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1  | INTRODUC TION

Glioblastoma multiforme (GBM) is an incurable malignancy.1 
Almost all GBMs recur within the first year following diagnosis, 
the recurrence rate of GBM is particularly high, they can be surgi-
cally resected again.2 Heterogeneity is the key point for the treat-
ment of glioma.3 It is still very difficult to deal with the recurrence 
of GBM during the treatment. Based on the histology, gliomas 

would be classified into WHO (World Health Organization) grades 
I, II, III and IV.4 The natural course of low-grade glioma (WHO 
Grade II) is to transform or to dedifferentiate into high-grade 
glioma (WHO grade III–IV), and they recur after surgical resec-
tion frequently. The limited information on the pathogenesis, 
development, reproduction and molecular mechanisms of GBM 
has hindered the research and development of precise treatment 
of available drugs. Therefore, it is urgent to clarify the relevant 
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Abstract
Glioblastoma multiforme (GBM) is a very serious mortality of central nervous sys-
tem cancer. The microarray data from GSE2223, GSE4058, GSE4290, GSE13276, 
GSE68848 and GSE70231 (389 GBM tumour and 67 normal tissues) and the RNA-
seq data from TCGA-GBM dataset (169 GBM and five normal samples) were chosen 
to find differentially expressed genes (DEGs). RRA (Robust rank aggregation) method 
was used to integrate seven datasets and calculate 133 DEGs (82 up-regulated and 
51 down-regulated genes). Subsequently, through the PPI (protein-protein interac-
tion) network and MCODE/ cytoHubba methods, we finally filtered out ten hub 
genes, including FOXM1, CDK4, TOP2A, RRM2, MYBL2, MCM2, CDC20, CCNB2, 
MYC and EZH2, from the whole network. Functional enrichment analyses of DEGs 
were conducted to show that these hub genes were enriched in various cancer-re-
lated functions and pathways significantly. We also selected CCNB2, CDC20 and 
MYBL2 as core biomarkers, and further validated them in CGGA, HPA and CCLE 
database, suggesting that these three core hub genes may be involved in the origin 
of GBM. All these potential biomarkers for GBM might be helpful for illustrating the 
important role of molecular mechanisms of tumorigenesis in the diagnosis, prognosis 
and targeted therapy of GBM cancer.
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molecular mechanisms of GBM and actively develop new thera-
peutic strategies.

Many studies have illustrated the numerous candidate hub genes 
involved in GBM from RNA-seq data. Biomarkers could combine 
with different diseases and display a high value which lead to the de-
velopment of a robust, effective take on GBM therapy.5 Numerous 
recent studies have discovered the biomarkers in GBM from molec-
ular biology to proteomics, such as circulating tumour DNA (ctDNA), 
DNA, microRNA (miRNA), lncRNA (long non-coding RNA) and pro-
tein.6-8 ctDNAs in cerebrospinal fluid better reflected the sequential 
change of those tumour drivers than in plasma, which served as bio-
markers to improve patients’ outcomes.9 GFAP (Glial Fibrillary Acidic 
Protein) and EGFR (Epidermal Growth Factor Receptor) were con-
sidered to be increased and as potential therapeutic markers in GBM 
patients.10,11 CDK1 (Cyclin Dependent Kinase 1) and BUB1 (BUB1 
Mitotic Checkpoint Serine/Threonine Kinase) were significantly con-
nected with carcinogenesis of GBM.12,13 Hsa-miR-21 and hsa-miR-
10b were discovered as GBM-specific miRNAs, which lead to the 
development of a robust take on GBM therapy.5 The blood biomark-
ers (LRG1 (Leucine Rich Alpha-2-Glycoprotein 1), CRP (C-Reactive 
Protein) and C9 (Complement C9)) revealed significant positive cor-
relations with tumour size.14 Our previous study also reported that 
HMG-box family and related ceRNA (competing endogenous RNA) 
established the significance of SOX6 (SRY-Box Transcription Factor 
6) in the malignant progression of glioblastoma.6

Taking into account the individual differences, in this study, we 
selected the microarray data from the Gene Expression Omnibus 
(GEO) database and the RNA-seq data from TCGA-GBM (The Cancer 
Genome Atlas Glioblastoma Multiforme) dataset, using the RRA 
(RobustRankAggreg) method to identify differentially expressed 
genes (DEGs) between GBM tissues and normal tissues. Through 
network analysis and functional analyses, it is possible to predict the 
pathways and interactions of DEGs. In addition, hub genes related 
lncRNA, miRNA and transcription factor (TF) were also explored. All 
of these bioinformatics methods were used to elucidate the com-
prehensive molecular mechanisms responsible for the development 
and progression of GBM and to provide potential biomarkers as a 
treatment for patients in different subgroups of GBM.

2  | METHODS AND MATERIAL S

2.1 | Data preparation and RRA method analyses

The microarray data of human tissue from GSE2223,15 GSE4058,16 
GSE4290,17 GSE13276,18 GSE6884819 and GSE7023120 were 
downloaded from the Gene Expression Omnibus (GEO) database 
(https://www.ncbi.nlm.nih.gov/geo/). (a) The inclusion and exclu-
sion criteria were applied for the selection of GEO datasets (inclu-
sion: datasets containing tumour and normal samples; exclusion: 
experiments on cell lines, datasets containing serum samples nor 
tissue biopsies, etc). (b) They were GBM and normal tumours cases 
based on 456 samples connected with subtypes (389 tumours and 

67 normal samples). GSE2223 (29 GBM samples: four normal sam-
ples, GPL1833); GSE4058 (30 GBM samples: 3 normal samples, 
GPL182); GSE4290 (76 GBM samples: 23 normal samples, GPL570); 
GSE13276 (5 GBM samples: 3 normal samples, GPL96); GSE68848 
(228 GBM samples: 28 normal samples, GPL570); GSE70231 (21 
GBM samples: 6 normal samples, GPL80). (c) Limma package,21 
Deseq222 and edgeR method23 (fold change > 2 and adjusted P-
value (q-value) < .05) were used for identifying GEO data DEGs 
(differential expressed genes), absolute value of fold change > 2 
and adjusted P-value (q-value) < .05 were considered as DEGs. The 
DEGs result of each dataset was drawn the violin plot by using gg-
plot2 package,24 respectively.

Then, we downloaded the RNA-seq data of human tissue from 
TCGA-GBM dataset (169 GBM and five normal samples)25 and iden-
tified DEGs by intersecting with the results with limma, Deseq222 
and edgeR method23 (fold change > 2 and q-value < .05).

Finally, RobustRankAggreg package (RRA method) was designed 
to sort the multi-gene lists and adopted to gain the robust DEGs.26 
The pheatmap package is used to visualize the top 20 up- and top 
20 down- DEGs obtained by the six GEO datasets and TCGA-GBM 
dataset by RRA method.27,28

2.2 | Function and network analyses

Protein-protein interaction (PPI) network was obtained from 
STRING v11.29 We used the Cytoscape v 3.7.2 plugin MCODE 
and cytoHubba to select the hub genes.30 We used Cytoscape to 
visualize the PPI networks, and MCODE plugin to screen a signifi-
cant module from the PPI network with a degree cutoff = 2, node 
score cutoff = 0.2, node density cutoff = 0.1, Max depth = 100 and 
K-core = 2. Then, cytoHubba plugin was used to determine the hub 
genes when the degrees were ≥ 10.

The analyses of GO (Gene Ontology) enrichment, KEGG (Kyoto 
Encyclopedia of Genes and Genomes) pathway were performed via 
clusterProfiler package.31 Gene set enrichment analysis (GSEA) was 
conducted by clusterProfiler package as well and drawn as emapplot 
and heatplot to better understand the results for GSEA. Survival 
analysis was drawn based on GlioVis database (http://www.gliov 
is.bioin fo.cnio.es). Tumour-infiltrating immune cells were inferred 
using TIMER (Tumor Immune Estimation Resource).32 Functional as-
sociations of the hub genes (with TF, miRNAs and lncRNAs) were 
analysed using NetworkAnalyst.33

2.3 | Validation of core hub genes

We downloaded the RNA-seq data of human tissues from CGGA, 
after batching all mRNA-seq matrix and removing the incomplete 
and duplicate data, we analysed these data by R packages: (a) 
Prognostic accuracy of the three core hub genes evaluated by ROC 
(receiver operating characteristics) curve with respect to 1 year, 
3 year and 5 year survival of glioma patients by ‘survivalROC’ 
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package 34; (b) Drawing forest plots of univariate and multivari-
ate cox analysis by ‘survival’ package 35; (c) The expression of core 
hub genes in different types by ‘beeswarm’ package.36 Next, we 
validated core hub gene in HPA (The Human Protein Atlas) (GBM 
U251-MG cell line) (https://www.prote inatl as.org) and CCLE 
(Cancer Cell Line Encyclopedia) (glioma cell) database (https://
porta ls.broad insti tute.org/ccle).

3  | RESULTS

3.1 | The overall collection of datasets and 
identification of DEGs

Six gene datasets were collected from NCBI (National Center for 
Biotechnology Information) GEO database (GSE2223, GSE4058, 
GSE4290, GSE13276, GSE68848 and GSE70231) and TCGA-GBM 
dataset (Table 1). A total of 389 GBM tumour and 67 normal tissues 
were adopted in this study. With t

he criteria of log2 (fold change)> 1 and adjusted P-value < 0.05, 
754 up-regulated and 750 down-regulated DEGs were conducted 
in GSE2223 (Figure 1A); 176 up-regulated and 174 down-reg-
ulated DEGs were gained in GSE4058 (Figure 1B); 566 up-regu-
lated and 487 down-regulated DEGs were obtained in GSE4290 
(Figure 1C); 177 up-regulated and 51 down-regulated DEGs were 
gained in GSE13276 (Figure 1D); and 619 up-regulated and 492 
down-regulated DEGs were adopted in GSE68848 (Figure 1E); and 
377 up-regulated and 244 down-regulated DEGs were obtained 
in GSE70231 (Figure 1F). In TCGA-GBM dataset, we used three 
methods to find DEGs, there were 2335 DEGs in edgeR, 1303 
DEGs in limma, and 1555 in Deseq2, then we took the intersection 
of the three methods, and 1255 DEGs were obtained from TCGA-
GBM in final.

The RRA method was used to identify genes that are ranked con-
sistently better and to explore the robust DEGs in different seven 
datasets. Finally, we determined 133 significantly DEGs in these 
datasets, including 82 up-regulated and 51 down-regulated DEGs 
(Table S1). The expression heat map of the top 20 up-regulated and 
top 20 down-regulated DEGs is visualized in Figure 2.

3.2 | PPI network and hub gene detection

These 133 DEGs were input to the STRING database for PPI net-
works, for their potential biological functions. The clusters of sub-
networks that were obtained from STRING database with 133 nodes 
and 547 edges (PPI enrichment P-value < 1.0e-16) (Figure 3).

The top one biological processes (BP), molecular functions (MF) 
and cellular components (CC) were listed in Table S2 and marked as 
red, purple and green, respectively. The highest enriched BP, MF, 
CC terms were ‘developmental process’, ‘protein binding’, ‘secre-
tory vesicle’. The top one KEGG pathway was ‘AGE-RAGE signalling 
pathway in diabetic complications’ marked as yellow. In the glioma 
pathway (hsa05214), included in CDK4 (Cyclin Dependent Kinase 4), 
PRKCG (Protein Kinase C Gamma) and EGFR. The highest enriched 
Reactome pathway was ‘Extracellular matrix organization’ marked as 
blue (Figure 3 and Table S2).

Next, Cytoscape plugin MCODE were used to find out the hub 
genes. We found five types from MCODE results, the cluster one 
with score = 9.7, obtained 21 DEGs, and the other four clusters 
with score = 6.588, 4, 3 and 3, respectively (Figure 4A-E). Through 
MCODE analysis results, we used cytoHubba for further analysis 
in the results of cluster one (21 DEGs), we determined the top 10 
DEGs as hub genes (FOXM1 (Forkhead Box M1), CDK4, TOP2A 
(DNA Topoisomerase II Alpha), RRM2 (Ribonucleotide Reductase 
Regulatory Subunit M2), MYBL2 (MYB Proto-Oncogene Like 2), 
MCM2 (Minichromosome), CDC20 (Cell Division Cycle 20), CCNB2 
(Cyclin B2), MYC (MYC Proto-Oncogene, BHLH Transcription Factor) 
and EZH2 (Enhancer of Zeste 2 Polycomb Repressive Complex 2 
Subunit)) (Figure 4F).

3.3 | Functional and survival analyses

Gene ontology (GO) functional enrichment analyses were used to 
determine the potential molecular mechanisms employed by these 
10 hub genes. The top 10 biological processes (BP), molecular func-
tions (MF) and cellular components (CC) are listed in Figure 5A-C. The 
highly enriched BP terms were ‘G1/S transition of mitotic cell cycle’, 
‘cell cycle G1/S phase transition’ and ‘negative regulation of mitotic 
cell cycle’. The markedly enriched MF terms were ‘cyclin-dependent 
protein serine/threonine kinase regulator activity’, ‘core promoter 
binding’ and ‘DNA-dependent ATPase activity’. The predominantly 
enriched CC terms were ‘cyclin-dependent protein kinase holoen-
zyme complex’, ‘serine/threonine protein kinase complex’. With 
adjusted P-value < 0.05, seven pathways were enriched by the 10 
DEGs (Figure 5D), many of which were tumour-associated pathways, 
including the ‘Bladder cancer’, and the ‘p53 signalling pathway’ and 
the ‘Small cell lung cancer’. Moreover, CDK4 was predicted to be 
centralized in the glioma pathway (hsa05214) (Figure 6).

GSEA heatplot of enriched DEGs list on each term was shown 
in Figure 7 and Figure S2. There are four types (primary malignant 
neoplasm of brain, malignant peripheral nerve sheath tumour, malig-
nant neoplasm of brain, ewings sarcoma-primitive neuroectodermal 

TA B L E  1   The selected samples for this current study

GEO accessions
GBM 
number

Normal 
number Reference

GSE2223 29 4 15

GSE4058 29 3 16

GSE4290 77 23 17

GSE13276 5 3 18

GSE68848 228 28 19

GSE70231 21 6 20

TCGA-GBM 169 5 25
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tumour (PNET)) related to nervous system diseases. In primary ma-
lignant neoplasm of brain which including three DEGs (CDK4, EZH2, 
MYC). We could also find 4 DEGs (CDK4, EZH2, FOXM1 and TOP2A) 
in the type of malignant peripheral nerve sheath tumour. In addition, 

CDK4 and EZH2 were determined to be centralized in all four types 
(Figure 7).

As shown in Figure 8, based on GlioVis database (TCGA-GBM and 
CGGA-GBM), CDC20, CCNB2 and MYBL2 (P-value < 0.01) (Figure 8) 

F I G U R E  1   Volcano plots for DEGs in GBM and normal tissues based on data from the GEO datasets. A. GSE2223, B. GSE4058, C. 
GSE4290, D. GSE13276, E. GSE68848 and F. GSE70231

F I G U R E  2   Heat map for the 20 
top up-regulated and 20 top down-
regulated DEGs in GBM using the 
RobustRankAggreg method with q-
value < .05 and fold change > 2
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F I G U R E  3   PPI network of the DEGs 
in GBM. The top one biological processes 
(BP), molecular functions (MF), cellular 
components (CC), KEGG pathway and 
Reactome pathway were marked as 
red, purple, green, yellow and blue, 
respectively

F I G U R E  4   Hub genes screening 
from MCODE and cytoHubba plugin in 
cytoscape v3.7.2. A-E, MCODE results; F, 
cytoHubba result
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F I G U R E  5   GO enrichment annotations and KEGG pathways of the DEGs in GBM. A, Top 10 biological process terms. B, Top 10 molecular 
function terms. C, Cellular component terms. D, significantly enriched KEGG pathways (adjusted P-value < .05)

F I G U R E  6   Glioma pathway from KEGG analysis which was performed by pathview package. One hub gene CDK4 in glioma pathway 
marked as red colour
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was correlated with the survival of determine optimal cutoff for 
Kaplan-Meier survival analysis (Figure 8). GlioVis used the maximally 
selected statistics to determine the optimal cutoff for continuous vari-
ables, which provided in the ‘survminer’ package. CDC20, CCNB2 and 
MYBL2 were highly expressed in GBM samples. Thus, above three 
predicted hub genes might play important roles in ‘Cellular senescence’ 
and ‘Cell cycle’ and were considered potential prognostic biomarkers in 
GBM and were the subject of further study.

3.4 | Tumour-infiltrating immune cells analyses and 
target interactive analyses

We used hub genes to predict immune-cell profiling in GBM by 
TIMER, a web tool to analysze infiltrated immune cells in the TCGA 
dataset. And we conducted the abundance of six types of tumour-
infiltrating immune cells (B cells, CD4 + T cells, CD8 + T cells, neu-
trophils, macrophages and dendritic cells) and purity (Figure S3). The 
expression levels of RRM2, MYC and MCM2 were significantly cor-
related with dendritic cell (DC) infiltration. We detected that MCM2 
had a positive correlation with the purity of GBM and was highly 
correlated to DCs. The corrections among the 10 hub genes in GBM 
were shown in Figure S4.

Subsequently, we predicted the target of ten hub genes and pre-
dicted their network interaction with lncRNA, miRNA and transcrip-
tion factors (TF) (Figure 9 and Table S3). A total of 88 lncRNAs could 
target the ten hub genes (Table S3), such as HNF1A-AS1 could target 
EZH2 and MYC. In Figure 9A, CDK4 was targeted by hsa-miR-21-5p 
and hsa-miR-193b-3p. We also found TOP2A could regulate RRM2, 
TOP2A, CDC20 and EZH2 expression (Figure 9B). FOXM1 could in-
teract with PAX2 (Paired Box 2) and E2F4 (E2F Transcription Factor 
4). Combined the results of survival analysis and lncRNA-, miRNA- 
and TF network analysis, we were interested to further illustrate the 
molecular mechanism that were regulated these ten hub genes.

3.5 | Validation in the CGGA, HPA and CCLE 
database: CDC20, CCNB2, MYBL2

We further validated these ten central genes in the CGGA database 
and detected that CCNB2, CDC20 and MYBL2 expression was regu-
lar in different tissues (Figure 10, Figures S5 and S6). Subsequently, 
we evaluated the prognostic accuracy of CCNB2, CDC20 and 
MYBL2 by calculating the time-dependent ROC, AUC (area under 
the ROC curve) for one-, three- and five-year survival in glioma 
patients. CCNB2, CDC20 and MYBL2 showed good prognostic 

F I G U R E  7   GSEA heatplot of the hub genes expression profiles using clusterProfiler
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F I G U R E  8   Kapla-Meier plots for DEGs 
to visualize the survival differences using 
GlioVis database

CDC20 (CGGA) CDC20 (TCGA)A

CCNB2 (CGGA) CCNB2 (TCGA)B

MYBL2 (CGGA) MYBL2 (TCGA)C

Distribution Distribution

Maximally selected rank statistics Maximally selected rank statistics

Kaplan meier survival estimates

P = .0039 P = .0083

Kaplan meier survival estimates

Distribution Distribution

Maximally selected rank statistics Maximally selected rank statistics

Kaplan meier survival estimates Kaplan meier survival estimates

Distribution Distribution

Maximally selected rank statistics Maximally selected rank statistics

Kaplan meier survival estimates Kaplan meier survival estimates

P = .0062

P = .0069 P = .0024

P = .0082
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accuracy for the CGGA dataset (Figure 10A, Figures S5A and S6A). 
After univariate and multivariate cox analysis of key clinical and mo-
lecular factors, we found that CCNB2 expression (P-value < 0.001, 
HR = 1.598/1.256), and CDC20 expression (P-value < 0.001, 
HR = 1.606/1.246), and MYBL2 expression (P-value < 0.001, 
HR = 1.570/1.258) were independent prognostic factors for gliomas 
in the CGGA dataset (Figure 10B-C, and Figures S5B,C and S6B,C). 
Because of the IDH1 mutation status and WHO classification are 
important for the prognosis of GBM, so it is necessary to determine 
whether our risk score is an independent prognostic factor for over-
all survival. The prognostic significance of IDH1 mutation status and 
1p19q codeletion status in GBM in the CGGA database was shown 
to be highly significant. When GBM patients in the CGGA dataset 
were classified into two groups according to CDC20, CCNB2 and 
MYBL2 expression for survival analysis. For core hub genes, the ex-
pression levels of CCNB2, CDC20 and MYBL2 were also significantly 
higher in GBM with IDH1 mutations than in those of IDH1 wild-type 
(Figure 10H and Figures S5H and S6H). CCNB2, CDC20 and MYBL2 
can classify patients into high-risk and low-risk groups according to 
different 1p19q_codeletion states (Figure 10D and Figures S5D and 
S6D), age (Figure 10E and Figures S5E and S6E) and chemical status 
(Figure 10F and Figures S5F and S6F), WHO ranks (Figure 10G and 
Figures S5G and S6G), IDH1 states (Figure 10H and Figures S5H and 
S6H) and PRS (main, recurrent, second category) Type (Figure 10I 
and Figures S5I and S6I), which p-value < 0.05. After univariate and 
multivariate cox analysis of core hub genes (CDC20, CCNB2 and 
MYBL2), we found these three genes independently indicated un-
favourable prognosis in CGGA database, the expression of CCNB2, 
CDC20 and MYBL2 in different types could be independent prog-
nostic marker in GBM.

We selected CCLE and HPA database to further validate the 
core hub genes. In glioma cells from CCLE, we could see the expres-
sion of core gene both in RNA-seq expression and Achilles shRNA 
knockdown (Figure 11). In GBM U251-MG cells from HPA, immu-
nofluorescent staining of human cell line U251-MG showed us the 
gene location, green represents antibody, red means microtubules. 
CDC20 detected in the nucleoplasm and cytosol (Figure 11A), com-
pared with other RNA cell lines, although the gene expression is not 
cell-dependent, the expression of CDC20 in U251-MG is the highest 
(Figure S7). CCNB2 localized to the cytosol and the Golgi appara-
tus, cell cycle dependent gene expression according to correlation 
analysis (Figure 11B). The localization of MYBL2 is the nucleoplasm 
(Figure 11C).

4  | DISCUSSION

Recent bioinformatic studies aimed to analyse differentially ex-
pressed genes, miRNAs and lncRNAs demonstrated the robustness 
of the results obtained through the integration of different GEO and 
TCGA datasets,37,38 encouraged researchers to carry out the real-
time analysis of in-motion big data, while protecting privacy and 
security.39 With the development of sequencing and bioinformatics 
technology, more and more gene datasets are released on the public 
platform, we need to sort them out, and analysed them from more 
angles.27,40,41 Compared with low-grade disease, hsa-miR-506-514 
cluster, hsa-miR-592, hsa-miR-199a-5p were related to the overall 
survival of the uveal melanoma patients.42 Up-regulated hsa-miR-
183-5p and down-regulated hsa-miR-195-5p were directly related 
to colorectal cancer in the cancer development.43 Increased C-MYC 

F I G U R E  9   TF and miRNA with seven hub gene and their regulatory network. Blue shows hub genes, circle red shows miRNAs, square red 
means TF
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associated with glucocorticoid and was resistant in acute lympho-
blastic leukaemia.44 In this study, we selected six GEO datasets (389 
GBM tumour and 67 normal tissues) and TCGA-GBM dataset (169 
GBM and 5 normal samples), which integrated them by the RRA 
method, with the criteria of log2 (fold change) > 1 and adjusted p-
value < 0.05, we filtered 133 DEGs (82 up-regulated and 51 down-
regulated) in totally. After PPI network and functional analysis, 
we identified ten DEGs (FOXM1, CDK4, TOP2A, RRM2, MYBL2, 
MCM2, CDC20, CCNB2, MYC and EZH2) as core genes in GBM. GO, 
KEGG and GSEA enrichment analyses were used to further explore 
pathways for the development and progression of GBM. TIMER im-
munity infiltration and survival analysis were validated in conjunc-
tion with the TCGA database. At the same time, we further verified 
the core genes in the CGGA, HPA and CCLE database.

FOXM1 (Forkhead Box M1) is a member of FOX family and lo-
cated on the chr12p13.33, which emerged as a key molecule impli-
cated in initiation and progression of cancer.45 FOXM1 is a high-risk 
myeloma gene with poor prognosis, FOXM1 was up-regulated 

between GBM and normal tissues, and enriched in the GO term: cell 
cycle arrest, G2/M transition of mitotic cell cycle, negative regulation 
of stress-activated MAPK cascade, suggesting that FOXM1 might 
be a potential gene in gliomas development. MYBL2 (MYB Proto-
Oncogene Like 2) is a member of the MYB family of TF genes, is a 
key downstream factor of AKT/FOXM1 signalling to promote pro-
gression of human glioma.46 The expression of COL1A2 (Collagen 
Type I Alpha 2 Chain) in GBM could significantly improve survival 
benefit after aggressive treatment compared with the proneural pa-
tients.47 COL1A2 was associated with poor outcomes in GBM and 
validated to be significantly linked to poor prognosis in both TCGA 
and CGGA database,48 as well as our study, so the over expression 
of COL1A2 might be important to the development of GBM. CDC20 
(Cell Division Cycle 20) was reported as a target for overcoming 
TMZ-resistance (Temozolomide resistance) in GBM.49 CDC20 de-
tected in the nucleoplasm and cytosol, compared with other RNA 
cell lines, although the gene expression is not cell-dependent, the 
expression of CDC20 in U251-MG GBM cell line is the highest. We 

F I G U R E  1 0   CCNB2 validated in CGGA database. A, Prognostic accuracy of the CCNB2 evaluated by the AUC of the time-dependent 
ROC with respect to 1, 3 and 5 year survival of glioma patients in the CGGA dataset; B and C, Univariate and multivariate cox analysis of 
CCNB2 in CGGA; D. to J. The expression of CCNB2 in different types
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also found CDC20 is overexpressed in GBM with a poor prognosis 
in GBM patients.

DC are the antigen-presenting cells, pathways of DCs are im-
portant to control the development of immune response and 
decisions on vaccination.50 MYC (MYC Proto-Oncogene, BHLH 
Transcription Factor) in GBM was highly correlated with DC (partial 
cor = 0.27, P-value = 1.95e-08), could control the immune response. 
Activation of the MYC signalling pathway in normal astrocytes ex-
posed to GBM-EV may be the mechanism by which GBM acquires a 
phenotype that promotes tumour progression,51 MYC was enriched 
in developmental process and protein binding in this study, was con-
sistent with the predictions of this study.

The miRNAs found altered in GBM have been widely reported, 
hsa-miR-21 was overexpressed in the development and progression 
of GBM.52 Our previous study has established ceRNA network and 
identified miRNA, lncRNA and TF were glioma-related molecules in 
GBM.6 In current study, hsa-miR-21-5p was involved in the regula-
tion of CDK4 and MYC, which known to be detected in the GBM 
development. Six lncRNA-related ceRNA combined with four small 
molecule compounds were considered to help identify the regula-
tory functions of lncRNAs in the pathogenesis of GBM.53 Via recruit-
ing EZH2, LncRNA HOTAIR modulated the chromatin architecture.54 
We also found that lncRNA APTR and lncRNA H19 were up-regu-
lated in GBM which interacted with EZH2, played a role in inhibit-
ing the cell proliferation and promoting the tumorigenesis. LncRNA 
HOTAIR could also down-regulate EZH2 promoting cell cycle, cell 

proliferation and cell invasion. E2F4 was increased in GBM, which 
stimulated the GBM growth.55 FOXM1 could also interact with E2F4 
in this study. It was confirmed that the miRNAs here identified are 
able to target the hub genes here identified (specially CDK and cy-
cline families).

Ten hub genes were all overexpressed in GBM, functional en-
richment results focused on these up-regulated genes, there were 
many significant enrichment results. CDK4, MCM2 and MYC were 
response to G1/S transition of mitotic cell cycle (GO:0 000 082) in 
biological process and enriched in the cell cycle (hsa04110) in KEGG 
pathway. CDK4, RRM2 and CCNB2 were related to p53 signalling 
pathway (hsa04115), which might activate the p53 signalling path-
way via CDK4, RRM2 and CCNB2, might also have regulatory effects 
in glioma cells. EZH2 (Enhancer of Zeste 2 Polycomb Repressive 
Complex 2 Subunit) was up-regulated in GBM, lncRNA HOTAIR, 
APTR and H19 could interact with EZH2, which promoted cell cycle, 
cell proliferation, cell invasion and tumorigenesis in GBM.

In our study, CCNB2, CDC20 and MYBL2 were up-regulated 
in GBM compared with control brain tissues, with poor progno-
sis in GBM patients. We found that mRNA expression of CCNB2, 
CDC20 and MYBL2 was significantly different in primary, recurrent 
and secondary GBM (primary > recurrent>secondary), suggesting 
that CCNB2, CDC20 and MYBL2 might be involved in the origin of 
GBM. The results described above indicated that CCNB2, CDC20 or 
MYBL2 was independent prognostic marker for overall survival and 
might play a significant role in determining glioma prognosis, and the 

F I G U R E  11   Validation of core hub genes in CCLE and HPA database. A, CCNB2; B, CDC20; C, MYBL2. The upper part of figure means 
the comparison of the RNA-seq expression in the glioma cells and the Achilles shRNA knockdown gene. The X axis is achilles shRNA 
knockdown: core gene, Y axis means mRNA expression (RNA-seq): core gene. The lower part of figure shows immunofluorescent staining of 
human cell line U251-MG, green represents antibody, red means microtubules, blue means nucleus. The scale bar was 20 μm
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association between CCNB2, CDC20, MYBL2 and GBM should be 
investigated further.

5  | CONCLUSIONS

In summary, bioinformatics analysis in the context of big data iden-
tified key roles for ten hub genes FOXM1, CDK4, TOP2A, RRM2, 
MYBL2, MCM2, CDC20, CCNB2, MYC and EZH2 in the develop-
ment, progression, diagnosis, treatment and prognosis of GBM. 
These results provide candidate gene for molecular targeting ther-
apy and biomarker for radiotherapy of GBM cancer, and further in 
vivo and in vitro experiments are needed to validate the role of these 
screened genes and pathways. At the same time, further research 
is needed for the synergistic interaction between CDC20, CCNB2 
and MYBL2.
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