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Abstract

Background: To accurately predict the movement of stock prices is always of both academic importance and practical
value. So far, a lot of research has been reported to help understand the behavior of stock prices. However, some of the
existing theories tend to render us the belief that the time series of stock prices are unpredictable on a long-term timescale.
The question arises whether the long-term predictability exists in stock price dynamics.

Methodology/Principal Findings: In this work, we analyze the price reversals in the US stock market and the Chinese stock
market on the basis of a renormalization method. The price reversals are divided into two types: retracements (the
downward trends after upward trends) and rebounds (the upward trends after downward trends), of which the intensities
are described by dimensionless quantities, Rt and Rb, respectively. We reveal that for both mature and emerging markets,
the distribution of either retracements Rt or rebounds Rb shows two characteristic values, 0.335 and 0.665, both of which
are robust over the long term.

Conclusions/Significance: The methodology presented here provides a way to quantify the stock price reversals. Our
findings strongly support the existence of the long-term predictability in stock price dynamics, and may offer a hint on how
to predict the long-term movement of stock prices.
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Introduction

Predicting the movement of stock prices has been regarded as

one of the most challenging topics for modern scientists and

economists. To understand the behavior of stock prices, a lot of

properties of real stock markets have been reported and classified

as so-called stylized facts [1,2], such as volatility properties [3–5],

correlation properties [5–9], scaling behavior [10], and fat tails in

the probability distributions of log-returns [11,12]. Also, numer-

ous methods have been introduced to predict the price

movement. Schoneburg (1990) analyzed the possibility of

predicting prices of German stocks based on neural network

approach [13]. Wang (2002) used fuzzy grey prediction system to

predict the stock prices in Taiwan stock market [14]. Mitter-

mayer (2004) showed that news textual analysis method can be

used to forecast stock price trends [15]. Pai and Lin (2005)

suggested a hybrid autoregressive integrated moving average

model and support vector machines model in stock price

forecasting [16]. It is worthy mentioned that, Kenett et al.

(2012) recently reported that the average market correlation

could be used as precursor to the changes in the stock market

index [17].

On the other hand, there are also several existing theories

which tend to render us the belief that the time series of stock

prices are almost unpredictable on a long-term timescale. The

efficient-market hypothesis developed by Fama (1970) believes

that financial markets are informationally efficient. Even in its

weak-form, the efficient-market hypothesis asserts that future

prices cannot be predicted by analyzing prices from the past and

thus no profitable information about future movement can be

obtained in stock price series [18–20]. In the fields of physics and

econophysics, the financial markets are sometimes considered as

chaotic systems, in which a long-term prediction is impossible

[21–24].

The question arises whether the long-term predictability exists

in the stock price dynamics. In this work, we investigate the price

reversals, the changes in the direction of price trends, in all 500

stocks of the S&P (Standard & Poor’s) 500 index. We divide the

price reversals into two basis types: retracements and rebounds,

which represent the downward trends after upward trends and the

upward trends after downward trends, respectively. On the basis

of a renormalization method, the intensities of retracements and

rebounds are described by dimensionless quantities, Rt and Rb,

respectively. We reveal a bimodal distribution of both Rt and Rb,

which indicates a long-term pattern in the stock price dynamics. In

addition, we randomly reshuffle the price time series to test the

robustness of the pattern. We also perform a parallel analysis in

the Chinese stock market and obtain the similar pattern. This

long-term pattern, which can be considered as one of the stylized

facts in both mature and emerging markets, strongly supports the

existence of the long-term predictability in the stock price

dynamics, and may offer a hint on how to predict the long-term

movement of stock prices.
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Methods

The direction of a price trend could be upward or downward.

An upward trend means a series of increasing prices, while a

downward trend means a series of decreasing prices. Naturally, the

trend reversals, the changes in the direction of price trends, can be

divided into two basis types: retracements (the downward trends

after upward trends) and rebounds (the upward trends after

downward trends). Here, both retracements and rebounds in

discrete time series of stock prices are analyzed on the basis of a

renormalization method.

Denote the price at time t as P(t), where t~1,2,3, � � �. Each P(t)
is defined to be a local minimum of Dt (Dt~1,2,3, � � �) if there is

no lower price in the time interval ½t{Dt,tzDt� [25,26]. In this

way, all the local minima of a given Dt can be determined for the

price time series [Fig. 1(a)]. These local minima are denoted by

Pmin(i), where i~1,2,3, � � �. The highest price between two

adjacent minima, Pmin(i) and Pmin(iz1), is represented by Ptop(i).

We introduce a renormalized retracement, Rt(i), to describe the

intensity of retracements as

Rt(i)~
Ptop(i){Pmin(iz1)

Ptop(i){Pmin(i)
: ð1Þ

Here, to investigate the retracements of main trends, we focus

on Pmin(i)vPmin(iz1)vPtop(i), thus yielding 0vRt(i)v1. Clearly,

a larger Rt(i) corresponds to a stronger retracement.

Analogously, to analyze the intensity of rebounds, each price

P(t) is defined to be a local maximum of Dt if there is no higher

price in the time interval ½t{Dt,tzDt� [25,26]. We determine the

local maxima of Dt for the price time series [Fig. 1(b)], which are

denoted by Pmax(i). The lowest price between two adjacent

maxima, Pmax(i) and Pmax(iz1), is denoted by Pbottom(i). Then, the

intensity of rebounds can also be described by a renormalized

rebound, Rb(i), namely,

Rb(i)~
Pmax(iz1){Pbottom(i)

Pmax(i){Pbottom(i)
: ð2Þ

Similarly, we focus on Pbottom(i)vPmax(iz1)vPmax(i), thus yielding

0vRb(i)v1. Here, a larger Rb(i) corresponds to a stronger

rebound.

Results

To investigate the stock prices in the US stock market, we

analyze the time series of daily closing prices of all 500 stocks of the

S&P 500 index. Totally, the time series comprise 2,768,341 closing

prices which have been adjusted for dividends and splits. The

oldest closing prices date back to January 2, 1962. The latest

closing prices were recorded on April 24, 2012. It is noted that the

lengths of price time series are different for different stocks in the

analyzed database (see Table 1). The longest price series, IBM

(International Business Machines Corporation), were recorded

from January 2, 1962 to April 24, 2012, which contains roughly

12,000 prices. The shortest price series, NSM (Nationstar

Mortgage), were recorded from March 8, 2012 to April 24,

2012, which contains only 33 prices.

In Fig. 2(a,c), the overall probability density functions (PDFs) of

renormalized retracements and renormalized rebounds are

calculated over Dt from 1 day to 100 days and over all trend

reversals in the price series of all 500 stocks. Each of them shows a

bimodal distribution with symmetrical peaks located at two

characteristic values of Rt (or Rb) = 0.335 and Rt (or Rb) = 0.665.

These two peaks indicate that the probabilities of Rt (or

Rb) = 0.335 or Rt (or Rb) = 0.665 are significantly higher than

those of other values, suggesting a long-term pattern in the stock

price reversals.

The colored PDF profiles are displayed in Fig. 2(b,d) where the

color represents the probability density of retracements or

rebounds for each given Dt. Two ridges located at Rt (or

Rb) = 0.335 and Rt (or Rb) = 0.665 can be clearly found. Evidently,

these two ridges mainly contribute to the two peaks in Fig. 2(a,c).

As shown in Fig. 2(b,d), the ridges are sharper in the region of

smaller Dt, indicating this pattern in stock price dynamics

attenuates as time span increases. This result is consistent with

the common view that it is much harder to predict the stock prices

on a longer time scale. It is noted that, in spite of their attenuation,

the ridges can still be found on a rather long-term time scale. The

ridge of Rt (or Rb) = 0.335 stretches from Dt~1 day to Dt~10
days. The ridge of Rt (or Rb) = 0.665 stretches from Dt~1 day to

Dt~30 days.

To show the robustness of the pattern, we randomly reshuffle

the price time series. Firstly, a log-return series is calculated from

the original concrete time series of stock prices, P(t), according to

r(t)~ ln
P(tz1)

P(t)
: ð3Þ

Then we randomly reshuffle the log-return series. The reshuffled

log-return series is denoted as r’(t). The new price time series is

reproduced from the reshuffled log-return series according to
Figure 1. (Color online) Schematic graphs of (a) a retracement
and (b) a rebound in a time series of stock prices. Here Dt~3 is
taken as an example.
doi:10.1371/journal.pone.0051666.g001
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P’(t)~P’(1)e
Pt{1

i~1
r’ ið Þ, ð4Þ

with P’(1)~P(1). As shown in Fig. 2(a,c), the reshuffling yields the

disappearance of the two peaks. Thus, the long-term pattern we

have found is a consequence of price time series in the US stock

market. It should be noted that, only one reshuffled PDF curve is

shown in Fig. 2(a,c). The reason why we focus on one reshuffled

PDF curve is two-folded. First, during the reshuffling process, all

the price time series of 500 stocks of the S&P 500 index have been

independently reshuffled, which means 500 independent reshuffles

have been completed during one reshuffling process. Second, the

overall PDF in Fig. 2(a,c) is calculated over Dt from 1 day to

Table 1. Samples of the analyzed database of the S&P 500 stocks.

Stock code Corporation Beginning date End date Number of days

IBM IBM Corporation January 2, 1962 April 24, 2012 12,666

YHOO Yahoo! Inc. Apirl 12, 1996 April 24, 2012 4,037

NDAQ Nasdaq OMX Group Inc. July 2, 2002 April 24, 2012 2,472

NSM Nationstar Mortgage March 8, 2012 April 24, 2012 33

doi:10.1371/journal.pone.0051666.t001

Figure 2. (Color online) PDF of (a,b) renormalized retracements and (c,d) renormalized rebounds of stock prices. (a,c) Overall PDF
calculated over Dt from 1 day to 100 days and over all trend reversals in the price series of all 500 stocks of the S&P 500 index. Each of them shows a
bimodal distribution with two peaks located at two characteristic values of Rt (or Rb) = 0.335 and Rt (or Rb) = 0.665, which are symmetrical with
respect to Rt (or Rb) = 0.500. Also shown are the results obtained from randomly reshuffled price series. (b,d) The colored PDF profiles. The color
represents the probability density for each given Dt. Ridges can be found at Rt (or Rb) = 0.335 and Rt (or Rb) = 0.665. The ridge of Rt (or Rb) = 0.335
stretches from Dt~1 day to Dt&10 days. The ridge of Rt (or Rb) = 0.665 stretches from Dt~1 day to Dt&30 days.
doi:10.1371/journal.pone.0051666.g002
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100 days and over all trend reversals in the price series of all 500

stocks of the S&P 500 index, and thus the overall PDF itself is a

kind of statistical average.

We also perform a parallel analysis in the Chinese stock market,

which is known as an emerging market. The database contains the

daily closing prices of all 300 stocks of the Shanghai Shenzhen CSI

(China Securities Index) 300 index from Jan 29, 1991 to May 7,

2012 (see Table 2). Similarly, Fig. 3(a,c) shows bimodal

distributions of reversals in the Chinese stock market. Also, the

peaks located at Rt (or Rb) = 0.335 and Rt (or Rb) = 0.665 can be

found in the PDFs of renormalized retracements and renormalized

rebounds. It should be noted that, because of the data limitation, a

small range of Dt from 1 day to 20 days is taken during the

analysis of the Chinese stock market. Consequently, the peaks

located at Rt (or Rb) = 0.335 and Rt (or Rb) = 0.665 in Fig. 3(a,c) are

not so sharp as those in Fig. 2(a,c). However, comparing with the

PDF curves of reshuffled price series in Fig. 3(a,c), these two

characteristic values can still be clearly obtained. Thus we suggest

that the bimodal distribution of reversals is a universal pattern in

both mature and emerging stock markets.

Discussion

This long-term pattern can be considered as one of the stylized

facts in both mature and emerging stock markets. The reason for

the emergence of the long-term pattern remains unknown.

However, we suggest that this phenomenon should be due to

the collective behavior of all traders in the stock markets. We also

believe that agent-based modeling may have the merit to offer

detailed insights into this exotic pattern [27–30]. This might serve

as a future agenda of our research.

Furthermore, the result can be considered as a quantitative

verifying of the empirical rules of so-called Fibonacci levels in stock

markets [31,32]. The technical traders, who use the Fibonacci

levels in stock and future markets, believe that the intensity of a

retracement (rebound) tend to be 0.382 or 0.618 times the

intensity of the previous upward trend (downward trend).

However, the existence of Fibonacci levels in real market has

not been well verified. Here, we conclude that the specific levels do

exist in the stock price reversals, although they are not exactly

equal to the Fibonacci levels.

In summary, we have analyzed the reversals of daily stock prices

in the US stock market and the Chinese stock market, and

revealed that the distribution of either retracements or rebounds

Figure 3. (Color online) The same as Fig.2, but for the Chinese stock market. (a,c) Overall PDF calculated over Dt from 1 day to 20 days and
over all trend reversals in the price series of all 300 stocks of the Shanghai Shenzhen CSI 300 index. Peaks can also be found at Rt (or Rb) = 0.335 and Rt

(or Rb) = 0.665. (b,d) The colored PDF profiles. Ridges can also be found at Rt (or Rb) = 0.335 and Rt (or Rb) = 0.665.
doi:10.1371/journal.pone.0051666.g003
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shows two symmetrical characteristic values, both of which are

robust over long term. The peaks in the distributions of Rt and Rb

indicate that the probabilities of Rt (or Rb) = 0.335 or Rt (or

Rb) = 0.665 are significantly higher than those of other values,

suggesting a long-term predictability in the stock price reversals.

We also find that the ridges attenuate as time span increases,

which is consistent with the common view that it is much harder to

predict the stock prices on a longer time scale. Our findings

suggest a long-term pattern, which strongly support the existence

of the long-term predictability in the stock price dynamics and

might offer a hint on the long-term prediction of stock prices. The

methodology presented in this work also provides a way to

quantify the price reversals in stock price dynamics.
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