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Identifying community structure is a fundamental problem in network analysis. Most community
detection algorithms are based on optimizing a combinatorial parameter, for example modularity. This
optimization is generally NP-hard, thus merely changing the vertex order can alter their assignments to the
community. However, there has been less study on how vertex ordering influences the results of the
community detection algorithms. Here we identify and study the properties of invariant groups of vertices
(constant communities) whose assignment to communities are, quite remarkably, not affected by vertex
ordering. The percentage of constant communities can vary across different applications and based on
empirical results we propose metrics to evaluate these communities. Using constant communities as a
pre-processing step, one can significantly reduce the variation of the results. Finally, we present a case study
on phoneme network and illustrate that constant communities, quite strikingly, form the core functional
units of the larger communities.

fundamental problem in understanding the behavior of complex networks is the ability to correctly detect

communities. Communities are groups of entities (represented as vertices) that are more connected to

each other as opposed to other entities in the system. Mathematically, this question can be translated to a
combinatorial optimization problem with the goal of optimizing a given metric of interrelation, such as mod-
ularity or conductance. The goodness of community detection algorithms (see" for a review) is often objectively
measured according to how well they achieve the optimization.

However, these algorithms can be applied to any network, regardless of whether it possesses a community
structure or not. Furthermore when the optimization problem is NP-hard, as in the case of modularity?, the order
in which vertices are processed as well as the heuristics can change the results. These inherent fluctuations of the
results associated with modularity have long been a source of concern among researchers. Indeed the goodness of
modularity as an indicator of community structure has also been questioned, and there exist examples® which
demonstrate that high modularity does not always indicate the correct community structure. Other orthogonal
graph-theoretic metrics (e.g., conductance® which is also NP-complete*) have been proposed in the past litera-
tures to judge the goodness of a community detection algorithm.

Research in addressing the fluctuations in the results due to modularity maximization heuristics include
identifying stability among communities from the consensus networks built from the successive iterations of
a non-deterministic community detection algorithm (such as by Seifi et al.”). Lancichinetti et al.* proposed
consensus clustering by reweighting the edges based on how many times the pair of vertices were allocated to
the same community, for different identification methods. Delvenne et al.’ introduced the notion of the
stability of a partition, a measure of its quality as a community structure based on the clustered auto-
covariance of a dynamic Markov process taking place on the network. Delmotte et al.*’ proposed a meth-
odology based on multi-scale graph partitioning that can uncover partitions and levels of organization of
proteins that span the whole range of scales, revealing biological features occurring at different levels of
organization and tracking their effect across scales. They also proposed a measure of robustness to quantify
the relevance of the partitions. Lai et al.'® proposed a random walk based approach to enhance the mod-
ularity of a community detection algorithm. Ovelgonne et al."' pointed out an ensemble learning strategy for
graph clustering. Gfeller et al."* investigated the instabilities in the community structure of complex net-
works. Finally, several pre-processing techniques''* have been developed to improve the quality of the
solution. These methods form an initial estimate of the community allocation over a small percentage of
the vertices and then refine this estimate over successive steps.

All these methods focus on compiling the differences in the results to arrive at an acceptable solution, and
despite these advances a crucial question about the variance of results remains unanswered - what do the
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Figure 1| Schematic illustration of the formation of constant communities. Two colors (red and green) indicate two communities of the network
formed in each iteration. Combined results of two algorithms produce two constant communities (rectangular and circular vertices). Remaining one
vertex (hexagonal shaped) is not included since it switches its community between the two algorithms.

invariance of the results tell us about the network structure? In this
paper, we focus on the invariance in community detection as
obtained by modularity maximization. Our results, on a set of
scale-free networks, show that while the vertex orderings produce
very different sets of communities, some groups of vertices are always
allocated to the same community for all different orderings. We
define the group of vertices that remain invariant as constant com-
munities and the vertices that are part of the constant communities as
constant vertices. Figure 1 shows a schematic diagram of constant
communities. Note that not all vertices in the network belong to
constant communities. This is a key difference of constant com-
munities with the consensus methods® described earlier. Con-
sensus methods attempt to find the best (most stable or most similar)
community among all available results and thus include all the ver-
tices. Constant communities, on the other hand, focus on finding
subgraphs where the cohesive groups can be unambiguously iden-
tified. As discussed earlier, communities obtained by modularity
maximization may include vertices that can move from one group
to another depending on the heuristic or the vertex ordering. The
vertex groups obtained using constant communities are invariant
under these algorithmic parameters and, thereby, provide a lower
bound on the number of uniquely identifiable communities in the
network. Although trivially each vertex can be considered to be a
constant community by itself, our goal is to identify the largest
number of vertices (i.e., at least three or more) that can be included
in an invariant group.

The presence of such invariant structures can be used to evaluate
the accuracy of the communities when other independent methods
of verifications are unavailable. However in many networks, constant
communities constitute only a small percentage of the total number
of vertices. To understand how other non-constant vertices are allo-
cated to communities, we show that by using constant communities
we can significantly reduce the variations in results. Thus, building
from the more accurate results reduces the variance over the larger
network. In brief our main contributions are as follows:

¢ demonstrate the possibility of extreme variance in community
structure due to vertex perturbations

e develop metrics to determine whether a network possess invari-
ant groups of constant communities

e demonstrate how using constant communities as a pre-proces-
sing step can reduce the variance in modularity maximization
methods.

Results

Experimental setup. In this section, we first demonstrate that even
for the same optimization objective (in this case maximizing
modularity) and the same heuristic, the inherent non-determinism
of the method can significantly change the results. Based on our
results, we define metrics to estimate the propensity of a network
to form communities. Finally, we show how combining constant
communities as a pre-processing step can help improve the
modularity of the community detection algorithm for the network
as a whole.

We selected two popular agglomerative modularity maximization
techniques - the method proposed by Clauset et al.'*> (henceforth
referred to as the CNM method) and the method proposed by
Blondel et al.’® (henceforth referred to as Louvain method). Both
these methods initially start by assigning one vertex per community.
Then at each iterative step, two communities whose combination
most increases the value of modularity are joined. This process of
joining community pairs is continued until the value of modularity
no longer increases. The Louvain method generally produces a
higher value of modularity than CNM, because it allows vertices to
migrate across communities if that leads to a more optimum value.

In order to identify these communities, for each network in the test
suite, we applied the CNM (and Louvain) method over different
permutations of the vertices and then isolated the common groups
that were preserved across the different orderings (see Methods sec-
tion). These common groups of vertices were marked as the constant
communities for the respective network.

We identified constant communities using both the CNM and
Louvain algorithms. We observed based on the high (>0.80)
Normalized Mutual Information (NMI)*” (see the supplementary
information for the definition of NMI) values that the overlap
between the constant communities obtained from the two methods
is considerable®®* (see Table III in the supplementary information).
We have further detected the constant communities using another
very popular non-deterministic community finding algorithm called
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Infomap™® which is not an agglomerative method but tries to min-
imize the minimum description length of the bit sequence generated
by a random walk. We similarly observed the high overlap between
the constant communities obtained from Louvain and Infomap (see
Table III in the supplementary information). Therefore, in the inter-
est of space and clarity we confine our discussion about the prop-
erties of constant communities to those obtained from the Louvain
method.

Degree preserving order. Ideally, the total number of different
orderings to be tested should be equal to the factorial of the
number of vertices in the network. However, even for the smallest
network in our set (Chesapeake with 39 vertices) this value is
astronomical. We therefore restrict our permutations to maintain a
degree-preserving order. The vertices are ordered such that if degree
of v; is greater than the degree of v}, then v; is processed prior to v;.
In addition, to reducing the number of vertex permutation,
degree-preserving permutation also has another important advant-
age. Recall that the networks in the test suite have few vertices with
high degrees and a lot with low degrees. Therefore, arranging the
high degree vertices earlier pushes most of the fluctuations towards
the later part of the agglomeration process. This ensures that the sub-
communities formed initially are relatively constant and only later do
the divergence in community memberships take place. Clearly, such
orderings based on decreasing degrees are geared towards facilitating
low variance in communities. If even this ordering does not produce
constant structures, it makes a very strong case about the inherent
fluctuations that underlie modularity maximization methods.

Test suites. Our experiments were conducted on networks obtained
from real-world data as well as on a set of synthetically generated
networks using the LFR model"”. The set of real-world networks is
obtained from the instances available at the 10th DIMACS challenge
website'®. The networks, which are undirected and unweighted,
include - Jazz (network of jazz musicians; |V| = 198, |E| =
2742)", Polbooks (network of books on USA politics; |V| = 105,
|[E| = 441)*, Chesapeake (Chesapeake bay mesohaline network;
|V| = 39, |E| = 340)*, Dolphin (Dolphin social network; |V| = 62,
|E| = 159)%, Football (American college football; |V| = 115, |E| =
1226)*, Celegans (Metabolic network of C. elegans; | V| = 453, |E| =
2025)*, Power (topology of the Western States Power Grid of the
USA; |V| = 4941, |E| = 6594)* and Email (e-mail interchanges

between members of the Univeristy Rovira i Virgili; |V] = 1133,
|E| = 5451)*° (note that | V] refers to the number of vertices and
|E| refers to the number of edges). All these networks exhibit
scale-free degree distribution (see Figure S1 in the supplementary
information).

Networks generated using the LFR model are associated with a
mixing parameter u that represents the ratio of the external connec-
tions of a node to its total degree. We created LFR networks based on
the following parameters®: number of nodes = 500, average degree =
20, maximum degree = 50, minimum community size = 10, max-
imum community size = 50, degree exponent for power law = 2,
community size exponent = 3. We varied the value of x from 0.05-
0.90. Low values of u correspond to well-separated communities that
are easy to detect and consequently these networks contain larger
percentage of constant communities. As y increases, communities
get more ambiguous and community detection algorithms provide
more varied results leading to fewer vertices being in significantly
sized constant communities.

Sensitivity of community structure to vertex perturbations. In
our first experiment we study how the community structures of
the networks change under vertex perturbations. Since constant
communities are the groups of vertices that remain invariant, we
measure the change in community structure based on the number
of constant communities. We define sensitivity (¢) as the ratio of the
number of constant communities to the total number of vertices. If ¢
is 1 then each vertex by itself is a constant community (the trivial
case), thus there is no consensus at all over the set of communities
obtained over different permutations. The higher the sensitivity
metric, the fewer the vertices in each constant community and,
therefore, this metric is useful for identifying networks that do not
have a good community structure under modularity maximization.

The sensitivity of each network is given in Figure 2. The x-axis
indicates the number of different permutations of the vertices and the
y-axis plots the value of the sensitivity. We observe that for most of
the networks the number of constant communities become stable
within the first 100 permutations, and the sensitivity values are low.
This indicates that there can potentially exist very strong groups in
these networks that have to be together to achieve high modularity.
However, for networks such as Power grid and Email, the number of
constant communities kept increasing until the values of ¢ were close
to 1. Thus, the community detection results for these two networks
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Figure 2 | Sensitivity of each network across 5000 permutations. X-axis indicates the number of permutations. The x-axis is rescaled by a constant factor
of 100 for better visualization. Y-axis indicates the value of sensitivity as it changes over the permutations. Power and Email networks have very high
sensitivity values indicating that they possibly do not have a tightly knit community structure.
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Figure 3 | Comparison between the relative size and strength of the constant communities. X-axis plots the relative size in percentage. Y-axis (in
logarithmic scale) plots the strength. Jazz, Dolphin, Polbooks and Chesapeake show strong constant community structure. But Email and Power hardly
have any constant communities. The plot is vertically divided at x = 17 that could help systematically analyze the distribution of the points.

are extremely sensitive to the vertex perturbations. This implies that
the communities (if any) in these two networks are not tightly knit
i.e., very “amorphous”.

Percentage of constant communities. We now investigate, in
further detail, the properties of constant communities. We define
the relative size (£) of a constant community as the ratio of the
number of vertices in that constant community to the total
number of vertices in the network and the strength (©) as the ratio
of the edges internal to the constant community to the edges external
to the constant community.

Figure 3 plots the relative size (in percentage) of the constant
communities with respect to their strength. If the strength of a con-
stant community is above 1 (above 0 in log scale) then the number of
internal edges in the community is larger than the number of external
edges. The higher the value, the more tightly connected is the com-
munity. We see that the value of relative size ranges from 0-34, with a
larger cluster of values around 0-5. This shows that most of the
constant communities contain very few vertices with respect to the
network size. If the relative size of the constant communities is low
then the remaining vertices have more freedom in migrating across
communities, making the community structure weaker. We observe
that, despite there being more constant communities of low relative
size, there are some networks that have multiple constant communit-
ies with relative size over 15% of the total number of nodes indicating
that they have a much stronger community structure. These include
Jazz, followed by Dolphin and then Polbooks and Chesapeake.

Relative size and strength together provide an estimate of which
networks have good community structure. If we divide the x-axis at
roughly the mid-point of the range and the y-axis at 1, then we obtain
four quadrants each representing different types of community
structures. The first quadrant (upper right) contains communities
that have high relative size as well as high strength. Networks con-
taining a large number of such constant communities are less likely to
be affected by perturbations. Diagonally opposite is the third quad-
rant (lower left), which contains communities of low relative size and
low strength. As discussed earlier, networks having communities
predominantly from this quadrant will produce significantly differ-
ent results under perturbations and are likely to not have a strong
community structure under modularity maximization. The second
quadrant (upper left) contains the groups of vertices that are strongly
connected but have small relative size. This indicates that there are

some pockets of the network with strong community structure. The
fourth quadrant (lower right) represents communities with high
relative size but low strength. In this set of experiments it is empty,
and we believe that this area will be sparsely populated, if at all. This is
because networks having such communities will have a very special
structure: strongly connected groups of very few vertices with many
spokes radiating out to account for the high number of external
communities.

Pull from external connections. We note in Figure 3 that there are
several constant communities whose strength is below one, i.e., they
have more external than internal connections. This is coun-
terintuitive to the idea that a strong community should have more
internal connections. Indeed, modularity maximization methods
always tend to create communities whose strengths are greater
than one. However, the structure of some of the constant
communities belies this convention.

We observe that in these cases, the external connections are dis-
tributed across different communities. Furthermore, the number of
connections to any one external community is always lower than the
internal connections. Based on this observation, we hypothesize that
a group of vertices are likely to be placed together so long as the
internal connection is greater than the connections to any one single
external community. Then the vertices within the community do not
experience a significant “pull” from any of the external communities
that will cause them to migrate, and, therefore, their propensity to
remain within their own communities is high. We quantify this
measurement as follows:

Let v be a vertex in a constant community; further, let D(v) denote
the degree of v, and EN(v) and IN(v) denote the number of external
and internal neighbors of v respectively (i.e., D(v) = IN(v) + EN(v)).
We also assume that the EN(v) external neighbors are divided into k
external groups, and ENG(v) denote a set of k elements where the ith
element in the set represents the number of neighbors of v belonging
to the ith external group. For instance, consider the vertex A in CC, in
Figure 4 (Top), D(A) = 9, IN(A) = 3, EN(A) = 6 and ENG(A) =
{3, 2, 1} (i.e., three external neighbors in CC,, one external neighbor
in CCs, and two external neighbors in CCy). Similarly, we calculate
ENG(v) for each vertex in the network and form a list DENG(G) by
taking union over all ENG(v), that is, only unique entries across
ENG(v) get listed in DENG(G) (see Figure 4-top). The list is then
ranked in ascending order i.e., the group with lowest number of
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ENG(A)={3,2,1} DENG [RANK
ENG®B)={1} 3 3
ENG(C)={1} 2 2
ENG(D)={1,1} | 1
ENG(E)={2,1} IN(A)=3 D(A)=9
ENG(F)={1} INB) =3 DB)=4
mo=1) | |NO=2 | 0=
ENGOY={1) INE)=2 | |DE)=5
IN(F) =3 D(F) =4
ING)=3 DG)=4
IN(I) =3 D) =4

Perm(A) = ((1/3 + 172 + 1/1)/9)*(IN(A)/EN(A)) = (11/54) * (3/6) = 0.101

Perm(B) = Perm(C) = Perm(F) = Perm(G) = Perm(I) = 0.75
Perm(D) = 0.6 Perm(E) = 0.2

D = Degree

ENG = External neighbor group

DENG = Distinct external neighbor group
IN = Internal neighbor

EN = External neighbor

CC = Constant community

Perm = Relative permanence
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Figure 4 | Top: Schematic diagram illustrating the computation of the relative permanence of the vertices. Bottom: Distribution of relative permanence
values. X-axis plots the value of Q and y-axis plots the cumulative fraction of vertices (P(Q)) exhibiting that Q. Both axes are in logarithmic scale.

external neighbors is ranked 1, the group with second lowest external
neighbors is ranked 2 and so on. The intuition behind this ranking is
that we are more interested in how distinct the external neighbor
groups are, rather than the absolute size of the external neighbor
groups. Moreover, by ranking, we can reduce the skewness of the
range of external group size. This rank would therefore signify the
intensity of the pull of the particular external community and its

inverse signifies the degree of stability of the vertex v. This formula-
tion is motivated by the standard statistical measure called Mean
Reciprocal Rank (MRR)** which is the average of the reciprocal ranks
of results for a sample of queries.

For a particular vertex, if the inverse rank of each of the external
group is equal to one, it would point to the fact that all its external
neighbors are diversely distributed (i.e., well-sparsed), and therefore
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the pull experienced should be minimum; in contrast, if the value is
much lower than one, it would imply that the vertex experiences a
strong pull from its external neighbors. We define the strength of a
vertex v, 0(v), as the ratio of the internal neighbor (IN(v)) to the
external neighbor (EN(v)) of vertex v similar to the strength (®) of
a constant community defined earlier. Mathematically, the suitably
normalized value of relative permanence, Q(v), of a vertex v in a
constant community can be expressed as:
k 1
Li-t Rank(ENG;(v))

Q(v)=0(v) x D)

(1)

where Rank(ENG;(v)) denote the rank (retrieved from the DENG(v)
list) of the ith element in ENG(v). This metric indicates the propen-
sity of a vertex to remain in the same community regardless of any
algorithmic parameters.

Figure 4 (Top) presents a schematic diagram for computing
relative permanence of vertices within the communities. Figure 4
(Bottom) plots the cumulative distribution of the relative perman-
ence over the vertices in all networks. The x-axis indicates the value
of the relative permanence and the y-axis, the cumulative fraction of
vertices having the corresponding relative permanence value. The
nature of the cumulative permanence distribution of the vertices is
roughly same for all networks except Email and Power. The distin-
guishing nature of the curves for Email and Power graphs compared
to the other graphs indicates that very few number of vertices in these
two networks have higher relative permanence values and therefore
experience more “pull” from the external communities. Another
observation is that a high fraction of vertices in Jazz, Polbooks,
Dolphin and Celegans have relative permanence close to one.
These vertices are more “stable” compared to the other vertices in
the respective networks.

Constant communities for improving the modularity. We note
that in many networks (such as Football and Celegans) constant
communities form only a small percentage of the vertices. Thus,
finding only the constant communities may not provide adequate
information about the relationship amongst the rest of the vertices.

We therefore leverage on the invariant results in the first and second
quadrants of Figure 3 as building blocks to identify larger
communities.

We first permute the vertices 5000 times in degree-descending
order i.e., each of the permutations preserves the constraint that if
vertex v; is placed before v; in the sequence then degree(v;) =
degree(v;). Then for each of these permutations, we run Louvain
algorithm and obtain the community structure (and the modularity
value). Table I (left) shows the mean modularity (and its variance)
obtained by averaging the modulatity values of all iterations. Next
from these community structures obtained across the different per-
mutations, we detect the constant communities (see the Methods
section and Algorithm 1 in supplementary information) and com-
bine them into super-vertices. This process creates a smaller network
as well as ensures that the vertices in the constant communities
always stay together. Then we execute a modularity maximization
algorithm over the entire network (see Methods section). We com-
pute the variance in results by executing the underlying modularity
maximization algorithm individually over 5000 permutations, in
each case maintaining the degree-preserving order. As shown in
Table I (left), combining constant communities as a pre-processing
step both increases the mean modularity value as well as reduces the
variability across permutations for real-world networks.

We also observe that the variance becomes 0 or very low for the
networks which have significant number of constant communities in
the first and second quadrants of Figure 3. The results obtained from
the other networks with high sensitivity, such as Email and Power,
still indicate some variance although the value is less pronounced.

These observations on real-world networks lead us to believe that
pre-processing using constant communities is more effective if a
network has strong community structure. To test this hypothesis,
we created LFR graphs with mixing parameters from 0.05 to 0.90.
Low mixing parameters indicate strong community structure. For
the LER graphs, we repeat the same set of experiments as discussed
above and obtain the mean modularity and its variance. As shown in
Table I (right), pre-processing using constant communities also
helps increase the modularity value and reduces variability of the
results in the LFR graphs.

Table | | Modularity before and after pre-processing for real networks (left) and for different values of mixing parameter (1) over LFR graphs
(right)
Louvain
Before pre-processing After pre-processing
Networks Mean (my) Var (o) Mean (my) Var (aq)
Jazz 0.448 3.13e6 0.452 0
Chesapeake 0.301 1.17e5 0.303 3.36e-33
Polbooks 0.539 1.74e5 0.557 1.24e-32
Dolphin 0.543 1.76e5 0.550 0
Football 0.610 2.01e5 0.623 0
Celegans 0.438 2.8%9e5 0.442 1.33e26
Email 0.542 6.89e-5 0.568 0.95e-12
Power 0.936 1.0%e- 0.937 2.25e-10
Louvain
Before pre-processing After pre-processing
n Planted Modularity Mean(mg) Var{og) Mean(mg) Var{og)
0.05 0.878 0.834 1.98e-24 0.877 0
0.10 0.817 0.802 2.28e-28 0.817 0
0.20 0.716 0.690 5.74e7 0.686 0
0.50 0.440 0.385 2.05e-6 0.389 1.58e-28
0.70 0.223 0.298 9.70e-10 0.219 1.04e-28
0.90 0.029 0.225 4.25¢-10 0.205 5.64e-28
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Figure 5 | Variation of NMI for different values of mixing parameters. The broken line corresponds to the experiment without the pre-processing step

and the solid line to the experiment after using the pre-processing step.

Another advantage of LFR networks is that we know the “ground
truth” i.e., the correct distribution of communities (exact number of
vertices in each community and the number of in-community con-
nections between them). We used NMI to compare the communities
obtained, with and without using the pre-processing step with the
ground truth community structures of LER graphs for different mix-
ing parameters. As shown in Figure 5, when the community structure
is strong (low mixing parameter), using constant communities
pushes the result towards the ground truth. In contrast, when the
community structure is not well-defined (high mixing parameter),
use of constant communities does not mimic the community distri-
bution of the ground truth, because there can be many variations of
community distribution in such networks that lead to high modu-
larity. These results once again highlight the significance of constant
communities.

Relative ranking of constant communities. A constant community
is meaningful if it is large in size (high &) or it has high relative

permanence (). We calculated the relative permanence of a
constant community by averaging the relative permanence of its
constituent vertices. We experimented to see which one of these
two properties is more important in determining high modularity.
To do so, we ordered the constant communities according to (a)
decreasing order of & and (b) decreasing order of Q. We combined
the constant communities into super-vertices one by one following
the order obtained from (a) and (b) separately. After each combi-
nation, we computed the modularity and compared the value with
the average modularity (over 5000 permutations) obtained by using
the Louvain method without any pre-processing.

Figure 6 compares the modularity obtained by collapsing constant
communities according to the order obtained from (a) (dotted blue
line) and (b) (dotted green lines). For almost all the networks, there is
a transition where the modularity values cross over the mean mod-
ularity (solid red line). Once this transition takes place, the modu-
larity values generally remain above (or at least equal to) the mean
modularity. This critical point indicates the smallest fraction of

Jazz Chesapeake Dolphin Football
0.30f 0.62 -~
0.45| — | - - e ol
I\ ¥ A - v
\ \ /) R v ’
\ N 0.54——— ;’
. \\ ‘\'1 \‘l 0.61F
.q: AY
S (i} 50 100 0 50 100 0 50 100 0 50 100
S
'g Celegans Polbooks Email Power
=
0.442 == 0557 .7 0.568 g
1 7 . I
0.438 <’ e i 0.936F —
o :l o ,' \‘ 4
v - (AN 4
. 0.539}—= 0.542 7
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Percentage of collapsed constant communities

Figure 6 | Modularity after partially collapsing the constant communities. The broken blue lines are in decreasing order of size and the broken green
lines are in decreasing order of relative permanence. The red lines depict the mean modularities without using constant communities.
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Table Il | Few constant communities of PhoNet and the features they
have in common

Constant communities Features in common

10", /%7, I/
/™o/, /°d/, /"9/

voiceless, aspirated, plosive
prenasalized, voiced, plosive

/R/ It/ K/ laryngealized, voiceless, plosive
/A, /47, /n/ dental
VAV VA VALV retroflex

constant communities required to outperform the original algo-
rithms. We observe further that the green lines (ordered according
to Q(v)) generally reach the critical point earlier than the blue lines
(ordered according to ¢), indicating that Q(v) is a better indicator of
constant communities.

Case study. The significance of constant community in a network
can be further understood if we consider networks where nodes have
specific functionalities associated with them. We hypothesize that in
such a network a constant community would represent indispens-
able functional blocks that reflect the defining characteristics of the
network. In order to corroborate this hypothesis we conduct a case
study on a specific type of linguistic network constructed from
the speech sound inventories of the world’s language®. The sound
inventory of a language comprises a set of consonants and vowels
also sometimes together known as phonemes. In order to unfurl the
co-occurrence principles of consonant inventories, the authors™
constructed a network (phoneme-phoneme network or PhoNet)
where each node is a consonant and an edge between two nodes
denotes if the corresponding consonants have co-occurred in a
language. The number of languages in which the two nodes (read
consonants) co-occur defines the weight of the edge between these
nodes. Note that each node here has a functional representation since
it can be represented by means of a set of phonetic features (e.g.,
bilabial, dental, nasal, plosive etc) that indicate how it is articulated.
Since this is a weighted graph, we suitably define a threshold to
construct the unweighted version. We compute constant commu-
nities of PhoNet and observe that each such graph (see Table II)
represents a natural class, i.e., a set of consonants that have a large
overlap of the features®. Such groups are frequently found to appear
together across languages, and linguists describe this observation
through the principle of feature economy®. According to this
principle, the speakers of a language tend to be economic in
choosing the features in order to reduce their learning effort. For
instance, if they have learnt to use a set of features by virtue of
learning a set of sounds, they would tend to admit those other
sounds in their language that are combinatorial variations of
the features already learnt - if a language has the phonemes /p/
(voiceless, bilabial, plosive), /b/ (voiced, bilabial, plosive) and /t/
(voiceless, dental, plosive) in its inventory then the chances that it
will have /d/ (voiced, dental, plosive) is disproportionately higher
compared to any other arbitrary phoneme since by virtue of
learning to articulate /p/, /b/ and /t/ the speakers need to learn no
new feature to articulate /d/. Identification of constant communities
therefore systematically unfolds the natural classes and provides a
formal definition for the same (otherwise absent in the literature).
We plot in Figure S2 (see supplementary information), the average
hamming distance between the feature vectors of phonemes forming
a constant community versus the community size. The average
hamming distance is significantly lower in the case when a set of
randomly chosen phonemes are grouped together and assumed to
represent a community with varying sizes as that of the constant
communities. Further, we observe that collapsing the constant
communities results either in more dilute groups (still with a
certain degree of feature overlap) or reproduces the same constant

communities indicating that no valid dilution is possible for these
functional blocks.

Discussion

Constant communities are regions of the network whose community
structure is invariant under different perturbations and community
detection algorithms. They, thereby, represent the core similar rela-
tionships in the network. The existence of multiple results for com-
munity detection is well known; however, this is one of the first
studies of the invariant subgraphs that occur in a network.

Although we currently detect constant communities by compar-
ing across different permutations, our results have uncovered some
interesting facets about the community structure of networks, which
can lead to improved algorithms for community detection. First, we
observe that constant communities do not always have more internal
connections than external connections. Rather, the strength of the
community is determined by the number of different external com-
munities to which it is connected. We have proposed a metric to
quantify the pull that a vertex experiences from the external com-
munities and the relative permanence of the said vertex indicating its
inertia to stay in its own community.

Secondly, in most networks, constant communities cover only a
subset of the vertices. Depending on the size of the constant com-
munities it may not be correct or necessary to assign every vertex to a
community, as is the focus of most community detection algorithms.
Furthermore, even if when we insist on assigning a community to
each vertex, the constant communities can be leveraged to produce
results with higher modularity and lower variance. Thus, as discussed
earlier, constant communities form the smallest indivisible units in
the networks and particularly in the case of agglomerative methods
can be used to hierarchically build larger communities.

Thirdly, the high functional cohesion among the vertices of the
constant community can render meaning to the community struc-
ture of the networks. This conclusion is much more apparent for
labeled graphs where the vertices are associated with certain func-
tional properties. If we stop at detecting only the constant communit-
ies and treat them as the actual community structure of the graph, we
observe that sometimes it acts as a hard bound since no further
community detection might be possible. Therefore, we suggest that
the prior detection of these building blocks is always significant in
order to further decide to merge them into more coarse-grained
communities pertaining to a diluted functional cohesion.

The fourth and most important observation is that not all net-
works have significant constant community structure. The two most
egregious examples in our test suites are Power and Email graphs.
The absence of constant communities in the networks indicate that
either communities in general do not exist or they are highly over-
lapped and therefore do not have a significant constant region. The
first case is true for Power grid, which as a grid is unlikely to have
communities. We believe that the second reason probably holds for
the Email network. A set of professional emails within correspon-
dents in the same university is likely to have more overlaps than clear
cut communities.

Finally, we have demonstrated evidence that the modularity mea-
sure is not enough to judge the inherent compartmental structure of a
network. For instance, Email and Power networks have reasonably
higher modularities compared to the others. Still, no consensus is
observed in their community structures. Rather their sensitivity mea-
sures indicate that each node might act as individual constant com-
munity in the further iterations. Therefore, the goodness metric of
the community detection algorithm should be redefined in a way that
can effectively capture the modular structure of the network.

We note that the experiments in this paper focused solely on
agglomerative modularity maximization methods. We plan to con-
tinue our studies on the effect of vertex perturbations on other types
of community detection algorithms such as divisive and spectral
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methods as well as different optimization objectives. In particular we
are very keen to understand how the randomness of a network could
be quantified in order to develop algorithms that take into account
the variation in randomness of connections for determining the
quality of the communities.

Methods

Identifying constant communities. In order to identify constant communities we
permute the order of the vertices, and then apply a community detection algorithm to
each of the permuted networks. The results vary across permutations. We select the
groups of vertices that were always allocated together across all the permutations and
mark them as constant communities. Algorithm 1 in supplementary information
formalizes the steps to find out constant communities (see Figure S3 for the schematic
diagram of the algorithmic steps in the supplementary information). The rationale
behind this process is that these vertices must have some intrinsic connectivity
properties that force them to stay together under all orderings.

To implement the vertex permutation, we adopt a stochastic degree-preserving
scheme that can arrange the vertices based on the descending order of their degrees.
The ordering of the set of vertices with the same degree is permuted. By applying this
method we preserve the relative ordering of the degrees of the vertices since it is well-
known that node-degrees constitute a fundamental network property. We have also
observed that the random permutations producing high modularity usually preserve
a degree-descending order of vertices and the ones that result in low modularity
usually are outcomes of cases where the algorithm would start executing from a low-
degree vertex. Thus, our permutations prevent us from the possibility of getting
confined in a local maximum of the modularity.

Combining constant communities for modularity maximization. For these tests,
we first collapse the constant communities to individual nodes (see Figure S3 in the
supplementary information). This step ensures that the constant vertices are always
grouped together and are guaranteed to remain within the same community. The
total number of edges between the vertices of the two collapsed communities is
computed and this sum is assigned as the new edge weight between them. We then
apply a community detection method to the new weighted network to obtain the final
modularity.
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