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Energy efficiency is still the obstacle for long-term real-time wireless ECG monitoring. In this paper, a digital compressed sensing-
(CS-) based single-spot Bluetooth ECG node is proposed to deal with the challenge in wireless ECG application. A periodic
sleep/wake-up scheme and a CS-based compression algorithm are implemented in a node, which consists of ultra-low-power
analog front-end, microcontroller, Bluetooth 4.0 communication module, and so forth. The efficiency improvement and the
node’s specifics are evidenced by the experiments using the ECG signals sampled by the proposed node under daily activities of
lay, sit, stand, walk, and run. Under using sparse binary matrix (SBM), block sparse Bayesian learning (BSBL) method, and
discrete cosine transform (DCT) basis, all ECG signals were essentially undistorted recovered with root-mean-square differences
(PRDs) which are less than 6%. The proposed sleep/wake-up scheme and data compression can reduce the airtime over energy-
hungry wireless links, the energy consumption of proposed node is 6.53mJ, and the energy consumption of radio decreases
77.37%. Moreover, the energy consumption increase caused by CS code execution is negligible, which is 1.3% of the total
energy consumption.

1. Introduction

Cardiovascular diseases (CVDs) are a major threat to human
health. According to the report of WTO, about 17.5 million
people died of heart disease every year around the world
[1]. Furthermore, the cost for CVD-related treatment is sub-
stantial, which is estimated approximately to be 3.8 trillion
U.S. dollars in all low- and middle-income countries during
2011–2025 [2]. The situation will be even more severe due
to the increasing aging population. Many of CVD-related
deaths and associated economic losses can be avoided if the
diseases have been early prevented, diagnosed, and treated.

Electrocardiogram (ECG) can give an insight of heart sta-
tus for diagnosis of CVDs, and it is a standard medical exam-
ination in clinical practices nowadays [3]. However, there
still exist some limitations of traditional ECG instruments
for early diagnosis of CVDs, such as in-hospital short-term
examination, huge in volume, inconvenient movement,

wired connection, and low autonomy [4]. They cannot satisfy
the requirement for long-term, real-time monitoring and
feedback in mobile scenarios as most of the early stage CVDs
are accidental during daily activity and out of a hospital.
Development of inexpensive continuous ambulatory ECG
monitoring device becomes a challenge in real-time, long-
term, and convenient ECG monitoring.

In recent years, with the rapid development of wireless
body sensor networks (WBSNs) and wearable techniques,
lots of WBSN-enabled ambulatory ECG monitoring devices
have been developed [1, 5, 6]. They could be seamlessly inte-
grated into patients’ life for heart status monitoring, provid-
ing early warning to avoid accidental adverse cardiovascular
events. However, most of such existing devices need to be
further improved to advance energy efficiency, which is the
major obstacle for long-term wireless ECG monitoring.

Different studies for the energy-efficient node have been
investigated from various aspects, including hardware,
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communication protocol, scheme, coding technology, and
data compression methods. Low-power hardware can
directly reduce the energy consumption. Yazicioglu et al.
[7] proposed mixed-signal design approaches to reduce over-
all power dissipation of the biopotential sensor node. Tsai
et al. [8] fabricated a low-power analog front-end IC, using
a 0.18μm CMOS standard, for effectively wireless ECG
acquisition. Energy-efficient protocol or strategy can also
prolong the node’s lifetime. Nemati employed ANT protocol
as a low-data-rate wireless module to reduce the power con-
sumption of a wireless capacitive ECG node. Yan et al. [9]
proposed a distance-based energy-efficient data strategy,
which lowered the transmission power in both the sensor
node level and the network level. Also, considering commu-
nication consumes more than 65% of the total energy [10],
lots of coding or compression approaches were proposed to
optimize the radio energy consumption. A proper compres-
sion technology can reduce the amount of the transmitted
data, thus improving the node’s energy efficiency. As most
of the high-performance compression schemes are not com-
patible with resource-constraint node [11, 12], low computa-
tional complexity coding or compression methods were
investigated, such as the Walsh transform based variable-
word-length coding [13], nonuniform sampling-based
dynamic compression [1], and compressed sensing- (CS-)
basedmethod [14–16]. Particularly, as a novel sampling para-
digm, CS combines the sampling and compression into one
step. It efficiently collects signal following the “information
rate” instead of the traditional “Nyquist rate” [17–19]. The
reported CS-enabledwireless ECGmonitoring [14, 15, 20, 21]
shows the advantages of CS method in low complexity,
low-cost, and energy efficiency.

Existing literature has shown that achieving truly energy-
efficient wireless ECG node requires not only ultra-low-
power devices and advanced communication protocols but
also proper data compression technologies. Although these
existing studies explored power saving methods from differ-
ent aspects, few of them gave out a whole energy-efficient
node scheme.

Motivated by these challenges, a digital CS-based single-
spot Bluetooth ECG node was designed and implemented.
To achieve long-term wireless ECG monitoring, ultra-low-
power hardware, such as Bluetooth Low Energy (BLE) com-
munication protocol module, analog front-end (AFE) chips
AD8232 and MSP430F1611, were considered in the node
design. Meanwhile, the CS-based compression and the peri-
odic sleep/wake-up scheme, which aims at minimizing
energy consumption of data communication, were proposed.
Particularly, the tiny node taking advantages of low compu-
tation complexity, a sparse binary measurement matrix, was
implanted in to realize the CS-based compression. The com-
pression technology and sleep strategy can not only reduce
the amount of the transmitted data but also decrease the air-
time over energy-hungry wireless links, thus improving the
node’s energy efficiency. To identify the specifics of the pro-
totype node, the experiments were carried out. Also, the
results were compared with three commercial nodes.

The paper is organized as follows. Section 2 elaborated
the design of the proposed wireless ECG node. The details

of digital CS-based compression and dual-clock source-
based periodic sleep/wake-up scheme are illustrated in this
section. In Section 3, experimental setups were introduced,
including the experimental data and the evaluation indices.
Section 4 demonstrated the experimental results over opti-
mal parameters of CS compression, collected ECG signals
under daily activities, energy consumption, and so forth. Sec-
tion 5 discussed the advantages and the potential limitation
of our node. The summarization of this study was presented
in Section 6.

2. Designed Wireless ECG Node

In a wireless ECG node, the limited battery power is mainly
consumed by three components: sensing, computing, and
communication. High-energy consumption hardware, poor
power management, and direct transmission of ECG data
are energy wasting. To reduce the energy consumption, the
proposed node optimized for hardware design, a periodic
sleep/wake-up scheme, and CS-based data compression.
The objectives of the node are summarized as follows:

(1) Ultra-low-power hardware: to save energy in circuit

(2) Periodic sleep/wake-up strategy: to reduce airtime
over the power-hungry wireless link

(3) Compression algorithm with high compression ratio
and good recovered quality: to decrease transmission
data and guarantee nondistortion diagnosis

(4) Compact and low complexity: to realize the compres-
sion algorithm on resource-constraint sensing nodes

(5) Real-time: to provide online wireless heart status
monitoring

2.1. Hardware Design. The hardware framework of proposed
single-spot wireless ECG node is described in Figure 1. The
system is powered by one 3V CR2032 button battery.
Through three electrodes, the ECG signal was obtained and
transmitted to an AFE for amplifying and filtering. Subse-
quently, the preprocessed signal is converted into digital sig-
nal by the 12-Bit integrated Analog-to-Digital Converter
(ADC) module of MSP430 at 200Hz. After the compression
processing, the data is transmitted to a healthcare cloud
server-connected gateway (a mobile phone or a base station)
through a BLE transceiver. The valuable medical information
will be extracted from the reconstructed signals for the
authorized doctor, patient, or medical institution, and so
forth. Here, AD8232 is chosen as the AFE. AD8232 is a fully
integrated single-lead ECG AFE, which has low supply
current (170μA) and high common-mode rejection ratio
(80 dB), and also includes multiple amplifiers and filters.
The single chip can easily realize traditional complex ECG
preprocessing circuit design. The ECG signal is essentially
quasi-periodic nonstationary with a small amplitude
(0.01~5mV) and low frequency (0.05~100Hz) [22]. The gain
of AD8232 was fixed as 500, and the frequency band of the
filter was set as 0.5~35Hz. MSP430F1611 was adopted as
core processor. The large Flash (48 kB) and RAM (10 kB)
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ensure that the node has enough resources for algorithm
implementation. Also, there two crystal oscillators, 8MHz
and 11.0592KHz, are set up as master and second clock
sources, which provide the conditions for the node to work
at high- or low-speed operation modes. Furthermore, as a
bridge between the node and gateway, the transceiver HM-
11 provides a short-range (10m), high-throughput (up to
1Mb/s data rate) BLE wireless data communication.

The final manufactured node can be found in Figure 1(b).
It is a circular structure. The diameter and height are 40mm
and 15mm, respectively. Moreover, the overall weight
(including the battery) is 30 g. Three integrated interfaces
of electrodes are uniformly distributed on the nodes at
120 degrees, which are used to connect the standard Ag/
AgCl electrodes. In practical, the node can firmly stick to
the skin.

2.2. Dual-Clock Source-Based Periodic Sleep/Wake-up
Scheme. The proposed dual-clock source-based periodic
sleep/wake-up scheme is shown in Figure 2. The basic idea
of the proposed scheme is that resource allocation is in terms
of event slots. Since energy consumption is proportional to
clock frequency [9], the node works at high-speed operation
mode (HSOM) with the master clock during tasks of data
compression and transmission and at low-speed operation
mode (LSOM) with the secondary clock in tasks of sam-
pling. Meanwhile, the node periodic sleeps and wakes up
in LSOM. The flowchart in Figure 2(a) shows the transfor-
mation between the two operation modes. That is, during
sampling task, the node is in LSOM, and it keeps sleeping
during idle statue and immediately wakes up when peri-
odic sampling event triggered, then followed by filling
and data buffer checking. If the data buffer is full, the
node moves into HSOM; otherwise, the node keeps in

LSOM and repeat sampling. There is no sleeping in
HSOM; the node runs at full speed for CS-based data
compression and data transmission. After data transmis-
sion, the node moves back to LSOM. The sequence dia-
gram of the operation mode is illustrated in Figure 2(b).
The node is working in LSOM with sleep/wake-up at most
of the time that guarantees energy saving.

2.3. Implementation of CS-Based ECG Compression. Recently,
the compressed sensing theory was proposed [17–19]. It has
broken the traditional sampling rule. The basic theory of the
CS is that the sparse signals can be reconstructed from inco-
herent randommeasurements [23, 24]. The formal definition
of CS is Y =ΦX, where X is the N-dimensional input signal,
Φ is M×N measurement matrix (M<N), which represents
dimensionality reduction, and Y is the collected M-length
compressed vector. Using CS can reduce the wirelessly trans-
mitted data during the signal acquisition.

There are three critical aspects in ECG compression:
the sparsity of the ECG signal, the measurement matrix,
and the recovery algorithm. ECG is sparse or sparse in
some domains has already been proven in previous studies
[14, 15, 20, 21].

The essential content of digital CS-based compression
can be summarized as using measurement matrix multiplica-
tion, which includes the multiplication and accumulation, to
shorten the signal length. The scheme of the compression is
shown in Figure 3. The ECG signal X is converted to digital
signal following the “Nyquist” sampling rate f s, and then
the measurement matrix Φ multiplies X to get compressed
signal Y. The digital CS combined the traditional “Nyquist”
sampling and the principle of CS signal acquisition; it is suit-
able for the scenario of sparsity signal compression when
ADC can provide enough sampling rate.
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Wireless ECG node
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cloud service

Mobile phone
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Figure 1: Hardware framework of proposed wireless ECG node. (a) System framework (b) structure, and prototype of the proposed node.
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Figure 2: Dual-clock source-based periodic sleep/wake-up scheme. (a) Flowchart of the operation modes. (b) Sequence diagram of the
operation modes.
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The measurement matrix is the key to CS-based com-
pression. The parameters of measurement matrix, which
include the bit precision of coefficients, the type of ran-
dom distribution, and the structure of the matrix, directly
affect the compression efficiency and the computation com-
plexity. Commonly used measurement matrices include
Gaussian distribution matrix, Bernoulli distribution matrix,
and uniform distribution matrix. The bit precision of matrix
coefficient ranges from 1 to 64. The Gaussian, Bernoulli, or
uniform distribution matrices with high bit coefficient pre-
cision are costly because they are difficult to generate and
store in a resource constraint nodes; moreover, they bring
more computation and higher energy consumption. In
comparison, sparse binary matrix (SBM) is more suitably
used in a resource-constraint node as measurement matrix
[17–19].

SBM has characteristics of sparsity, binary, and incoher-
ent, which is described as M×N sparse matrix with K as
one of the elements in each column (K<<M). ϕij (ϕij ∈ [0,1])
represents the element of Φ. In each column of Φ, the
number of one is far less than the number of zero,
and the locations of the one element are random and
satisfy the condition of independent identically distrib-
uted (i.i.d.).

The implementation of SBM-based compression is marked
by the red dashed line in Figure 3. Let Pi = p1i , p2i ,… , pji
denote the locations of one entry in the ith row of Φ, and
the compressed measurement results y(i) can be updated
by (1) without the multiplier.

yi =〠xpji
1

Figure 3 shows an example, the length of X is 14, andΦ is
a 7× 14 SBM with K = 2. The locations of one entry in the
first row are {1, 4, 9, and 13}, then y1 = x1 + x4 + x9 + x13.
Repeating processing of each row of Φ, then the compressed
data Y is achieved.

2.4. Implementation of ECG Reconstruction. The high signal
quality recovery algorithm is the key to ECG reconstruction
implementation. It will run on a powerful computing gate-
way or cloud healthcare servers. Assume α is a sparse vector
and Ψ is a sparse basis, signal X can expand as X =Ψα; then
the compressed signal is Y =ΦΨα. According to the CS the-
ory, it is highly possible to get exact α when the measurement
matrix and the sparsity of the signal satisfy the restricted
isometry property [23, 24]. In the proposed framework, lots
of excellent algorithms, such as the basis pursuit denoising
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Figure 4: The ECG signals for compression tests.
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1.98 mA 116 h at 3 V 230 mAh

Figure 5: The prototype of single-spot Bluetooth ECG node.
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(BPDN) model, smoothed l0 algorithm, orthogonal match-
ing pursuit, and block sparse Bayesian learning (BSBL), can
be used for CS recovery [25–28]. For example, using BSBL
and discrete cosine transform (DCT) basis for wireless CS
compressed ECG recovery. If the measurement matrix Φ
and DCT basis Ψ are known, the solution α̂ is output after
ΦΨ, and received Y is fed in the BSBL algorithm; then the
recovered ECG is X̂ =Ψα̂ when α̂ is got. The comparison
results of different recovery algorithms are demonstrated in
the Results section.

3. Experiment Designs

The proposed node was evaluated in data compression and
energy consumption. The experiment setups are similar to
our previous work [1]. The testbed consists of the proposed
node, a data acquisition (DAQ) card (National Instrument
USB6009, 14 bits, maximum 48K sampling rate), and a
laptop (Intel i7 4720qm, 8G RAM, Bluetooth 4.0) with
Matlab 2016a and LabVIEW 2013. The DAQ card is con-
nected to the laptop by USB cables. The node is wirelessly
connected to the base station (the laptop). The measurement
matrix is SBM, and the length of ECG signal N is 512 in
all experiments.

As shown in Figure 4, the 12.8 s (2560 points) ECG data
were used for compression tests, which were sampled by
the proposed node in five predefined daily activities, such
as lay, sit, stand, walk, and run. The original signal and com-
pressed data were transmitted to the base station, where the
ECG signals were reconstructed by the recovery algorithm.

To quantify the compression performance, the per-
centage root-mean-square difference (PRD) with different
normalization [29] is used to quantify the recovered sig-
nal quality.

PRD = X − Y 2
X − X 2

× 100 2

X is the original signal, Y is the reconstructed signal,
and X is the mean of X. Meanwhile, the parameters M
and K , which closely relate to compression ratio and
computational complexity, are adopted to evaluate the
compression efficiency.

In the energy consumption tests, the power supply is 3V,
and a 10 Ohm precise resistor is used to transform current to
voltage. The DAQ card records the node voltage Vnode and
resistor voltage VR. The card sampled the analog voltages at
5KHz and then calculated the node’s power and energy

consumptions in the digital domain. The power consump-
tion P is calculated as

P = Vnode
VR
R

, 3

where R represents the value of the resistor. The energy con-
sumption E is given by the summation of the power con-
sumption at a time interval T :

E = Vnode 〠
T

VR
R

4

After all experiments, the proposed node was compared
with three commercial ECG nodes, such as Shimmer2,
ZMP® ECG2, and Zio Patch monitor concerning size,
weight, lifetime, and so forth.

4. Results

The prototype of proposed single-spot Bluetooth ECG
node is shown in Figure 5. The size and weight of proposed
node are 40 (diameter, D)× 15 (height, H), and 30 g,
respectively.

The comparison experiment was carried out to identify
proper recovery algorithm and sparse basis. The PRDs of
recovered ECG signals were calculated and reported in
Table 1. It is observed that the combination of BSBL [20]
and DCT basis achieves the highest signal recovery quality,
and the PRDs are less than 3.6%. Besides, the BSBL also beats
the recovery algorithms of orthogonal matching pursuit
(OMP) [14] and L1 convex optimization [15] under wavelet
transform (WT) basis. Since ECG signal is block sparse and
correlation structure, BSBL algorithm, which considers such
characteristics in the solution of CS, obtained good perfor-
mance in ECG recovery. The results suggest that the com-
bination of BSBL and DCT basis is a good choice for the
base station. The rest experiments are based on BSBL and
DCT basis.

Parameters of measurement matrix play an important
role in the performance of data CS compression. SBM has
three parameters, which are N , M, and K . In this study, N
is fixed to 512, which means each time the compression algo-
rithm will process segmented 2.56 s ECG signal; due to com-
pression ratio equal toM/N , parameter M takes a significant
role in compression efficiency; and it needs N × K times
accumulation to achieve compressed signal. Parameter K is
a critical measure for computation of compression.

Table 1: PRD of the recovered signal under different sparsity bases and recovery algorithms, N = 512, M = 256, K = 4.

Experimental conditions
PRD (%)

Lay Sit Stand Walk Run

BSBL+WT [20] 6.35 6.20 9.58 5.66 7.23

BSBL+DCT [20] 3.54 2.28 2.91 1.39 2.52

OMP+WT [14] 7.69 10.35 21.34 12.01 11.85

L1 +WT [15] 10.68 11.67 20.05 16.30 11.80

6 Journal of Healthcare Engineering



To decrease the risk of signal distortion, the maximum
PRDs were preserved under M and K verified from 64 to
384 and 1 to 32, respectively. The relationships of the signal
distortion, compression efficiency, and computation com-
plexity are shown in Figure 6. The PRD decreases with the
increasing M but is insensitive to the change of K . Consider-
ing the cases with PRD< 9% will not lead diagnostic distor-
tion [29]; a blue marker of PRD=9% is overlapped in
Figure 6 as a benchmark of the accepted recovery area. Mean-
while, considering generalization risk of recovery, the area
marked by a solid red rectangle (as shown in Figure 6) is
suggested as the parameter selection area, and M = 256 and
K = 4 are the best choice. The computation of the confirmed
optimal SBM is 2048 accumulation, which is suitable for
the proposed node. It can be concluded that the SBM CS
compression is low computation complexity.

The visual inspection of five original and recovered ECG
signals is illustrated in Figure 7. It is observed that the PRDs
of all records are less than 9%; the proposed system can
achieve high-quality ECG signal recovery and guarantee the
nondistortion diagnosis. Compared with the length of origi-
nal signals, half of the data was reduced, which indicates that
the proposed method has good potential in energy saving
during ECG data wireless transmission. Moreover, the pro-
posed CS compression is nonadaptive. No matter what the
original ECG with different rhythms and morphological
characteristics was fed in the framework, the same length of
compressed data is achieved. Furthermore, all R-peaks of
recovered ECG signals were detected in Figure 7. It is
believed that the proposed system can achieve the recovered
signal without diagnosis distortion; the proposed node is
qualified for the ambulatory ECG monitoring.

The power consumptions of the node are demonstrated
in Figure 8. It is observed that the power of the normal
scheme (Figure 8(a)) holds steady about 70mW if it ignores
the energy consumption of 200Hz ADC sampling. The node
is energy wasting in the normal scheme because the radio is
always on; in the S/W scheme, the node periodically sleeps

or wakes up, and it turns off or on the radio according to
the requirement of the task. The power trace of S/W scheme
is like a periodic pulse curve in Figure 8(b). In the last CS+ S/
W scheme (Figure 8(c)), the time interval of radio off is two
times larger than that of S/W scheme, which proves that
the CS compression reduces half of the data. The energy con-
sumption of the proposed node is elaborated in Figure 9. The
consumed energy in normal, S/W, and CS+ SW schemes is
28.87mJ, 8.85mJ, and 6.53mJ, respectively. Assume the
energy consumption of radio is 100% in the normal scheme,
and it reduces to 30.61% and 22.63% in S/W and CS+SW
schemes, respectively. The energy consumption of CS code
execution accounts for only 1.3% of the total energy con-
sumption. The results indicate that the proposed node is
energy efficient.

The specifics of the proposed node and the comparison
with three commercial nodes are reported in Table 2. The
proposed node is a light, low-cost, energy-efficient, single-
spot wireless ECG node, it can provide real-time ambulatory
ECG monitoring, and the lifetime of the node is 116 hours at
3V battery.

5. Discussions

The advantages of the proposed ECG node include energy
efficient, low computational complexity compression, real-
time, and wireless. By using the ultra-low-power chips,
periodic sleep/wake-up strategy, and CS compression, the
transmission data was nonadaptive reducing 50% and
recovered signal without diagnosis distortion. As indicated
in Section 4, sleep/wake-up strategy and CS compression
reduce 77.37% radio energy consumption. Meanwhile, the
compression algorithm is a low computational complexity.
The energy consumption of CS code execution is negligi-
ble due to the light computation load of accumulation.
Furthermore, the ECG signal can be provided real-time
to a user through the proposed system framework.
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In the first subfigure of Figure 7, it can be found that the
morphological similarity of ECG signal is high and the noise
level of ECG signal is stable, but the PRDs are suddenly
increased. ECG signal is typically characterized by localized
information where essential and valuable diagnostic infor-
mation is concentrated at the small interval and high-
amplitude QRS complex. CS is a sampling method following
the “information rate.” The whole QRS complex is seg-
mented into two parts which leads to information loss that
leads to distortion. The 10-point delayed recovered ECG is
shown in Figure 10, and it is observed that there is no great
variation of PRD.

The distortion caused by QRS complex location is the
major shortcoming in our proposed ECG system, which is

expected to be solved by the information-enhanced sparse
binary matrix [32].

6. Conclusion

CS is capable of achieving high compression ratios with low
computational and memory requirements, making it suitable
for being used in wireless ECG nodes. A digital compressed
sensing-based single-spot Bluetooth ECG node was proposed
in this study. The node was optimized for hardware, sleep/
wake-up strategy, and CS compression and achieved good
performance in energy saving. The proposed node reduces
77.37% radio energy consumption under compressed half
of the data. The SBM-based compression algorithm is a low

1500

2000

La
y

am
pl

itu
de

PRD = 1.6956 PRD = 1.4261 PRD = 1.5571 PRD = 4.826PRD = 5.658

Original ECG
Recovered ECG

1500

2000

Si
t

am
pl

itu
de

PRD = 2.3321 PRD = 2.5389 PRD = 2.0245 PRD = 2.2822PRD = 2.3276

1500

2000

St
an

d
am

pl
itu

de

PRD = 2.0661 PRD = 2.8676 PRD = 3.3374 PRD = 3.698PRD = 3.2467

1500

2000

W
al

k
am

pl
itu

de

PRD = 1.3301 PRD = 1.286 PRD = 1.7903 PRD = 1.2504PRD = 1.303

121086420
Time (s)

Original ECG
Recovered ECG

121086420
Time (s)

Original ECG
Recovered ECG

121086420
Time (s)

Original ECG
Recovered ECG

121086420
Time (s)

Original ECG
Recovered ECG

121086420
Time (s)

1500

2000

Ru
n

am
pl

itu
de

PRD = 2.873 PRD =2.9615 PRD = 2.8387 PRD = 1.8799PRD = 2.6148

Figure 7: The visual inspection results. The recovery algorithm and sparse bases are BSBL and DCT, respectively: N = 512, M = 256, and
K = 4; Pan-Tompkins method [30] was used for R-peak detection in the recovery signals. The red dotted lines are the segmented
indicators of every frame, and the signal quality of each recovered frame was evaluated by PRD.

8 Journal of Healthcare Engineering



computational complexity and nonadaptive, and the energy
consumption of CS code execution is negligible. The recov-
ered signals are essentially undistorted. Thus, it can be con-
cluded that the proposed node can reduce the energy

requirement in transmittingECGdata and retaining the infor-
mation content for diagnosis. The comparison with other
ECG node shows that the advantages of the proposed node
include light, low-cost, single-spot, real-time and wireless.
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