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Abstract

Multiple osteochondromas (MO) is an inherited skeletal disorder, and the molecular mechanism of MO remains elusive.
Exome sequencing has high chromosomal coverage and accuracy, and has recently been successfully used to identify
pathogenic gene mutations. In this study, exome sequencing followed by Sanger sequencing validation was first used to
screen gene mutations in two representative MO patients from a Chinese family. After filtering the data from the 1000
Genome Project and the dbSNP database (build 132), the detected candidate gene mutations were further validated via
Sanger sequencing of four other members of the same MO family and 200 unrelated healthy subjects. Immunohisto-
chemisty and multiple sequence alignment were performed to evaluate the importance of the identified causal mutation. A
novel frameshift mutation, c.1457insG at codon 486 of exon 6 of EXT1 gene, was identified, which truncated the
glycosyltransferase domain of EXT1 gene. Multiple sequence alignment showed that codon 486 of EXT1 gene was highly
conserved across various vertebrates. Immunohistochemisty demonstrated that the chondrocytes with functional EXT1 in
MO were less than those in extragenetic solitary chondromas. The novel c.1457insG deleterious mutation of EXT1 gene
reported in this study expands the causal mutation spectrum of MO, and may be helpful for prenatal genetic screening and
early diagnosis of MO.
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Introduction

Multiple osteochondromas (MO, OMIM 133700) is an

autosomal dominant inherited disease, and is characterized by

multiple cartilage-capped benign tumors, short stature and other

skeletal disorders that are caused by mechanical compression of

adjacent vessels and nerves [1]. MO usually occurs during

childhood and gradually increases in sizes and numbers until the

end of puberty. The estimated prevalence of MO ranges from 1/

100 in a small Guam population to 1/50,000 in Western

populations [2,3]. Some cases of MO will transform into

malignant osteosarcoma or chondrosarcoma [3,4].

Because the molecular mechanism of MO remains elusive, the

only effective treatment is surgical resection of continuously

emerging chondromas. Identifying causal gene mutations will

advance prenatal genetic screening as well as early diagnosis and

treatment of MO [5]. MO is genetically heterogeneous and two

causal genes have already been identified in previous studies,

including EXT1 located on chromosome 8q24.1 [6,7] and EXT2

located on chromosome 11p11 [8,9]. EXT1 and EXT2 belong to

the putative tumor-suppressor EXT gene family, which also

contains three homologous EXT-like genes, including EXTL1,

EXTL2 and EXTL3. It has been suggested that MO is caused in

large part by EXT1 mutations [10,11,12]. The MO caused by

EXT1 gene mutations presents a greater risk for malignant

transformation than the MO caused by EXT2 gene mutations

[13,14]. No linkage evidence has been reported for EXT-like

genes.

With the rapid development of DNA sequencing technology,

whole exome sequencing is available now. Recent studies have

demonstrated the power of exome sequencing for gene mapping of

diseases [15,16,17,18]. Exome sequencing should be unbiased and

can help to identify novel causal genetic variants, since it does not

focus on specific chromosomal regions or genes reported by

previous linkage and association studies.

In this study, exome sequencing followed by Sanger sequencing

validation, was first used to screen gene mutations in two

representative MO patients from a Chinese family. After filtering
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the data from the 1000 Genome Project and the dbSNP database

(build 132), the detected candidate gene mutations were further

validated by Sanger sequencing of four other members of the same

family and 200 unrelated healthy subjects. Immunohistochemisty

and multiple sequence alignment were also conducted to evaluate

the importance of the identified causal gene mutation.

Results

The chondroma sections, stained by HE, SO and TB, are

presented in Fig. 1d–f. The representative tissue structure of MO

was observed with a cartilage cap, covered by fibrous perichon-

drium, and merged into underlying spongy bone.

On average, exome sequencing generated 7.49 Gb sequence

data per sample as 90-bp paired-end reads. After quality control,

92.6% of sequence data was aligned to the UCSC human

reference genome (version hg19, build 37.1) and 64.9% of

sequence data was mapped to target regions. We achieved an

average coverage of 88X and 96% of targeted regions were read

more than 10 times, which ensured to detect genetic variants with

high sensitivity and specificity. On average, exome sequencing

initially identified 104,573 SNPs and 7,335 indels per subject.

After removing the common SNPs reported in the dbSNP (build

132) and the 1000 Genome project data, 2,320 SNPs were

retained. These variants were further filtered using following

criteria: 1) the variants were nonsynonymous and deleterious (as

predicted by SIFT software); 2) the variants were shared by all

affected family members that underwent exome sequencing. A

total of 73 SNPs and 18 indels were retained as candidate causal

mutations and were further analyzed.

The 73 SNPs and 18 indels identified by exome sequencing

were further validated by Sanger sequencing of 6 MO family

members (including the two MO patients that underwent exome

sequencing) and 200 healthy subjects. Only the EXT1 gene

mutation, c.1457insG, was detected in all 3 affected family

members, but not in the 3 unaffected family members (Fig. 2a) and

the 200 healthy subjects. EXT1 consists of 11 exons, encoding 746

amino acids (Fig. 2b). The mutation, c.1457insG, occurred at

codon 486 of exon 6, causing a frameshift mutation in the

glycosyltransferase domain of EXT1 gene and creating a

premature stop codon at amino acid position 520 (Fig. 2c). Codon

486 of EXT1 gene is highly conserved across various vertebrate

species (Fig. 2d), indicating its functional importance.

To assess the functional impact of c.1457insG on EXT1

protein, immunohistochemistry was used to compare EXT1

protein level between a patient with MO and a patient with

extragenetic solitary chondromas. In extragenetic solitary chon-

dromas, EXT1 protein was enriched in the cytoplasm of

chondrocytes (Fig. 3b). Comparing with extragenetic solitary

chondroma, the chondrocytes with functional EXT1 in MO were

less than those in extragenetic solitary chondroma (Fig. 3a).

Discussion

We identified a novel frameshift mutation, c.1457insG in exon 6

of EXT1 gene in this study. The c.1457insG mutation was shared

by 3 affected family members, but not by 3 unaffected family

members and 200 unrelated healthy subjects. The results of

immunohistochemisty and multiple sequence alignment supported

the deleterious impact of the c.1457insG mutation on EXT1 gene.

According to the Multiple Osteochondromas Mutation Database

(http://medgen.ua.ac.be/LOVDv.2.0/home.php), more than 400

EXT1 gene mutations have been reported by previous studies. Our

results demonstrate the causal role of the c.1457insG mutation and

expand the causal mutation spectrum of MO.

The molecular mechanism of MO remains elusive. EXT1 gene

encodes endoplasmic reticulum-resident type II transmembrane

glycosyltransferase, which can catalyze the polymerization of

heparan sulfate chains at endoplasmic reticulum and Golgi

apparatus [19,20]. Heparan sulfate is an essential regulator of

signal transduction during chondrocyte differentiation, ossification

and apoptosis [21,22], such as the diffusion of the Hedgehog

protein, and ligand-receptor binding of fibroblast growth factor

and bone matrix protein during endochondral ossification

[23,24,25]. Previous studies suggested that dysfunction of heparan

sulfate synthesis would disrupt the Hedgehog, Wingless and

Decapentaplegic signaling pathways, and accelerate chondrocyte

differentiation [25,26,27].

The c.1457insG mutation occurred at the glycosyltransferase

domain of EXT1 gene, which played an important role in the

biosynthesis of heparan sulfate [22,28]. The c.1457insG mutation

caused a frameshift at codon 486 and created a premature stop

codon at codon 520, which truncated the glycosyltransferase

domain of EXT1 gene. This hypothesis was supported by

immunohistochemistry experiment, which observed that the

chondrocytes with functional EXT1 in MO were less than those

in extragenetic solitary chondroma. This result is consistent with

that of a previous study, in which reduced EXT1 protein was

Figure 1. Pedigree structure and characteristic of the MO
proband. (a) Pedigree structure of the MO family; (b,c) computed
radiography and 3D reconstruction images of knees of the MO
proband. The proband exhibits multiple exostoses, arising from the
lateral ends of femurs, tibiae and fibulae. Arrowhead denotes the
chondroma used for histochemistry staining; (d–f) low-power micro-
graph (46) of the proband’s chondroma sections stained by
hematoxylin-eosin (d), Safranin O (e) and Toluidine Blue (f). The
cartilage cap of MO is covered by fibrous perichondrium and merges
into the underlying spongy bone.
doi:10.1371/journal.pone.0072316.g001
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observed in MO-derived chondrocytes [29]. One explanation for

the reduced EXT1 protein could be nonsense-mediated decay.

Even if mutated EXT1 gene was translated, the products may be

unable to correctly fold and would rapidly degrade [29,30].

Further studies are necessary to clarify whether the c.1457insG

mutation leads to nonsense-mediated decay or unstable EXT1

protein.

Based on the results of previous and our studies, we may infer

that the MO caused by the c.1457insG mutation was attributed to

the functional loss of the glycosyltransferase domain of EXT1,

which resulted in dysfunction of heparan sulfate biosynthesis [31]

and signal transduction. Consequently, chondrocyte proliferation

and differentiation are not strictly regulated, leading to the

development of MO. Further studies may be necessary to clarify

the molecular mechanism of glycosyltransferase domain of EXT1

gene involved in the development of MO.

In conclusion, we report a novel deleterious frameshift

mutation, c.1457insG, in the glycosyltransferase functional

domain of EXT1 gene. The role of the c.1457insG mutation in

the development of MO was supported by exome sequencing,

Sanger sequencing validation and immunohistochemisty. Our

results may be helpful for prenatal genetic screening and early

diagnosis of MO.

Materials and Methods

Human Subjects
A Han Chinese MO family was investigated in this study

(Fig. 1a). The proband (MO1) was a 16-year-old girl suffering from

multiple exostoses involving humerus, femur, tibia and fibula

(Fig. 1b–c). A group of 200 unrelated healthy subjects, matched for

geographical ancestry, were included as controls. Clinical data of

each subject was recorded by nurse-administered questionnaires.

Each participant underwent careful clinical and computed

radiography examination of long bones, truncal and acral joints

by two or more experienced orthopedic experts. MO was

diagnosed as multiple exostoses, arising from the lateral ends of

humerus, ulna, femur, tibiae, fibulae or knee joints. 5 ml EDTA

anticoagulated peripheral blood was drawn from 6 family

members (Table 1) and from the 200 healthy subjects. Intact

chondroma tissues were derived from MO1 and from a patient

with extragenetic solitary chondroma (male, aged 3 years) via

surgical resection. The collected chondroma tissues were imme-

diately stored in 4% paraformaldehyde solution. This study was

approved by the Institutional Review Board (IRB) of Xi’an

Jiaotong University. All study subjects or their respective guardians

gave their informed written consent by signing a document that

had been carefully reviewed by the IRB of Xi’an Jiaotong

University.

Figure 2. Identification of a frameshift mutation in codon 486
of EXT1 gene. (a) Sanger sequencing detected the inserted base in the
EXT1 gene of all affected subjects. Red arrowhead denotes the mutation
position; (b) intron-exon structure of EXT1 gene. Mutated exon is
indicated by red arrowhead; (c) comparison of the functional domains
of EXT1 proteins encoded by mutated and normal EXT1 genes; (d)
multiple sequence alignment of codon 485 to codon 487. Codon 486 is
highly conserved across various vertebrates.
doi:10.1371/journal.pone.0072316.g002

Figure 3. Immunohistochemisty screening of chondrocytes
with functional EXT1 in the superficial layers of cartilage caps
of MO(a) and extragenetic solitary chondroma(b) (406). The
chondrocytes with functional EXT1 in MO are less than those in
extragenetic solitary chondroma.
doi:10.1371/journal.pone.0072316.g003

Table 1. Characteristics of study subjects in MO family.

Age(years) Sex MO

MO1 16 Female Affected

MO2 37 Female Affected

MO3 38 Male Unaffected

MO4 17 Male Affected

MO5 20 Male Unaffected

MO6 41 Female Unaffected

doi:10.1371/journal.pone.0072316.t001
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Exome Sequencing
Genomic DNA was extracted from 5 ml peripheral blood, using

E.Z.N.A Blood DNA Midi Kit (Omega Bio-tek, Norcross, USA),

according to the manufacturer’s protocol. For exome sequencing,

15 mg of extracted DNA was randomly sheared into 250–300 bp

fragment libraries by sonication. The purified DNA fragment

libraries were captured by NimbleGen 2.1 M capture array

(Roche NimbleGen, Madison, USA), followed by 90 bp paired-

end sequencing on a Hiseq2000 platform (Illumina, San Diego,

USA), according to the manufacturer’s protocol.

Read Mapping and Variant Analysis
The raw image files of exome sequencing were processed using

Illumina Pipeline software (version 1.7) for base calling. The

sequences of each subject were generated as 90 bp pair-end reads.

SOAPaligner software (http://soap.genomics.org.cn/index.html)

was used to align clean reads to the UCSC human reference

genome (version hg19, build 37.1, http://genome.ucsc.edu/).

Based on SOAPaligner alignment results, SOAPsnp software

(http://soap.genomics.org.cn/index.html) was used for SNP

calling. BWA software (http://bio-bwa.sourceforge.net/) was used

to identify insertions and deletions (indels) in targeted regions by

aligning sequencing reads to the UCSC human reference genome.

Low-quality SNP calls and indels were filtered out using the

following criteria described previously [32]: 1)consensus quality

score $20; 2) sequencing depth $4 and #500; 3) copy number

#2; 4) distance between two adjacent SNPs $5 bp. Given that

common genetic variations were unlikely to be the causal

mutations of MO, all identified SNPs and indels were further

filtered against the exome data of 30 Chinese Han individuals

from the 1000 Genome Project (ftp://www.1000genome.org) and

Chinese Han SNP data available in the dbSNP database (http://

www.ncbi.nlm.nih.gov/project/SNP/, build 132). SIFT software

(version 4.0, http://sift.jcvi.org/) was used to evaluate the impact

of amino acid substitution on protein function and synonymous

mutations were removed. Missense mutations and frame-shifting

indels that were shared by the two affected family members

undergoing exome sequencing, were retained as candidate causal

mutations for following study.

Sanger Sequencing
Sanger sequencing validation was performed in all 6 MO family

members (MO1-6) to determine whether the candidate mutations,

identified by exome sequencing, co-segregated with MO in the

MO family. The population frequencies of the candidate

mutations co-segregated with MO were further estimated by

Sanger sequencing of 200 unrelated controls with matched

geographical ancestry. Sanger sequencing was performed using

the standard protocol. Primers used for Sanger sequencing were

designed with Primer3 software (http://frodo.wi.mit.edu/).

Histochemistry and Immunohistochemisty
The paraformaldehyde-fixed chondroma tissues from the MO

patient and the extragenetic solitary chondroma patient were

rinsed with phosphate buffered saline (PBS), decalcified and

embedded in paraffin. Paraffin-embedded chondroma tissues were

sectioned (5,8 mm thick), and placed on glass slides. For

histochemistry, the tissue slides of MO were dewaxed in xylene,

hydrated with graded ethanol, and stained by hematoxylin-eosin

(HE), Safranin O (SO) and Toluidine Blue (TB), respectively.

For immunohistochemisty, the dewaxed and hydrated chon-

droma sections of MO and extragenetic solitary chondroma, were

treated with 3% hydrogen peroxide solution for 10 min, rinsed

with PBS, and incubated with rabbit polyclonal anti-EXT1

antibody (1:50 working dilution, abcam plc, MA, UK) at 4uC
overnight. The chondroma sections were then incubated with

secondary antibody (ZHONGSHAN golden bridge biotechnolo-

gy, China) at 37uC for 15 min, exposed to Streptavidin-

Horseradish Peroxidase at 37uC for 15 min, and stained with

DAB substrate kit (Vector Laboratories, Burlingame, CA) and

Meyer hematoxylin.
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