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Abstract

A central focus of complex disease genetics after genome-wide association studies (GWAS) is to identify low frequency and
rare risk variants, which may account for an important fraction of disease heritability unexplained by GWAS. A profusion of
studies using next-generation sequencing are seeking such risk alleles. We describe how already-known complex trait loci
(largely from GWAS) can be used to guide the design of these new studies by selecting cases, controls, or families who are
most likely to harbor undiscovered risk alleles. We show that genetic risk prediction can select unrelated cases from large
cohorts who are enriched for unknown risk factors, or multiply-affected families that are more likely to harbor high-
penetrance risk alleles. We derive the frequency of an undiscovered risk allele in selected cases and controls, and show how
this relates to the variance explained by the risk score, the disease prevalence and the population frequency of the risk
allele. We also describe a new method for informing the design of sequencing studies using genetic risk prediction in large
partially-genotyped families using an extension of the Inside-Outside algorithm for inference on trees. We explore several
study design scenarios using both simulated and real data, and show that in many cases genetic risk prediction can provide
significant increases in power to detect low-frequency and rare risk alleles. The same approach can also be used to aid
discovery of non-genetic risk factors, suggesting possible future utility of genetic risk prediction in conventional
epidemiology. Software implementing the methods in this paper is available in the R package Mangrove.
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Introduction

Risk for many complex diseases [1,2] can be partially predicted

by a variety of proven risk factors, both genetic and environmen-

tal. While the clinical utility of these predictors is widely debated

[3], the potential to use them in the design of future research has

been less well studied. Specifically, can known predictors of disease

susceptibility aid the discovery of new risk factors by targeting

individuals for whom the presence or absence of disease is most

surprising?

This question is particularly timely in the field of complex

disease genetics. While it is widely known that genome-wide

association studies (GWAS) have explained only a minority of

variance in most complex diseases [4], the loci discovered are still

able to predict many diseases as well as (or better than) established

non-genetic risk factors [5]. Since GWAS were designed to detect

common risk variants [6], a natural next step is to undertake

studies that are able to detect low-frequency and rare risk variants

using next-generation sequencing [7,8]. As sequencing is still

relatively expensive, there is much interest in choosing the optimal

samples to sequence based on other information: previous studies

have looked at selecting samples based on extreme phenotypes,

family history, linkage information and environmental risk [9,10].

A currently unexplored possibility, however, is to use the modest

but real predictive capacity allowed by GWAS in designing these

studies. Therefore, in this paper we investigate the potential power

gained by using genetic risk factors established via GWAS in next-

generation sequencing experiments.

A natural hypothesis is that the residual variation in phenotype,

after known risk factors have been accounted for, is explained by

as-yet-undiscovered factors that may include low-frequency risk

alleles. Therefore, we propose the following straightforward

approach: identify individuals whose observed phenotype is not

well explained by their genotype. This could be applied to single

affected individuals or families with a high burden of disease

despite having a low genetic risk, or to those who fail to develop

the disease despite having a high risk. In either case, these

individuals are more likely to harbor as-yet unidentified risk factors

(both genetic and environmental). For instance, it has been shown

that individuals with very high LDL cholesterol with known

familial hypercholesterolaemia mutations have a much lower load

of common cholesterol increasing alleles than individuals with high

LDL but no known monogenic cause [11].

Previous studies have implicitely used this approach to increase

power by excluding cases who carry either Mendelian forms of the

disease (such as MODY cases in diabetes [12]) or high penetrance

risk factors (such as BRCA1/2 in breast cancer [13]). A closely
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related (and complementary) method is to select cases and controls

on the basis of their environmental risk, which has been shown to

increase power to detect low-frequency risk variants [14]. The

approach we describe here can also be viewed as an extension of

an extremes of quantitative traits approach, where we seek

individuals with very large differences between their observed and

genetically predicted values for the trait in question.

When an individual is genotyped at known GWAS loci, we use

standard linear or logistic models to predict continuous or binary

phenotypes [15]. We show in our first scenario below how these

predictors can be used to prioritise a subset of individuals for

sequencing from a large collection, with the aim of discovering

low-frequency risk variants circulating in the population. For the

discovery of truly rare but more penetrant variants we consider

large multiply-affected pedigrees in scenario 2. We present a new

method that extends the risk prediction approach to families

without complete genotype data using a modification of the inside-

outside algorithm for inference on trees. We perform simulations

to investigate how well these methods perform in each scenario.

Results

The impact of prioritisation on low-frequency risk
variants

Risk prediction algorithms use sets of known risk factors to

predict the value of an individual’s phenotype y (either y[R for

continuous phenotypes, or y[f0,1g for binary phenotypes). We

will refer to this predicted phenotype as ŷy, with ŷy[R for continuous

phenotype predictions and 0ƒŷyƒ1 for binary phenotype

predictions. While many methods for producing predicted

phenotypes exist, throughout this paper we use a standard linear

or logistic model to predict continuous and binary traits

respectively (see Methods below).

To prioritise individuals for study, we select the individuals who

have the largest difference between their actual and predicted

observations Dy~y{ŷy, and compare those who have large

positive differences to those who have large negative differences.

For continuous traits this is equivalent to sampling the extremes of

the distribution after factoring out the variance explained by

known genetics. As with standard extreme trait analyses [16] the

distribution of Dy after selection follows a truncated normal

distribution, and for maximum power a corrected linear analysis of

Dy against genotypes g can be performed [17]. However, for

simplicity we will instead consider a case-control analysis of the

two extremes in this paper.

For binary disease traits, all affected individuals have

1wDyiw0, and unaffected individuals have {1vDyiv0, but

affected individuals with low disease probability will approach

Dyi~1, and unaffected individuals with high disease probability

will have a value close to Dyi~{1 (Figure S1 in File S1 shows this

distribution for diseases with different heritability and prevalence).

Thus in both the quantitative and binary scenarios comparing the

extremes of Dyi serves to identify a set of ‘‘super cases’’ and ‘‘super

controls’’ who are maximally separated on an axis of unexplained

risk.

In both cases we can calculate the allele frequency in these

selected cases and controls as a function of the odds ratio and allele

frequency in unselected individuals, prevalence of the disease,

variance explained by the risk score and the thresholds of the risk

score chosen. Details of these calculations are given in Appendix A

Figure 1. The increase in apparent odds ratio after selecting samples with Dy in the top or bottom X%. Coloured lines represent
different amounts of variance explained by the risk score h2

p . The odds ratios in unselected individuals were 1.2, 2 and 4, the disease was assumed to

have prevalence K~0:01, and the allele frequency was assumed to be f ~0:01.
doi:10.1371/journal.pone.0076328.g001
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in File S1, and the apparent odds ratio in the selected samples are

given in Figure 1, and in Figure S2 in File S1. The apparent odds

ratio rises monotonically as samples are taken from greater

extreme of the risk score, and also rises as the variance explained

by this risk score increases. Larger odds ratios show proportionally

larger increases, and more prevalent diseases also show a stronger

effect.

Notably, the increase in apparent odds ratio is largely

independent of risk allele frequency. This suggests that prioritisa-

tion will be equally effective in increasing power across the

frequency spectrum, adding power to rare and low frequency

designs as well as common variant fine-mapping and replication

designs. Finally, selection of controls from the general population

(i.e. when a proportion K of them have the disease) has no effect

on the allele frequency. This suggests that prioritization of controls

will only increase power if those controls have been screened for

the disease. This is usually the case for the control cohorts used to

study most common diseases such as type 2 diabetes, but usually

not for those used for rarer diseases such as Crohn’s disease.

Power calculations in unrelated individuals
To see the impact of this selection strategy on the power of an

experiment, consider a collection of 10,000 cases of a disease with

a prevalence of 1% (K~0:01) along with a collection of 10,000

healthy controls. We wish to pick N cases and N controls for whole-

genome sequencing with the goal of identifying, at genome-wide

significance (pv5|10{8), a 1% risk allele with an odds ratio of 2

(a typical design, though optimal case-control ratio and p-value

thresholds for rare variant studies are debatable). We compare

random selections of cases and controls to selections informed by

known risk loci as described above. Figure 2a shows the increased

power conferred by genetic predictors explaining 5–50% of

liability-scale variance. Since GWAS explain ,10% of variance of

most complex diseases, the power gained by this approach would

be marginal in most realistic circumstances. Nonetheless, complex

diseases with particularly good GWAS predictors, such as type 1

diabetes or age related macular degeneration, could see substantial

power gains.

Because the sampling approach works best given a large pool of

individuals to draw from, we next considered a large population

cohort of 100,000 individuals measured for some continuous trait.

In this case we evaluated the power to detect, again at genome-

wide significance, a 1% risk variant with a b value of 0.2. N

individuals from each of the two extremes of Dyi were selected and

treated as cases and controls and compared to drawing from the

extremes of yi. Figure 2b shows that improvement in power from

the prediction-informed selection is relatively large even when the

prediction explains ,10% of variance.

Testing a hypothetical experiment using real data
The above power calculations are based on assumptions about

effect size, predictive capacity and allele frequencies of risk variants

in hypothetical studies. To demonstrate that prioritisation could

add power in a real world scenario, we used real data to simulate a

hypothetical but realistic low-frequency disease association exper-

iment.

In our hypothetical design we perform targeted sequencing on

candidate genes in 1,000 cases and 1,000 controls selected from a

large cohort, then select the 50 SNPs with the lowest p-values and

genotype them in the rest of the cohort. We assume that we would

discover 1,000 coding variants (a typical number if we sequenced

around 60 genes [18]), of which 5 are truly associated and 995 are

not.

We based our simulations on 19,761 Crohn’s disease cases and

28,999 controls genotyped by the International IBD Genetics

Consortium’s (IIBDGC) Immunochip project [19]. For the truly

associated variants, we used five low-frequency coding variants

discovered by Rivas et al [20] which were included on the

Immunochip array and reached genome-wide significance

(p,561028) in the complete dataset. To perform risk prediction

and prioritisation we used odds ratios and frequencies from the

166 Crohn’s disease risk variants from the latest IIBDGC

Immunochip analysis [19].

We simulated 1,000 studies from these data. The controls were

selected at random (as they were population controls and thus

selection would not grant extra power), and the cases were either

selected at random or were selected from the bottom quartile of

Crohn’s disease risk. We selected from the bottom quartile, rather

than a more extreme selection, in order to allow room to resample

and thus assess the significance of the results. On average the

prioritised study discovered significantly more of the Rivas et al

variants than the non-prioritised study (1.64 vs 1.48, rank sum p-

value = 0.001). The improvement is modest but real, with the

prioritisation increasing the probability of discovering 3 or more of

the Rivas et al variants from 12% to 19%, demonstrating that our

method can measurably increase power in the design of real

experiments.

Power simulations in families
The study of families with multiple individuals affected by a

complex disease is a potentially powerful means of identifying

alleles which are rare in the population, but confer substantial risk.

Historical family studies have produced a large number of

suggestive linkage peaks, but few that were successfully replicated

[21,22]. Some of these failed replications may be caused by

artefacts or statistical noise, but at least some are likely to be true

signals. GWAS have suggested that complex diseases are

influenced by hundreds of separate loci, which might mean that

families sharing the same clinical diagnosis in fact harbor

mutations in a diverse set of genes. For instance, it has been

estimated that between 1 and 3% of diabetes cases are caused by

penetrant mutations, but over 20 genes carrying such mutations

have been identified to date [23]. Such locus heterogeneity would

seriously reduce the power of cross-family linkage analysis, but

could be overcome by combining within-family linkage informa-

tion with complete sequence data [24].

In order to most efficiently design such studies, we have

extended our risk prediction approach to families both in order to

distinguish between those with the highest burden of unexplained

disease and those for whom disease burden is largely or completely

explained by known GWAS loci. Assume that a given family has N

members, of whom y are affected. We wish to select families for

which y is significantly larger than what would be expected given

the observed genotypes, G, i.e. those that minimize:

P(ŷywyDN,G) ð1Þ

To evaluate the power of this approach for prioritizing families for

sequencing experiments, consider two families: both are subject to

polygenic risk for a disease but only one contains an additional

high penetrance dominant mutation. We would like to be able to

prioritize the latter family for the type of family sequencing

experiment described above. To evaluate the ability of our method

to identify families containing such high penetrance mutations we

simulated nuclear families with between 2 and 8 offspring, where

three total family members were affected by a disease having 1%

prevalence and heritability of 50% (these values correspond

Designing Experiments by Predicting Genetic Risk
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approximately to immune mediated diseases such as Crohn’s

disease). Half the families contained a dominant mutation with a

penetrance from 10–100%, and the other half arose simply from

polygenic risk and chance. For each family, we computed the

value of equation (1) based on a GWAS risk predictor explaining

25% of heritability (again by analogy to Crohn’s disease [25]).

Figure 3 shows the area under the ROC curve (AUC), which in

this instance can be interpreted as the probability of correctly

distinguishing between one family with a penetrant mutation and

one without. For a low-penetrance mutation in a small family

AUC is only ,0.6, but for a medium-penetrance mutation in a

large family, AUC is ,0.85, which would provide a substantial

advantage over simply selecting the family with the largest number

of affected individuals.

A new algorithm for risk prediction in partially
genotyped families

If the genotypes G are known for all family members then

calculating equation (1) is relatively simple. However, most family

based experiments will not generate genotype data across all

members of the pedigree for a variety of reasons, including cost,

DNA availability, consent, or death. Performing risk prediction in

the family without accounting for individuals without genotypes

will introduce bias (as in general a higher proportion of cases are

genotyped than unaffected relatives) as well as noise (as this

sampling bias will vary from family to family).

A solution to this issue is to sample genotypes for the

ungenotyped individuals conditional on the genotyped ones, and

perform risk prediction on these sampled genotypes. We have

produced an efficient algorithm, based on an application of a

modified Inside-Outside algorithm [26], to allow this sampling to

be performed efficiently even on very large pedigrees. We have

used this algorithm to perform risk prediction on partially

genotyped extended pedigrees with that included over 800

individuals (data not shown). Details of the algorithm are given

in the Methods section below, and in the Appendix.

Discussion

We have presented a new method for genetic risk prediction

using known GWAS-type risk variants to inform the design of

sequencing studies aimed at finding low-frequency or rare risk

alleles. We have shown via simulation that this approach can

increase the power of sequencing studies in both case/control and

family settings. The power increase is greatest when it is possible to

sample from a large pool of potential individuals or families for

sequencing (e.g. for the study of lipid levels in large cohorts of

healthy individuals [27]), and when a substantial fraction of

heritability is explained by known GWAS loci (e.g. type 1 diabetes

[28], age related macular degeneration [29] or required warfarin

dose [30]). We have here assumed that the risk score and the risk

variant act independently, but the presence of gene-gene

interaction may alter the power of this approach. For instance,

the increase in power due to prioritisation will be greater if the

effect size of the locus being tested decreases as the risk score

increases, as is known to be the case between HLA risk and other

GWAS variants in type 1 diabetes [31].

A major advantage of this approach is that it will become more

effective with time; as more genetic risk factors are discovered, new

prediction algorithms are developed [32] and estimates of effect

sizes are refined [33], the accuracy of prediction will increase. By

sequentially incorporating risk prediction into our study designs,

we can utilize each new discovery to increase our power in future

research. We also note that while we have exclusively used genetic

examples, the same framework can incorporate environmental risk

factors (as discussed by Guey et al [14]). This allows a

straightforward improvement of the predictors, and thus the

efficacy of prioritisation. It also intriguingly suggests the possibility

of using genetics to inform studies of environmental and epigenetic

Figure 2. Improvement in power curves gained by prioritising samples based on genetic risk scores with different predictive
powers. The color of the line represents the proportion of total variance capture by the risk score, with the black line representing a random (i.e.
non-prioritised) selection of samples. a) A case-control scenario for a disease with 1% prevalence. The total cohort size for prioritisation is 10,000 cases
and an equal number of controls, and we measured power to detect a risk allele with an odds ratio of 2 and a frequency of 1% at genome-wide
significance. b) A quantitative trait scenario. The total cohort size is 100,000, and we measured power to detect an allele with 1% frequency that
increased a normally-distributed quantitative trait by 0.2 standard deviations. Power is calculated using the trend test power equations given by
Freidlin et al [36].
doi:10.1371/journal.pone.0076328.g002
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risk. For example, a family with a higher-than-expected incidence

of disease given their genotypes at known risk loci is more likely to

harbor a penetrant mutation, but is also more likely to have been

exposed to a dietary risk factor or risk-increasing infection. This

suggests a broad range of potential uses of risk prediction in study

design, both from genes to environment and environment to

genes.

Software implementing the methods in this paper, as well as

documentation for their use in prioritisation, is available from

CRAN as an R package named Mangrove.

Methods and Models

Risk prediction in unrelated individuals
To predict a quantitative phenotype from genotypes at a known

set of GWAS loci, consider a matrix of genotypes, G, with elements

gij for locus i and individual j, and a vector of standardised effect

sizes b~fbig.
The quantitative trait predictions, ŷy~fŷyjg are calculated via a

linear model:

ŷy~mzs bT G{�bb
� �

ð2Þ

where m and s are the population mean and standard deviation of

the quantitative trait, and �bb~
P

i 2bifi is a normalising constant

accounting for fi, the allele frequency.

For binary traits, we use a logistic link function to produce

probabilities of disease status:

ŷy~ 1ze{ m0z�bbT G{�bbð Þ
� �{1

ð3Þ

Where here b is a vector of log odds ratios, and m0 is a function of

K , representing the prevalence (for incidence prediction) or life-

time risk (for prospective prediction) of the disease.

Risk prediction in partially genotyped families
If the genotypes G are known for all family members then

disease probabilities for each individual can be calculated as in

equation (3), and then used to calculate equation (1) by sampling.

However, most family based experiments will not generate

genotype data across all members. A solution is to sample disease

status as in the complete information case, conditional on a set of

of unobserved genotypes Gunobs that are themselves sampled from

the conditional distribution:

P(GunobsDf,T ,Gobs) ð4Þ

Where f is the population allele frequency, T is the family

structure, and Gobs are the known genotypes. Sampling from this

distribution is not trivial, but is possible via a modified Inside-

Outside algorithm [26] (itself a generalisation of the forward-

backwards algorithm used in Hidden Markov Models [34]). The

Inside-Outside is used for inference on tree-like data structures,

and has been applied to certain multiple sequence alignment

problems [35]. Here, we instead use Inside-Outside to sample

from the posterior distribution of genotypes across a family.

Briefly, we decompose the marginal genotype posteriors into inside

Figure 3. Ability to predict the presence of a high-penetrance mutation (measured by AUC) in multiplex families using a polygenic
risk score. We assume a disease with a prevalence of 1% and a heritability 50%, and a genetic risk score that captures 12.5% of variance. All families
have three affected individuals, and the AUC is shown for families of different total size and dominant mutations of varying penetrance.
doi:10.1371/journal.pone.0076328.g003
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and outside probabilities, similar to the forward and backward

probabilities from an HMM. The inside probability accounts for

information from each individual and their descendants, whereas

the outside probability accounts for the individual’s other relatives

(including ancestors, siblings and cousins).

These values can be computed recursively via the standard

Inside-Outside approach (Appendix B.1 in File S1), which enables

the sampling of one individual’s genotypes. When sampling an

entire family, however, we must sample down the tree from the

root, with each individual’s genotypes conditioned on their

parents’ sampled genotypes. We accomplish this by modifying

the outside probability to include parental genotypes (Appendix

B.2 in File S1). We describe some additional considerations

required for the application of Inside-Outside to family trees in

Appendix C in File S1.

Note that in this paper we only consider genetic risk that is

explained by genotypes in the matrix G. In reality, there is

additional genetic risk due to undiscovered risk variants. While this

does not contribute to the selection scheme, and is thus not

relevant here, the approach outlined above can easily include

samples from a unobserved normally distirbuted polygenetic risk

score with a covariance matrix dependent on T .

Implementation
The methods discussed in this paper are implemented in the R

package Mangrove, available from CRAN: http://cran.r-project.

org/web/packages/Mangrove/index.html

Supporting Information

File S1 Appendices A, B and C and Figures S1 and S2.
Appendix A describes methods for predicting allele frequencies

after prioritisation and appendices B and C describe the modified

Inside-Outside algorithm and its application to family data. Figure

S1 shows the distribution of Dy under different disease prevalence

and risk score predictive powers, and Figure S2 shows the effect of

disease prevalence and allele frequency on the effectiveness of

prioritisation.

(PDF)
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