PB, Kjældgaard JN, Larsen TB. The HAS-BLED,
ATRIA, and ORBIT bleeding scores in atrial fibrillation patients using non-vitamin
K antagonist oral anticoagulants. Am J Med 2018;131:574.e13–574.e27.

8. Fox KAA, Lucas JE, Pieper KS, Bassand JP, Camm AJ, Fitzmaurice DA, Goldhaber
SZ, Goto S, Haas S, Hacke W, Kayani G, Oto A, Mantovani LG, Misselwitz F,
Piccini JP, Turpie AGG, Verheugt FWA, Kakkar AK. Improved risk stratification
of patients with atrial fibrillation: an integrated GARFIELD-AF tool for the pre-
diction of mortality, stroke and bleed in patients with and without anticoagula-
tion. BMJ Open 2017;7:e017157.

9. Sun D, Wang M, Li A. A multimodal deep neural network for human breast can-
cer prognosis prediction by integrating multi-dimensional data. IEEE/ACM Trans
Comput Biology Bioinform 2018;16:841–850.

10. Capasso R, Zurlo MC, Smith AP. Ethnicity, work-related stress and subjective
reports of health by migrant workers: a multi-dimensional model. Ethn Health
2018;23:174–193.

11. Camm AJ, Accetta G, Ambrosio G, Atar D, Bassand JP, Berge E, Cools F,
Fitzmaurice DA, Goldhaber SZ, Goto S, Haas S, Kayani G, Koretsune Y,
Mantovani LG, Misselwitz F, Oh S, Turpie AG, Verheugt FW, Kakkar AK;
GARFIELD-AF Investigators. Evolving antithrombotic treatment patterns for
patients with newly diagnosed atrial fibrillation. Heart 2017;103:307–314.

12. Kjerpeseth LJ, Ellekjær H, Selmer R, Ariansen I, Furu K, Skovlund E. Trends in use
of warfarin and direct oral anticoagulants in atrial fibrillation in Norway, 2010 to
2015. Eur J Clin Pharmacol 2017;73:1417–1425.

13. Rosendaal FR, Cannegieter SC, van der Meer FJ, Briet E. A method to determine
the optimal intensity of oral anticoagulant therapy. Thromb Haemost 1993;69:
236–239.

14. Granger CB, Alexander JH, McMurray JJ, Lopes RD, Hylek EM, Hanna M, Al-
Khalidi HR, Ansell J, Atar D, Avezum A, Bahit MC, Diaz R, Easton JD, Ezekowitz
JA, Flaker G, Garcia D, Geraldes M, Gersh BJ, Golitsyn S, Goto S, Hermosillo
AG, Hohnloser SH, Horowitz J, Mohan P, Jansky P, Lewis BS, Lopez-Sendon JL,
Pais P, Parkhomenko A, Verheugt FW, Zhu J, Wallentin L. Apixaban versus war-
farin in patients with atrial fibrillation. N Engl J Med 2011;365:981–992.

15. Giugliano RP, Ruff CT, Braunwald E, Murphy SA, Wiviott SD, Halperin JL, Waldo
AL, Ezekowitz MD, Weitz JI, �Spinar J, Ruzyllo W, Ruda M, Koretsune Y, Betcher
J, Shi M, Grip LT, Patel SP, Patel I, Hanyok JJ, Mercuri M, Antman EM; ENGAGE
AF-TIMI 48 Investigators. Edoxaban versus warfarin in patients with atrial fibrilla-
tion. N Engl J Med 2013;369:2093–2104.

16. Patel MR, Mahaffey KW, Garg J, Pan G, Singer DE, Hacke W, Breithardt G,
Halperin JL, Hankey GJ, Piccini JP, Becker RC, Nessel CC, Paolini JF, Berkowitz
SD, Fox KAA, Califf RM; ROCKET AF Investigators. Rivaroxaban versus warfarin
in nonvalvular atrial fibrillation. N Engl J Med 2011;365:883–891.

17. Connolly SJ, Ezekowitz MD, Yusuf S, Eikelboom J, Oldgren J, Parekh A, Pogue J,
Reilly PA, Themeles E, Varrone J, Wang S, Alings M, Xavier D, Zhu J, Diaz R,
Lewis BS, Darius H, Diener HC, Joyner CD, Wallentin L. Dabigatran versus war-
farin in patients with atrial fibrillation. N Engl J Med 2009;361:1139–1151.

18. Proietti M, Senoo K, Lane DA, Lip GY. Major bleeding in patients with non-
valvular atrial fibrillation: impact of time in therapeutic range on contemporary
bleeding risk scores. Sci Rep 2016;6:24376.

19. Williams BA, Evans MA, Honushefsky AM, Berger PB. Clinical prediction model
for time in therapeutic range while on warfarin in newly diagnosed atrial fibrilla-
tion. J Am Heart Assoc 2017;6. pii: e006669. doi: 10.1161/JAHA.117.006669.

20. Pokorney SD, Simon DN, Thomas L, Gersh BJ, Hylek EM, Piccini JP, Peterson
ED. Stability of international normalized ratios in patients taking long-term war-
farin therapy. JAMA 2016;316:661–663.

21. Schwarz UI, Ritchie MD, Bradford Y, Li C, Dudek SM, Frye-Anderson A, Kim RB,
Roden DM, Stein CM. Genetic determinants of response to warfarin during ini-
tial anticoagulation. N Engl J Med 2008;358:999–1008.

22. Klein TE, Altman RB, Eriksson N, Gage BF, Kimmel SE, Lee M-TM, Limdi NA,
Page D, Roden DM, Wagner MJ, Caldwell MD, Johnson JA. Estimation of the
warfarin dose with clinical and pharmacogenetic data. N Engl J Med 2009;360:
753–764.

23. Wells PS, Holbrook AM, Renee Crowther N, Hirsh J. Interaction of warfarin
with drugs and food. Ann Intern Med 1994;121:676–683.

24. Nathisuwan S, Dilokthornsakul P, Chaiyakunapruk N, Morarai T, Yodting T,
Piriyachananusorn N. Assessing evidence of interaction between smoking and
warfarin: a systematic review and meta-analysis. Chest 2011;139:1130–1139.

25. Goto S, Kimura M, Katsumata Y, Goto S, Kamatani T, Ichihara G, Ko S, Sasaki J,
Fukuda K, Sano M. Artificial intelligence to predict needs for urgent revasculariza-
tion from 12-leads electrocardiography in emergency patients. PLoS One 2019;
14:e0210103.

26. Kakkar AK, Mueller I, Bassand JP, Fitzmaurice DA, Goldhaber SZ, Goto S, Haas
S, Hacke W, Lip GY, Mantovani LG, Verheugt FW, Jamal W, Misselwitz F,
Rushton-Smith S, Turpie AG. International longitudinal registry of patients with
atrial fibrillation at risk of stroke: global Anticoagulant Registry in the FIELD
(GARFIELD). Am Heart J 2012;163:13–19.e1.

27. Kakkar AK, Mueller I, Bassand JP, Fitzmaurice DA, Goldhaber SZ, Goto S, Haas
S, Hacke W, Lip GY, Mantovani LG, Turpie AG, van Eickels M, Misselwitz F,
Rushton-Smith S, Kayani G, Wilkinson P, Verheugt FW. Risk profiles and antith-
rombotic treatment of patients newly diagnosed with atrial fibrillation at risk of
stroke: perspectives from the international, observational, prospective
GARFIELD registry. PLoS One 2013;8:e63479.

28. Bassand JP, Virdone S, Goldhaber SZ, Camm AJ, Fitzmaurice DA, Fox KAA,
Goto S, Haas S, Hacke W, Kayani G, Mantovani LG, Misselwitz F, Pieper KS,
Turpie AGG, van Eickels M, Verheugt FWA, Kakkar AK. Early risks of death,
stroke/systemic embolism, and major bleeding in patients with newly diagnosed
atrial fibrillation. Circulation 2019;139:787–798.

29. Bassand JP, Accetta G, Camm AJ, Cools F, Fitzmaurice DA, Fox KA, Goldhaber
SZ, Goto S, Haas S, Hacke W, Kayani G, Mantovani LG, Misselwitz F, Ten Cate
H, Turpie AG, Verheugt FW, Kakkar AK. Two-year outcomes of patients with
newly diagnosed atrial fibrillation: results from GARFIELD-AF. Eur Heart J 2016;
37:2882–2889.

30. Schulman S, Kearon C; Subcommittee on Control of Anticoagulation of the
Scientific and Standardization Committee of the International Society on
Thrombosis and Haemostasis. Definition of major bleeding in clinical investiga-
tions of antihemostatic medicinal products in non-surgical patients. J Thromb
Haemost 2005;3:692–694.

31. Taghavi Namin S, Esmaeilzadeh M, Najafi M, Brown TB, Borevitz JO. Deep phe-
notyping: deep learning for temporal phenotype/genotype classification. Plant
Methods 2018;14:66.

32. Abadi M, Barham P, Chen J, Chen Z, Davis A, Dean J, Devin M, Ghemawat S,
Irving G, Isard M. Tensorflow: a system for large-scale machine learning. 12th
{USENIX} Symposium on Operating Systems Design and Implementation ({OSDI} 16,
2016, p265–283.

33. Yan L, Dodier RH, Mozer M, Wolniewicz RH, Optimizing classifier performance
via an approximation to the Wilcoxon-Mann-Whitney statistic. Proceedings of the
20th International Conference on Machine Learning (ICML-03), 2003, p848–855.

34. Robin X, Turck N, Hainard A, Tiberti N, Lisacek F, Sanchez J-C, Müller M.
pROC: an open-source package for R and Sþ to analyze and compare ROC
curves. BMC Bioinf 2011;12:77.

35. Wan Y, Heneghan C, Perera R, Roberts N, Hollowell J, Glasziou P, Bankhead C,
Xu Y. Anticoagulation control and prediction of adverse events in patients with
atrial fibrillation: a systematic review. Circ Cardiovasc Qual Outcomes 2008;1:
84–91.

36. Haas S, Ten Cate H, Accetta G, Angchaisuksiri P, Bassand JP, Camm AJ,
Corbalan R, Darius H, Fitzmaurice DA, Goldhaber SZ, Goto S, Jacobson B,
Kayani G, Mantovani LG, Misselwitz F, Pieper K, Schellong SM, Stepinska J,
Turpie AG, van Eickels M, Kakkar AK. Quality of vitamin K antagonist control
and 1-year outcomes in patients with atrial fibrillation: a global perspective from
the GARFIELD-AF Registry. PLoS One 2016;11:e0164076.

308 S. Goto et al.



..

..

..

..

..

..

..

..

..

..

..

..

..37. Poller L, Ibrahim S, Keown M, Pattison A, Jespersen J; European Action on
Anticoagulation. The prothrombin time/international normalized ratio (PT-INR)
line: derivation of local INR with commercial thromboplastins and coagulome-
ters—two independent studies. J Thromb Haemost 2011;9:140–148.

38. Christensen TD, Larsen TB. Precision and accuracy of point-of-care testing
coagulometers for self-testing and management of oral anticoagulation therapy.
J Thromb Haemost 2012;10:251–260.

39. Hemkens LG, Hilden KM, Hartschen S, Kaiser T, Didjurgeit U, Hansen R, Bender
R, Sawicki PT. A randomized trial comparing INR monitoring devices in patients
with anticoagulation self-management: evaluation of a novel error-grid approach.
J Thromb Thrombolysis 2008;26:22–30.
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