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ABSTRACT: Developing a method for creating a novel catalysis of
organic molecules is essential because of the growing interest in
organocatalysis. In this study, we found that cyclic carbonates
immobilized on a nonporous or mesoporous silica support showed
catalytic activity for hydrosilylation, which was not observed for the free
cyclic carbonates, silica supports, or their physical mixture. Analysis of the
effects of linker lengths and pore sizes on the catalytic activity and
carbonate C�O stretching frequency revealed that the proximity of
carbonates and surface silanols was crucial for synergistic hydrosilylation
catalysis. A carbonate and silanol concertedly activated the silane and
aldehyde for efficient hydride transfer. Density functional theory
calculations on a model reaction system demonstrated that both the
carbonate and silanol contributed to the stabilization of the transition
state of hydride transfer, which resulted in a reasonable barrier height of
16.8 kcal mol−1. Furthermore, SiO2/carbonate(C4) enabled the hydrosilylation of an aldehyde with an amino group without catalyst
poisoning, owing to the weak acidity of surface silanols, in sharp contrast to previously developed acid catalysts. This study
demonstrates that immobilization on a solid support can convert inactive organic molecules into active and heterogeneous
organocatalysts.
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Since the pioneering works on organocatalysts around
2000,1−4 this class of catalysts has attracted great interest,

particularly as an essential component for the environmentally
benign and efficient synthesis of fine chemicals.5−13 Thus, the
creation of novel organocatalysts is important, and one
promising method is the immobilization of organic molecules
on a solid support. It has been demonstrated that catalysis of
organic functional groups and metal complexes was improved
via surface immobilization.14−26 Silica supports reportedly
enhance the catalytic activity of immobilized functional groups,
owing to the weak acidic nature of surface silanols. Kubota and
Sugi found that catalytic activity of secondary amines for aldol
reaction is increased by a mesoporous silica additive and that
the promotional effect is more prominent for silica-
immobilized amines than for the physical mixture.14 Katz
and co-workers deconvoluted polarity and acidity environ-
mental effects in supported catalysts involving tethered amine-
on-silica sites, using Knoevenagel, Michael, and nitroaldol
reactions, and correlated results with salicylaldehyde bonding
as a probe of polarity and acidity.15,16 Jones and co-workers
conducted detailed studies on the effect of pore size and linker
length on the catalytic activity of mesoporous-silica-supported
amines for aldol and nitroaldol reactions.17−21 Nevertheless, all
of these supported catalysts contain amines, which are well-
known for their base catalytic properties. The creation of novel

surface-enhanced catalysis of an organic molecule that has
never been used as a catalyst is an attractive research target to
open a new avenue for organocatalysis.
Cyclic carbonates are an important group of com-

pounds27−29 that are easily synthesized from CO2 and
extensively used as aprotic polar solvents and electrolytes for
batteries. The highly polarized structures of cyclic carbonates
indicate their potential as Lewis base organocatalysts, although
their catalytic application has not been reported. Thus, the
cyclic carbonate structure was chosen as the active site of the
novel immobilized organocatalysts.
In this study, we demonstrated that the immobilization of

cyclic carbonates on silica with specific linker lengths led to the
emergence of hydrosilylation catalysis. Effects of structural
parameters on the catalytic activity and the carbonate C�O
stretching frequency were systematically investigated. We
propose that carbonate and silanol concertedly activate the
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silane and aldehyde, respectively, for efficient hydride transfer,
which was supported by theoretical calculations. The
immobilized catalyst was applicable to a substrate with an
amino group because of the weak acidity of silanols, which is in
sharp contrast to that of previously reported acid catalysts.
Thus, we have demonstrated that surface immobilization can
trigger the emergence of novel organocatalysis.
Physicochemical properties of support materials used in this

study were reported elsewhere.30 Nonporous-silica-supported
cyclic carbonates having different methylene linker lengths,
SiO2/carbonate(Cn), were prepared by a silane coupling
reaction using 78 μmol of carbonate(Cn) and 75 mg of SiO2,
as shown in Scheme 1. Mesoporous-silica-supported catalysts,

MS(x)/carbonate(Cn) (x: pore size in Å), were obtained by a
similar procedure. The equivalence of silanol to carbonate
before immobilization was 5.9−7.4, according to 29Si dd/MAS
NMR.30 The carbonate(Cn) precursors were synthesized from
epoxyolefins in two steps (Scheme S1): (1) epoxyolefins were
converted into epoxides with a terminal Si(OEt)3 group by
hydrosilylation with triethoxysilane and a Rh or Pt catalyst and
(2) the cycloaddition of CO2 to the epoxide catalyzed by silica-
supported tetrabutylammonium iodide afforded carbonate-
(Cn).31 The results of elemental analysis in Table S1 indicated
the successful immobilization of the carbonates on the support
with the carbon content increasing with increasing linker
length. Fourier-transform infrared (FT-IR) spectroscopy
further confirmed the presence of carbonates on silica (Figure
1a), and absorption bands corresponding to the C�O and C−

H stretching modes of the carbonate moiety were observed for
the prepared catalysts. Solid-state 13C cross-polarization/magic
angle spinning nuclear magnetic resonance (CP/MAS NMR)
spectroscopy indicated retention of the cyclic carbonate
structure (Figure 1b). 29Si CP/MAS NMR analysis using
SiO2/carbonate(C4) as a representative catalyst revealed that

carbonate groups connect with silica surface mainly through T2
site (Figure S1), which indicated that approximately 4−5 equiv
of residual silanol with respect to carbonate was present on the
prepared catalysts.
SiO2/carbonate(Cn) and MS(23)/carbonate(Cn) were

applied to the catalytic hydrosilylation of 4-chlorobenzalde-
hyde (1a) with dimethylphenylsilane (2a) (Figure 2). The

linker length had a critical impact on the catalytic performance,
and the highest yield of silyl ether 3aa was observed at a length
of C4 for both silica supports. The superior catalytic activity of
C4 over C2 was ascribed to the flexibility of the methylene
linker. According to a previous study on the base catalytic
activity of amines immobilized on mesoporous silica (SBA-15)
with methylene linker lengths of C1−C5, the promotional
effect of surface silanols on catalysis was prohibited for short
linkers (C1 and C2) owing to the lower conformational
diversity.17 However, the reason for low reactivities of the C6
and C8 catalysts has not been clear so far. There is a possibility
that too much conformational diversity of the long chains
decreased the probability of appropriate conformations for
concerted catalysis with silanol, suggested by the weaker
interaction of carbonate and silanol observed in infrared
spectroscopy (vide infra).
To demonstrate that the hydrosilylation catalysis of cyclic

carbonates emerged as a result of immobilization on silica,
control experiments were conducted (Figure 3). The hydro-
silylation reaction did not proceed efficiently with free
carbonates, silica supports, or physical mixtures of propylene
carbonate and silica supports. These results clearly indicate
that immobilization of the cyclic carbonates is essential to the
catalysis of SiO2/carbonate(C4) and MS(23)/carbonate(C4).
The lack of catalytic activity of SiO2/carbonate(C4)-capped,
which was obtained by capping the surface silanols of SiO2/
carbonate(C4) with a methyl group, suggests that the role of
the silica support is to activate the carbonyl group of 1a using
the surface Si−OH groups as the acid sites.16−21 In addition, it
was found that the ratio of silanol to carbonate was an
important factor: SiO2/carbonate(C4)-2, which was prepared
with the amount of the carbonate(C4) precursor 2 times

Scheme 1. Preparation of Catalysts

Figure 1. Characterization of representative catalysts. (a) IR spectra
of SiO2, SiO2/carbonate(C4), MS(23)/carbonate(C4), and
carbonate(C4). (b) 13C NMR spectra of carbonate(C4) and SiO2/
carbonate(C4).

Figure 2. Effect of linker length of immobilized cyclic carbonates on
the product yield. Standard deviations were evaluated for C4 catalysts
using samples in different batches.
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higher than that of SiO2/carbonate(C4), afforded no reaction
product. On the other hand, the reduction of carbonate
loading on MS(23)/carbonate(C4) did not change the
product yield: the catalysts with carbon contents of 7.8 and
5.5 mmol g−1 showed 3aa yields of 80% and 81%, respectively.
The proximity of the immobilized carbonate and surface

silanol was evidenced by FT-IR spectroscopy. The IR spectra
of SiO2/carbonate(Cn) (Figures 4a−f) revealed that only

SiO2/carbonate(C4) showed a significant negative shift in the
C�O stretching frequency (Figure 4c). Considering the result
for SiO2/carbonate(C4)-capped (Figure 4f), this red shift was
attributed to the hydrogen bonding interaction between silanol
and carbonate. It was reported that the coordination of
carbonyl group of cyclic carbonates to acidic site induced the

decrease of C�O stretching frequency.32 Based on the results
shown in Figures 2, 3, and 4a−f, a plausible reaction
mechanism is proposed, as shown in Scheme 2. The aldehyde

and silane are concertedly activated by a paired silanol and
carbonate and undergo efficient hydride transfer, followed by
silyl transfer. This mechanism contrasts the mechanism
established for boron-based Lewis acid organocatalyst, in
which silyl transfer occurs before hydride transfer (Scheme
S2).33−38

Furthermore, the pore size effects of the MS support on the
catalytic activity and C�O stretching frequency of the
immobilized carbonate(C4) were investigated. Table 1 and

Figures 4g−k show the catalytic activity and IR absorption by
C�O stretching, respectively, of MS(x)/carbonate(C4) with
pore diameters of 16, 19, 23, and 31 Å. The highest catalytic
activity was observed at a pore size of 23 Å (entry 3). IR
spectroscopy revealed that the decrease in the C�O stretching
frequency was the largest for MS(23)/carbonate(C4). Thus,
the reason for the highest catalytic activity is that MS(23)
enabled the closest proximity of carbonate and silanol. A
correlation was observed between the catalytic activities and
C�O stretching frequencies of MS(x)/carbonate(C4) (Figure
5). The general trend of increasing catalytic activity with
decreasing C�O stretching frequency supports the proposed
reaction mechanism (Scheme 2), in which the proximity of the
acid and base sites is essential.
The validity of the proposed reaction mechanism in Scheme

2 was further examined by DFT calculations with M08-HX
functional using the Gaussian 16 program.39−41 Model reaction
system A consisted of 1a, 2a, ethylene carbonate, and a cage-
shaped cluster model of SiO2 (Figure S2). For computational
efficiency, ethylene carbonate and the SiO2 cluster model were
used to mimic the active sites of the catalyst (immobilized
cyclic carbonate and surface silanol, respectively).42 Figure 6a

Figure 3. Emergence of the hydrosilylation catalysis of cyclic
carbonates by immobilization on a silica support.

Figure 4. Effects of linker length (left) and pore size (right) on the
C�O stretching frequency of SiO2/carbonate(Cn) and MS(x)/
carbonate(C4), respectively. FT-IR spectra of (a, g) carbonate(C4)
before immobilization, (b) SiO2/carbonate(C2), (c) SiO2/carbonate-
(C4), (d) SiO2/carbonate(C6), (e) SiO2/carbonate(C8), (f) SiO2/
carbonate(C4)-capped, (h) MS(16)/carbonate(C4), (i) MS(19)/
carbonate(C4), (j) MS(23)/carbonate(C4), and (k) MS(31)/
carbonate(C4).

Scheme 2. Proposed Reaction Mechanism

Table 1. Pore Size Effect on Product Yield

entry support of carbonate(C4) yield of 3aa (%)a

1 MS(16) 20
2b MS(19) 18
3 MS(23) 80
4 MS(31) 37

aDetermined by 1H NMR. bDibenzyl ether was formed as a
byproduct with 22% yield.
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shows the calculated energy profile for the proposed
mechanism and schematic images of the optimized structures.
The transition state of hydride transfer (ATS1) has an
activation energy of 16.8 kcal mol−1, whereas the subsequent
conformational change and silyl transfer steps are almost
barrierless. In ATS1, the carbonate coordinates to the Si center
of the silane, whereas the silanol forms a hydrogen bond with
the carbonyl oxygen of the aldehyde. Thus, the carbonate and
silanol concertedly facilitate the transfer of hydride from the
silane to the aldehyde. The reasonable barrier height (16.8 kcal
mol−1) suggests that the hydrosilylation reaction in a real
system likely proceeds via the proposed mechanism. It was
noticed that the alkoxide species generated by the hydride
transfer abstracted the proton of silanol in the relaxation path
from ATS1 to A2 and that the proton is returned to regenerate
the silanol in the path from ATS3 to A4, as shown in Figure
S8e.
On the other hand, model systems B and C, containing only

either the carbonate or silanol, respectively, have significantly
larger activation energies than system A (Table 2 and Figure
S3). Specifically, the calculated barrier heights are 25.4 and
26.8 kcal mol−1 for B and C, respectively. In addition, the
system containing only 1a and 2a (system D) has an activation
energy of 33.6 kcal mol−1. These theoretical results are
consistent with the experimental observation that the hydro-

silylation reaction proceeds efficiently only when immobilized
carbonate catalysts are used.
The applicability of the SiO2/carbonate(C4) catalyst to the

hydrosilylation reaction between other aldehydes and silanes
was examined (Table 3). In addition to 1a, benzaldehyde (1b),

cinnamaldehyde (1c), and 4-(dimethylamino)benzaldehyde
(1d) were converted into the corresponding silyl ether by
using 2a in moderate to high yields (69−94%) under the same
reaction conditions. Thus, aromatic aldehydes with electron-
withdrawing or electron-donating substituents can be used in
this system. Among the silanes examined (2a−2d), 2c gave the
highest yield of 3ac (83%) in the reaction with 1a. The lower
reactivity of 2b than that of 2a was attributed to steric
hindrance. Notably, the applicability of SiO2/carbonate(C4) to
1d with a basic functional group is in sharp contrast to those of
previously developed acid catalysts, such as Fe-exchanged
montmorillonite (Fe-Mont) and SiO2−Al2O3.43 Using these
solid acid catalysts, only trace amounts of silyl ether 3da were
obtained, owing to catalyst poisoning by the adsorption of
amino groups on the acid sites. In contrast, SiO2/carbonate-
(C4) retained its catalytic activity because of the much weaker
acidity of the silanol groups.
In summary, novel silica-immobilized carbonate catalysts,

SiO2/carbonate(Cn) and MS(x)/carbonate(Cn), were system-
atically prepared by varying the structural parameters. Catalytic

Figure 5. Yield of products plotted against the C�O stretching
frequency of MS(x)/carbonate(C4) and free carbonate(C4).
Reaction conditions were the same as those shown in Figure 2 and
Table 1. For MS(19)/carbonate(C4), the total yields of the silylation
and benzylation products was plotted.

Figure 6. (a) Calculated energy profile for the proposed reaction
mechanism (system A). (b) Optimized structure of ATS1 with a
length annotation. The other optimized structures are summarized in
Figure S4.

Table 2. Calculated Activation Energies (Ea)

system catalyst Ea (kcal/mol)

A carbonate + silanol 16.8
B carbonate 25.4
C silanol 26.8
D none 33.6

Table 3. Substrate Scope for Hydrosilylation Catalyzed by
SiO2/Carbonate(C4)

catalyst aldehyde silane yield of 3 (%)a

SiO2/carbonate(C4) 1a 2a 71
1b 2a 69
1c 2a 94
1a 2b 44
1a 2c 83
1a 2d 57

SiO2/carbonate(C4) 1d 2a 76
Fe-Mont 1d 2a trace
SiO2−Al2O3 1d 2a trace

aDetermined by 1H NMR.
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hydrosilylation of aldehydes emerged as a result of the synergy
between the carbonates and surface silanol groups. C4-linker
and MS(23) were found to be optimal for catalysis, although
effects of conformational diversity of linkers, surface area, and
functional group density should be investigated in future
studies for more detailed understanding of the surface
phenomena. The carbonate and silanol were proposed to
concertedly activate the silane and aldehyde, respectively, for
efficient hydride transfer. IR spectroscopy and DFT calcu-
lations supported the proposed mechanism. SiO2/carbonate-
(C4) could catalyze the hydrosilylation of a substrate with an
amino group, owing to the mild acidity of silanol, which is a
clear advantage over previously reported acid catalysts. These
findings provide a stepping stone for the development of more
functionalized heterogeneous organocatalysts.
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