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Abstract
The coastal mosquito Aedes togoi occurs more or less continuously from subarctic to sub-

tropic zones along the coasts of the Japanese islands and the East Asian mainland. It

occurs also in tropical Southeast Asia and the North American Pacific coast, and the popu-

lations there are thought to have been introduced from Japan by ship. To test this hypothe-

sis, the genetic divergence among geographic populations of A. togoi was studied using

one mitochondrial and three nuclear gene sequences. We detected 71 mitochondrial haplo-

types forming four lineages, with high nucleotide diversity around temperate Japan and

declining towards peripheral ranges. The major lineage (L1) comprised 57 haplotypes from

temperate and subarctic zones in Japan and Southeast Asia including southern China and

Taiwan. Two other lineages were found from subtropical islands (L3) and a subarctic area

(L4) of Japan. The Canadian population showed one unique haplotype (L2) diverged from

the other lineages. In the combined nuclear gene tree, individuals with mitochondrial L4

haplotypes diverged from those with the other mitochondrial haplotypes L1—L3; although

individuals with L1—L3 haplotypes showed shallow divergences in the nuclear gene

sequences, individuals from Southeast Asia and Canada each formed a monophyletic

group. Overall, the genetic composition of the Southeast Asian populations was closely

related to that of temperate Japanese populations, suggesting recent gene flow between

these regions. The Canadian population might have originated from anthropogenic intro-

duction from somewhere in Asia, but the possibility that it could have spread across the Ber-

ingian land bridge cannot be ruled out.

Introduction
Major human disease vectors of the mosquito tribe Aedini (Culicidae: Culicinae) including the
yellow fever mosquito Aedes aegypti and the Asian tiger mosquito A. albopictus are well known
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examples of anthropogenic dispersal across the world [1–4]. A recent example is the spread of
Aedes japonicus to the United States, Canada and European countries where it was probably
introduced in used tires from Japan [5–6]. Many species of Aedini breed in small water bodies
including artificial containers, lay desiccation and freeze resistant eggs, and hence have poten-
tial to be transported by ships as eggs or larvae in water tanks or used tires. Finding the origin
and means of dispersal of disease-vectors spreading across the world is crucial to predicting the
risk of vector colonization and implementing appropriate control programs.

Anthropogenic dispersal may have resulted in the wide distribution across climatic zones in
the aedine species Aedes togoi, which is widely distributed from subtropical to subarctic East
Asia, breeding in coastal rock pools as well as artificial containers [7]. This species is a known
vector of human and canine filariasis, and Japanese encephalitis virus has been isolated from
field-collected mosquitoes [7–10]. The occurrence of A. togoi has also been reported from trop-
ical Southeast Asia [11–13] and the Pacific coast of Canada and the USA [14–16]. These
peripheral populations were discovered in the late 20th century and may have been introduced
from Japan by ships. In the temperate zone, this species has several generations per year, over-
winters as diapausing larvae or eggs and shows facultative autogeny (egg production without
blood feeding) [17–18]. Over their geographic range, A. togoi populations differ in life history
traits such as body size, larval diapause (delayed development in response to short-day condi-
tion) and autogeny [19–22]. The Canadian population has life-history traits similar to those of
temperate Japanese populations [20–24], consistent with the introduction hypothesis. How-
ever, tropical Asian populations show traits different from temperate ones: small body size,
obligatory autogeny and lack of larval diapause [19–22]. This finding raises doubts about the
introduction hypothesis [19]. The genetic relationships among different populations might
resolve the origins of the peripheral A. togoi populations. In this study, we therefore studied
geographic genetic variations in A. togoi using mitochondrial and nuclear gene sequences to
investigate the validity of the anthropogenic introduction hypothesis.

Materials and Methods

Sampling and DNA extraction
This study did not include protected or endangered species, and no permission was required to
collect the study species, Aedes togoi and Aedes savoryi. All the collection sites were in unpro-
tected areas accessible to the public, and permission from landowners was obtained whenever
necessary. A total of 282 larvae or adults of A. togoi were collected at 42 field sites (S1 Table;
Fig 1). Larval and adult specimens were fixed in 95–99% ethanol and stored in a refrigerator
until DNA was extracted. Total genomic DNA was extracted from individual larvae or adults
using a Wizard DNA purification kit (Promega). We also used adult specimens (preserved in
ethanol) from 3 old laboratory colonies originating in Taiwan, Malaysia and Thailand (S1
Table). We used 8 larvae of A. savoryi from Ogasawara (Bonin) Islands, Japan, as the outgroup
(S1 Table). Aedes savoryi is morphologically similar to A. togoi and considered as the sister spe-
cies [25]. We examined the sister relationship based on three nuclear gene sequences from 12
culicine species including A. togoi and A. savoryi (see S2 Table and S1 Fig for methods).

DNA sequencing
We used partial sequences of the mitochondrial cytochrome oxidase subunit I (COI) gene and
nuclear 28S rRNA (28S), CAD and white genes for phylogenetic analysis. CAD and white
genes were selected based on a previously published mosquito molecular phylogeny [26]. A
partial COI gene region was amplified using primers C1-J-2195: 5’-TTG ATT TTT TGG TCA
TCC AGA AGT-3’ and TL2-N-3014: 5’-TCC AAT GCA CTA ATC TGC CAT ATT A-3’ [27].
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Partial sequences of 28S rRNA, white, and CAD genes were amplified and sequenced using the
following primers. For 28S, Dipt28SF: 5’-AGG GGA GGA AAA GAA ACT AAC AAG GA-3’
and Dipt28SR1: 5’-CTT GGT CCG TGT TTC AAG ACG GGT C-3’ [28]. For CAD, 819 bp
exon sequence, CAD F1: 5’-GAA AGA CCC GGT GGA GTG CTG CTC ACC-3’; CAD R1: 5’-
GCC ATC ACT TCA CCG ACA CTY TTC AT-3’. For white (825 bp aligned sequence encom-
passing 3 exon and two intron) white F1: 5’-TAY AAT CCG GCG GAY TTC TAC GTC CAA
ATG-3’; white R1: 5’-ATC AGG AAY GGA ATA ATC ACC GGT GGR CCG-3’, and internal
primers only for sequencing, white F2: 5’-CAA ACG GCG GTA AGA ATC AG-3’ and white
R2: 5’-TGG AAG CTC AGC AGA AAA CA-3’. We redesigned the CAD and white primers
with reference to the published sequences of these genes for some aedine species [26]. Sequence
data are deposited in the DNA Data Bank of Japan (DDBJ: accessions LC025655—LC025878).

Phylogenetic, population genetic and divergence time analysis
Alignment of sequences was done with MUSCLE version 3.831 [29]. Maximum-likelihood
(ML) analysis was done with RAxML v8.0.0 [30] with rapid bootstrapping procedure using
1000 bootstrap analyses. We used partitioned analysis discriminating three codon positions,
intron and rRNA sequence, and applied GTR+G substitution model to each partition because
it is recommended as the most versatile model by the author of RAxML [30]. For COI and
CAD gene sequences and the concatenated exon sequence of white gene, three codon positions
were treated as different partitions. Each of the entire 28S gene sequence and the concatenated
intron sequence of white gene was treated as one partition. A combined ML analysis was con-
ducted for the nuclear gene sequences. We also constructed a phylogenetic network for the
COI gene sequence to demonstrate a star-like topology of haplotype sequences using the neigh-
bor-net algorithm in SplitsTree4 v4.13.1 [31]. Node credibility was assessed using 1000 boot-
strap resampling. In addition, we constructed a population tree based on mean uncorrected
p-distance between populations obtained using MEGA version 5.2.2 [32] and using the neigh-
bor-joining method in PHYLIP version 3.69 [33]. To show latitudinal trend in genetic diver-
sity, the nucleotide diversity of COI gene sequences at each locality was calculated using
Arlequin version 3.5.1.3 [34].

The divergence times between COI haplotype lineages were estimated using a Bayesian
relaxed clock model analysis implemented in BEAST version 1.80 [35]. For time calibration,
we used disconnection of the Ryukyu Islands from the main islands of Japan (Kyushu, Shikoku
and Honshu) 1.7 million years ago (mya). The Ryukyu Islands were separated from the East
Asian mainland by tectonic movement and enlargement of the Okinawa trough during the late
Pliocene and the early Pleistocene, and the land connection between the Ryukyu Islands and
the main islands of Japan disappeared by 1.7 mya [36]. We assumed this geological event was
related to divergence of the haplotype lineage of A. togoi specific to Ryukyu and set the node
age prior to the branching of the Ryukyu haplotype lineage as a normal distribution with a
mean of 1.7 my and a standard deviation of 0.17 my. In BEAST analysis, the COI sequences
were partitioned by three codon positions and a GTR+G substitution model was used for each
partition. We used an uncorrelated relaxed clock model with lognormal distribution of branch-
specific rates, and the Markov Chain Monte Carlo (MCMC) run was performed for 108 genera-
tions with a sampling frequency of 104. The results were checked for effective sample sizes
using Tracer version 1.6 [37]; and a consensus tree was obtained using TreeAnnotator version
1.8.0 in BEAST discarding the initial 1000-generation data as burn-in. Note that the calibration

Fig 1. Sample localities of Aedes togoiwith mitochondrial COI haplotype composition. (A) Sample localities in Asia and Canada. Sample size (n) and
the number of haplotypes (h) for each locality are indicated. (B) Localities in Japan, with one locality in Taiwan.

doi:10.1371/journal.pone.0131230.g001
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method we employed is uncertain for the relationship between the geological event and the
haplotype divergence. However, we have also tested a divergence time estimate using a time-
dependent evolutionary rate of insect mitochondrial gene sequences [38–39] and obtained
divergence times that are almost within the 95% HPD (highest probability density) intervals of
those obtained by the above analysis (see S3 Table).

Results
We confirmed the appropriateness of A. savoryi as the outgroup using three nuclear gene
sequences (S2 Table; S1 Fig). We obtained an 817-bp COI gene sequence for 282 A. togoi and 8
A. savoryi specimens. We detected a total of 71 haplotypes for the mitochondrial COI sequence
of A. togoi (Fig 2; S4 Table; DDBJ accessions LC025655—LC025758). The haplotypes were
divided into four lineages L1—L4 (Fig 2), which had an estimated coalescent time of 2.7 mya
(95% HPD interval, 1.8–4.2 mya; i.e. late Pliocene to early Pleistocene; see also S2 Fig). Of these
lineages, L1 haplotypes were found from subarctic Hokkaido to subtropical Amami in Japan,
highly diversified (57 haplotypes) and further clustered into four subgroups L1a—L1d, that
comprised 20, 4, 14, and 19 haplotypes, respectively. These subgroups occurred in different
regions; L1d occurred in the northern coast of the Sea of Japan, L1b and L1c in the middle lati-
tudes, and L1a in the southwest region (Fig 1; S4 Table). L1a—L1c haplotypes occurred also in
Taiwan, and L1c in the coasts of China and Peninsular Malaysia (Fig 1). In Peninsular Malay-
sia, only one haplotype of L1c (H65; S4 Table) was detected, which was also found in Japan.
Three laboratory colonies from Peninsular Malaysia, Thailand and Taiwan (not included in
Fig 1) showed the same single L1c haplotype (H54), which was common in temperate Japan
(S4 Table). Lineage L2 was represented by the only haplotype from Canadian populations, and
it was found nowhere else (Fig 2). L2 was estimated to have diverged from L1 approximately 1
mya (95% HPD interval, 0.6–1.5 mya). L3 (7 haplotypes) was unique to the Ryukyu Islands
from Amami to Yonaguni. Mosquitoes in the northernmost Ryukyu island, Amami also had
L1a haplotypes, which were dominant in southern temperate Japan. Finally, a lineage L4 was
found in east Hokkaido (6 haplotypes). The relationships between the geographic populations
are depicted by the population tree based on mean sequence difference of COI sequences (Fig
3A); this tree shows that the populations from southern China, Taiwan and Peninsular Malay-
sia are closely related to populations in temperate Japan. The nucleotide diversity of COI
sequences at each locality was high at middle latitude around 35°N and at a site on Amami
Island (28.48°N) harboring both L1 and L3 haplotypes (Fig 3B).

We obtained 959-bp 28S, 819-bp CAD and 825-bp white gene sequences for 49 specimens
of A. togoi (DDBJ accessions LC025729—LC025878). In the combined phylogenetic analysis of
these nuclear gene sequences (Fig 4; see S3 Fig for individual gene trees), individuals with the
same mitochondrial lineages tended to clump with one another although those with L1 haplo-
types were polyphyletic. As in the mitochondrial gene tree, individuals with L4 mitochondrial
haplotypes from eastern Hokkaido were distinct from all individuals with the other mitochon-
drial haplotypes in the nuclear gene trees. Canadian individuals showed unique substitutions
in 28S and white genes, forming a monophyletic clade. Further, individuals from southern
China, Taiwan and Peninsular Malaysia formed a strongly supported clade due to unique sub-
stitutions in CAD and white gene sequences. Substitutions in coding sequences of CAD and
white genes were all synonymous.

Discussion
The mitochondrial COI haplotypes of A. togoi consisted of four distinct lineages, which were
estimated to have diverged since the late Pliocene or the early Pleistocene; the haplotype
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diversity and nucleotide diversity were highest in the temperate zone in Japan. The alternation
of haplotype lineages across geographic and climatic regions in Japan, together with divergence
in nuclear gene sequences corresponding to that in mitochondrial haplotypes, could be the
effect of isolation by distance, but geographic disjunctions of haplotype lineages between tem-
perate and subtropical or subarctic zones are consistent with the existence of geographic barri-
ers, which may be associated with local adaptation.

Notably, the populations of the subtropical Ryukyu Islands of Japan had a haplotype lineage
different from those in temperate Japan, suggesting the absence of continuous gene flow
between these regions. Also notably, the population in Taiwan did not have the Ryukyu haplo-
types despite their geographic proximity. In southern China, Taiwan and Peninsular Malaysia,
A. togoi populations had only haplotypes of the L1 lineage, the same haplotypes as those found
in temperate Japanese populations. These results suggest that the Southeast Asian populations
have not been isolated long from those in temperate Japan. However, based on the nuclear
gene sequences, the Southeast Asian populations formed a monophyletic group diverging from
temperate Japanese populations. Therefore, the present Southeast Asian populations may have
a common origin, either by natural or anthropogenic dispersal; a founder population might
have subsequently dispersed while being adapted to subtropical and tropical environments.
The dispersal of A. togoimight have been facilitated by transportation by ships among Asian
countries, although direct evidence is lacking. During the mid-20th century, Aedes aegypti was
introduced to Japan from Southeast Asia probably by ship; at this time A. togoi was common
around the ports in Japan [40]. Also, Ramalingam [13] considered ships carrying cargo such as
iron ore and timber between the east coast of Peninsular Malaysia and Japan as candidate
transporters.

Although our genetic data suggest that the Southeast Asian populations of A. togoi have not
been isolated very long from the temperate Japanese populations, the tropical populations
from Thailand and Peninsular Malaysia had different life-history characteristics from those of
temperate populations in the laboratory such as the lack of larval diapause, obligatory autogeny
and small body size [19,21]. Another tropical population from Hainan I., China, also showed
obligatory autogeny [41]. These differences may be evidence that the tropical populations are
indigenous [19]. However, life history traits such as diapause and body size can evolve rapidly
in dipteran insects including aedine mosquitoes [42–45]. Therefore, the life-history character-
istics of A. togoi in the tropics may have evolved during their recent range expansion in East
and Southeast Asia.

The origin of Canadian populations is enigmatic, as there is a gap of more than 5000-km in
their distribution between East Asia and the North American Pacific coast. The fact that the
Canadian population has life-history characteristics similar to temperate populations in Japan
[19–20] does not contradict either of the hypotheses: anthropogenic introduction or natural
distribution, because both climates are temperate. We found only a single, unique COI haplo-
type from four locations in British Columbia separated up to 150 km. One explanation may be
that the Canadian population is an introduced one from somewhere in Asia, which started
from few individuals or has experienced a strong bottleneck. Transportation by ship has been
possible since the late 19th century, as there was already trade between Yokohama, Japan and
Vancouver then. Mogi [46] noted that the underground mosquito Culex pipiens f.molestus

Fig 2. Maximum-likelihood tree and neighbor-net network of mitochondrial COI haplotypes.H-numbers (H001—H071) are haplotypes of A. togoi, and
O001—O003 are those of A. savoryi (outgroup). In the ML tree, numerals on branches are bootstrap percentages (shown when >50%); arrows indicate
haplotypes from Taiwan, southern China and Peninsular Malaysia, which occurred also in Japan except H34, H46 and H51; for nodes with closed circles,
median node ages estimated by BEAST analysis are indicated with 95% HPD intervals in parentheses (see S3 Fig for details). In the network, numerals on
branches are bootstrap percentages (shown when >50%).

doi:10.1371/journal.pone.0131230.g002
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might have been transported from North America to Japan by ship by the mid-20th century.
However, we cannot exclude the possibility that A. togoi could have spread naturally across
Beringia unless the origin of the unique haplotype is resolved by more extensive sampling in
East Asia. In this hypothesis, A. togoimight have undergone stepping stone dispersal along the

Fig 3. (A) Population tree constructed by neighbor-joining method based onmean uncorrected p-distance between populations. (B) Latitudinal
change in the nucleotide diversity of COI sequences at each locality. Bars show ± SD. Open circles, Japanese islands except Ryukyu Islands; gray circles,
Ryukyu Islands; black circles, outside Japan.

doi:10.1371/journal.pone.0131230.g003
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Kuril Islands, Kamchatka, the Aleutian Islands and Alaska to British Columbia. The estimated
divergence time of the Canadian haplotype from L1 haplotypes in Asia was 1 mya (credible
range, 0.6–1.5 mya), spanning several glacial cycles during which such dispersal across Beringia
might have been possible. The last land bridge between Siberia and Alaska was not severed
until just before 13,000 ya [47]. On the northeast Pacific coast, the easternmost occurrence of
A. togoi is reported from South Kuril [7], close (<50 km) to eastern Hokkaido where the most
diverged L4 haplotypes occurred. Aedes togoimay occur further east, on the North Kurils,
Kamchatka, or the Aleutians; a survey of A. togoi in these regions is needed to understand the
dispersal pattern of A. togoi in the subarctic zone and obtain a clue to the origin of the North
American population.

Lastly, we note that, even though A. togoi can disperse over long distances by themselves or
by human transportation, the survival of colonizers may be limited in exotic habitats, and their
populations may often be subject to the loss of genetic diversity or extinction. For example, A.
togoi once colonized the subtropical Ogasawara Islands in the Pacific Ocean 1000-km south of
Tokyo in 1960s [48], probably as a result of transportation by ships. However, A. togoi now

Fig 4. Maximum-likelihood tree of Aedes togoi resulting from combined analysis of three nuclear
genes.Numerals on branches are bootstrap percentages (shown when >50%). Mitochondrial lineage of
each individual is indicated.

doi:10.1371/journal.pone.0131230.g004
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appears to be extinct, as only the native sister species A. savoryi was abundant in rock pools in
later surveys (e.g., [49]; 2010 by K. Kawakami, personal communication). On the Ogasawara
islands, reproductive interference with the sister species may make the survival of invasive spe-
cies difficult [50–52]. Irrespective of the presence of closely related species, survival of intro-
duced mosquito populations is limited by abiotic and biotic factors in exotic habitats [53].
Scarcity of large, stable rock pools on the seacoast would greatly limit the population persis-
tence of A. togoi. On the eastern coast of Peninsular Malaysia, suitable larval habitats for A.
togoi (rock pools or holes) are scarce, and the A. togoi population there appeared to be very
small according to our field survey (in 1989 and 2010 by TS and HSY).

Our study revealed that the genetic diversity of A. togoi centers on the Japanese Islands, and
the genetic composition varies among geographic and climatic regions, consistent with the
existence of geographic barriers related to climatic adaptation as well as the effect of isolation-
by-distance. The genetic composition of southern China, Taiwan and Southeast Asian popula-
tions is similar to those in temperate Japan, consistent with gene flow between these regions,
whereas the Canadian population has a genetic composition distinct from that of Asia. Our
study has not provided strong support for recent anthropogenic introduction of A. togoi from
temperate Japan to tropical Southeast Asia or Canada, although transportation by ship may
have promoted gene flow between Japan and other Asian countries. More extensive geographic
sampling of A. togoi populations along the coast of East Asian mainland and around the Pacific
rim will be needed to resolve the role of natural and anthropogenic dispersal in forming the
present distribution of this species.

Supporting Information
S1 Fig. Phylogenetic relationships among culicine species showing the sister relationship
between Aedes togoi and A. savoryi. The phylogenetic position of A. togoi and its sister rela-
tionship to A. savoryi based on a morphological analysis were examined using three nuclear
gene sequences (CAD, enolase, white) newly obtained for A. togoi and A. savoryi with previ-
ously published data for 10 species from aedine and non-aedine Culicinae (S2 Table). The max-
imum-likelihood tree obtained by RAxML (partitioned by each codon position in each gene;
GTR+gamma model; 1000 bootstrap analysis) weakly supported the monophyly of Aedini but
strongly supported the sister relationship between A. togoi and A. savoryi within the strongly
supported group of some aedine species.
(PDF)

S2 Fig. Divergence time estimation by Bayesian relaxed clock analysis with BEAST.Median
nodes age and 95% highest probability density intervals are indicated for major nodes with
black circles. On the branches shown are posterior probabilities and bootstrap percentages in
the maximum-likelihood analysis (shown when>0.5 or>50%).
(PDF)

S3 Fig. Maximum-likelihood trees for three nuclear genes. Bootstrap percentages are shown
on the branches when>50%.
(PDF)

S1 Table. List of samples for DNA analysis with information of haplotype groups.
(PDF)

S2 Table. GenBank/DDBJ accession numbers for the three genes (exon only) used in the
phylogenetic analysis of culicine mosquitoes.
(PDF)
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S3 Table. Mean sequence divergence (uncorrected p) and estimated divergence times
between mitochondrial COI haplotype lineages.
(PDF)

S4 Table. Distribution of mitochondrial COI haplotypes.
(PDF)
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