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ABSTRACT

RNA structures regulate awide range of processes in biology anddisease, yet small molecule chemical probes or drugs that
can modulate these functions are rare. Machine learning and other computational methods are well poised to fill gaps in
knowledge and overcome the inherent challenges in RNA targeting, such as the dynamic nature of RNAand the difficulty of
obtaining RNAhigh-resolution structures. Successful tools to date include principal component analysis, linear discriminate
analysis, k-nearest neighbor, artificial neural networks, multiple linear regression, and many others. Employment of these
tools has revealed critical factors for selective recognition in RNA:small molecule complexes, predictable differences in
RNA- and protein-binding ligands, and quantitative structure activity relationships that allow the rational design of small
molecules for a given RNA target. Herein we present our perspective on the value of using machine learning and other
computation methods to advance RNA:small molecule targeting, including select examples and their validation as well
as necessary and promising future directions that will be key to accelerate discoveries in this important field.
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INTRODUCTION

Modulating RNA biological function by RNA-targeting
small molecules (SMs) can be extremely challenging yet
the potential is immeasurable. The ability to control RNA-
dependent processes with drug-like molecules will not
only reveal novel fundamental biology but create pathways
to orally available therapeutics for a wide range of human
diseases (McKnight and Heinz 2003; Hong et al. 2014;
Bernat and Disney 2015; Slaby et al. 2017; Fedorova et al.
2018; Lekka and Hall 2018; Tang et al. 2020; Zamani and
Suzuki 2021). The medicinal chemistry community has
been exhibiting a growing interest in targeting nonriboso-
malRNAs (Warneretal. 2018;Costalesetal. 2020), andven-
ture capital and pharmaceutical companies are making
significant investments in this space. The first and only SM
FDA approved drug targeting nonribosomal RNA, risdi-
plam (Evrysdi),wasapproved for treatment of spinalmuscu-
lar atrophy inAugustof 2020 (Ratni et al. 2018;Markati et al.
2022). However, this gold rush has revealed its Achilles’

heel in the form of our still incomplete knowledge of the
molecular recognition underlying RNA–SM interactions.
Our knowledge of SM recognition of biomacromolecules

comes almost exclusively from protein targeting, but the
chemical and physical properties of RNA are distinct
(Falese et al. 2021). For example, RNA has four nucleobase
monomers that have similar chemical functionality, namely
one to two heteroaromatic rings substituted with amine
and carbonyl functional groups (Fig. 1). Protein amino acid
side chains run the gamut of chemical functionality, includ-
ing a wide range of pKa’s (∼3–13) leading to both positive
and negative charges, alkyl and aromatic groups, a range
of hydrogen bonding acceptors and donors, and thiols ca-
pable of disulfide interactions. This diversity combined
with the neutral amide backbone of proteins allows close
packing and the formation of hydrophobic pockets, both
of which are more difficult with the densely charged back-
bone of RNA (Fig. 1). In addition, specific drivers
ofmolecular recognition areoften inferred fromhigh-resolu-
tion 3D structures, yet there are fewer than 50 high resolu-
tion (<2.7 Å) unique RNA:SM complexes, which is less
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than 0.5% of the respective number for proteins (Padroni
et al. 2020). This paucity is in part due to challenges in
RNA structure determination techniques, such as X-ray crys-
tallography, as a result of theabilityofRNA toadoptmultiple
conformational states and its highly charged backbone.
These challenges hinder both a fundamental understanding
of RNA:SM recognition and the feasibility of structure-guid-
ed drug design. Therefore, alternative approaches are re-
quired to advance the field of SM RNA targeting.

Pattern recognition and other machine-learning meth-
ods have proven to be a valuable alternative to elucidate
the drivers of RNA:SM recognition and SM functional im-
pact without a priori knowledge of RNA 3D structure.
Methods such as linear discriminate analysis (LDA), princi-
pal component analysis (PCA), and artificial neural net-
works (ANN) have been used to identify patterns of
molecular recognition in a wide variety of analytes, from
ions to whole cells, and more recently RNA (Eubanks and
Hargrove 2019; Yazdani et al. 2022). At a high level, both
LDA and PCA produce a set of linear combinations of
the input variables that are plotted orthogonally for data
visualization and provide insight into the properties that
drive clustering. In LDA, the goal is to increase clustering
within and maximize differences between predefined clas-
ses. PCA does not use predefined classes but insteadmax-
imizes variance and covariance within the entire data set.
The most common ANNs are feedforward neural networks
(NNs) in which input data is weighted and transformed in a
hidden layer to give the desired output, often classifica-
tions. While powerful, ANNs are often a “black box” in
terms of what factors lead to classification.

In the case of RNA:SM recognition, clustering in LDA and
PCA can be driven by the SMs or by the RNA. In the former
case, SM physicochemical and other quantifiable properties
have been combinedwith a behavior, that is, RNAbindingor
protein binding, to generate insight into themost critical SM
properties for achieving those behaviors (Morgan et al.
2017). Conversely, patterns in RNA structures have been elu-
cidated via differential SM binding to better understand the
RNA features that allow for specific RNA:SM interactions
(Eubanks et al. 2017; Eubanks and Hargrove 2017). More

complex machine-learning methods, such as the tree-like
methodTreeMAP, have allowed for prediction of RNA-bind-
ing behavior versus protein-binding behavior (Yazdani et al.
2022). For a specific RNA target, quantitative structure–activ-
ity relationship (QSAR) studies can substitute for structure-
baseddrugdesign (Cai et al. 2022). In thismethod, hundreds
of SM physicochemical and other properties are calculated,
and the descriptors most important for differentiation in the
studied behavior (e.g., binding affinity or kinetic rate con-
stants) are selected. These select descriptors can be used
to build predictive models using a variety of machine-learn-
ing approaches, including multiple linear regression (MLR)
and ensemble tree methods. Herein, we overview represen-
tative examples from our laboratory and others to leverage
machine-learning methods to elucidate the drivers of RNA:
SM recognition as well as our perspective on the needs
and opportunities moving forward. We hope to inspire oth-
ers interested in RNA:SM targeting to utilize these and other
machine-learning methods, as we collectively build tools
that will allow SM modulators to be identified for the full
range of biologically functional RNA structures.

REVEALING PATTERNS IN SELECTIVE RNA:SMALL
MOLECULE INTERACTIONS

Cheminformatic properties of bioactive RNA ligands

The recent expansion of the number of reported bioactive
RNA ligands opens the opportunity to use cheminformatics
tools and machine learning to better understand RNA:SM
recognition. Based on the differences in chemical functional-
ities of RNA and protein, our initial hypothesis was that bio-
active RNA ligands have specific molecular properties that
drive selectivity in RNA targeting and, at the same time,
are distinct from protein ligands. Indeed, structural and
chemical differences between protein-binding pockets and
RNA motifs supported the existence of specific molecular
recognition patterns in RNA-targetingmolecules versus pro-
tein ligands (Hewitt et al. 2019; Padroni et al. 2020).

To test this hypothesis, we built the RNA-targeted
BIoactive ligaNd Database (R-BIND) (Morgan et al. 2017).

FIGURE 1. Schematic representation of the four RNA nucleosides and negatively charged backbone. Curved dashed lines highlight the amine
and carbonyl functional groups as sites of hydrogen bonding on heteroaromatic rings.
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Created in 2017, R-BIND incorporated molecules reported
in the literature for in vitro binding to nonribosomal RNA
through noncovalent interactions and was the first database
to includebiological activity in cellularand/oranimalmodels
as an essential criterion (Morgan et al. 2017, 2019; Donlic
et al. 2022). Aminoglycosides (Ags), covalent ligands, pep-
tides, and oligonucleotides were excluded in this analysis
due to dramatic differences in molecular properties relative
to traditional“drug-like” smallmolecules.R-BINDcharacter-
ized ligandswith 20 physicochemical and structural descrip-
tors as well as three-dimensional shapes, that is, disk-, rod-,
and sphere-like, using principal moments of inertia (PMI)
(Morgan et al. 2017). Comparison of the properties found
in FDA-approved SMdrugs, as a source of bioactive protein
ligands, revealed that R-BINDoccupied a specific subregion
of the space occupied by the FDA library, considered as
“drug-like” space (Fig. 2A; Donlic et al. 2022). Here, k-NN
clustering analysis determined the quantitative overlap of
the two libraries, revealing that 31% of R-BIND SM and 9%
of FDA library overlap with the other library’s cluster

(Morgan et al. 2017). The differentiation between R-BIND
and FDA libraries was described in terms of physicochemi-
cal, structural and spatial descriptors (Donlic et al. 2022).
Several physicochemical and structural descriptorswere sig-
nificantlydifferentbetween the two libraries.Cell-basedpar-
titioning assisted the quantitative comparison of SM
distribution in the PMI triangle (Fig. 2B), and cumulative fre-
quency distribution found that while both are enriched with
rod-like SM, R-BIND is significantly more enriched than the
FDA library (Morgan et al. 2017).
Through PCA,wemapped the physicochemical and struc-

tural descriptors of R-BIND SMs to define an RNA-privileged
chemical space. R-BINDalso led to the identification of RNA-
privileged scaffolds and subunits, and “R-BIND-likeness”
became a parameter to be leveraged in the design of selec-
tive ligands for RNA via k-NN (Fig. 2C; Hargrove 2020). The
database was made accessible to the community as a web-
site platform (https://rbind.chem.duke.edu/) (Morgan et al.
2019). Here, the user can explore the latest R-BIND version,
using “Parameter Search,” “Structure Search,” and

A B

C

FIGURE 2. (A) 3D representation of principal components (PCs) 1, 2, and 3 that plots R-BIND SMs and FDA-approved SMs (adapted with per-
mission from Donlic et al. 2022, # American Chemical Society; (B) Principal moments of inertia (PMI) triangle partitions in four subtriangles, rep-
resenting rod-like (1), sphere-like (2), disc-like (3) and hybrid shapes (4); example molecules are provided for each shape, (1) NVS-SM1 (Palacino
et al. 2015), (2) compound 139 from FDA curated library (Donlic et al. 2022), (3) roseoflavin (Lee et al. 2009), and (4) CP6 (Khan et al. 2019) (adapted
with permission from Morgan et al. 2017, # Wiley VCH); the dashed triangle outlines the subtriangle 1 where library averages are located. (C )
Schematic representation of the k-nearest neighbor (k-NN) algorithm. The R-BIND SMs, plotted in the chemical space, are used to define nearest
neighbors, averaging the smallest distance for each newmolecule (adaptedwith permission fromMorgan et al. 2019,#American Chemical Society).
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“Advanced Search,” or use the “Nearest Neighbor Search”
function to assess the proximity in the chemical space be-
tween R-BIND members and user-input molecules (Fig. 2C;
Morgan et al. 2019). As R-BINDundergoes biennial updates,
becomingmore andmore populated, the descriptor averag-
es and distributions have proven consistent (Morgan et al.
2019; Donlic et al. 2022).

Leveraging the increased size of themost recent R-BIND
update, we were able to use pattern recognition to further
differentiate this space into RNA substructures and identify
privileged SM properties for binding to specific structural
motifs. Using LDA, R-BIND SMs could successfully classify
five selected RNA structures, namely bulges, G-quadru-
plexes, double-stranded RNA, internal loops, and stem–

loops (Donlic et al. 2022). This analysis also revealed several
physicochemical properties that contributed to RNA
structure classification. For instance, G-quadruplex-bind-
ing ligands had thehighest averagenumberof rings andar-
omatic rings while double-stranded RNA-binding ligands
had an enriched lipophilic character, and ligands targeting
more flexible and solvent-exposed bulges had a higher
MW, number of rotatable bonds, and surface area parame-
ters (Donlic et al. 2022).

Other studies have found consistency in RNA-binding SM
properties, includingcollaborativeworkbetween theDisney
laboratoryandthemedicinalchemistrygroupatAstraZeneca
in which RNA binders were identified from an AstraZeneca
corporate collection of twomillion compounds (Haniff et al.
2020). Thecollectionwas first filtered in silicobasedonphys-
icochemical properties of varied RNA binders from the
Inforna database (Disney et al. 2016), and the remaining
1967 compounds were screened via high-throughput struc-
ture–activity relationships through sequencing (HiT-
StARTS),whichidentified27hits (Haniffetal.2020).Thecom-
parisonbetweenRNAbinders andnonbinders revealed fea-
tures suggested to define RNAbinding, including increased
lipophilicity, reduced flexibility, increasedpolar surfacearea,
and anenrichment in nitrogen atoms, aromatic rings and hy-
drogen-bonddonors, largely in agreementwith the features
of R-BIND members. Scaffold-based comparison with R-
BIND (Morgan et al. 2019) unveiled dissimilarities between
the reported new hits and R-BIND ligands (Haniff et al.
2020), which is consistent with R-BINDmolecular properties
accommodating many scaffolds. These results support the
use of R-BIND for the discovery of novel privileged scaffolds
and chemotypes tomodulate RNAs.

R-BIND established the power of cheminformatics and
machine learning in the RNA-targeting field, quantitatively
defining features that drive RNA:SM recognition and iden-
tifying both RNA-privileged molecular properties and tar-
getable RNAs without requiring a priori knowledge of the
RNA structure. As the R-BIND platform grows, we expect
to generate a consolidated toolbox of machine-learning
methods to access and optimize RNA-focused libraries in
structure- and ligand-based design.

Classifying RNA binders versus protein binders

As the number of RNA-privileged chemotypes and scaf-
folds is increasing, the field is identifying the properties
that favor RNA binding over protein binding and consoli-
dating the boundaries of RNA-targeting chemical space.
A recent collaborative study between the Schneekloth lab-
oratory and Ladder Therapeutics usedmachine learning to
develop predictive models that identify RNA-targeting li-
gands from drug-like libraries (Yazdani et al. 2022). Here,
a library of more than 24,000 compounds was selected on
the basis of commercial availability, synthetic feasibility,
anddrug-likeparameters, andscreened ina smallmolecule
microarray (SMM)against36differentnucleicacidswithvar-
ied structures. Fromthis, a RepositoryOfBInders toNucleic
acids (ROBIN) library was derived, containing 2003 RNA
binders (Yazdani et al. 2022). A comparative analysis of
ROBIN with FDA-approved drugs used least absolute
shrinkage and selection operator (LASSO) logistic regres-
sion to achieve a binary classification and identified 41/
1664descriptors,generatedby theMordredsoftwarepack-
age (Moriwakietal. 2018), as themost important todifferen-
tiate RNA and protein binding within a set of drug-like
molecules (Yazdani et al. 2022). Further, tree-MAP (TMAP)
was used to map ROBIN RNA binders, FDA-approved
drugs, and 10,000 protein binders from BindingDB in
chemical space, clustering them into branches. Ligands
were encoded by extended connectivity fingerprint up to
four bonds (ECFP4 fingerprints). Additionally, this cluster-
ing may identify RNA-off targets among current drugs and
inform the design of bioactive RNA-targeting molecules.
Further, LASSO logistic regression and multilayer percep-
tron (MLP), a class of neural networks, were compared for
their performance in the classification of ROBIN RNA bind-
ers and the entire BindingDB set of 77,678 protein ligands,
using an oversampling strategy to augment the size of the
ROBIN RNA binders set (Yazdani et al. 2022). According
to mean area under the receiver operating characteristic
(AUROC), the nonlinear model MLP performed better
than LASSO in the classification and identified properties
suchasvanderWaals surface,aromaticity, topological char-
ge, hydrogen-bond acceptors, nitrogen number, and frac-
tion of sp3 hybridized carbons as strongly predictive for
RNA recognition in drug-like libraries, many in line with R-
BIND findings (Yazdani et al. 2022). This represents addi-
tional evidence that machine-learning algorithms can suc-
cessfully address the complexity of molecular properties
driving RNA recognition.

An experimental approach to identify off-target RNA
binding of approved drugs was developed in the Kool lab-
oratory (Fang et al. 2022). Reactivity-based RNA profiling
(RBRP) tested transcriptome-wide targeting of protein-tar-
geting molecules selected from preclinical studies, Phase
3, and FDA-approved drugs, and many identified binding
events were proposed as responsible for known biological
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side effects. The study used R-BIND as a source of RNA-
binding SMs to perform a structural comparative analysis
with their tested set of protein-targeting molecules and
found significant chemical similarity between their newly
identified RNA binders and R-BIND.
These studies reveal the power of machine learning to

identify molecules with both RNA-binding and drug-like
properties and to unveil potential off-target effects of ex-
isting ligands.

RNA structures differentiated by small molecules

Given the paucity of high-resolution RNA:SM structures, al-
ternativemethods are needed to understand the RNAprop-
erties that allow selective recognition by SMs. Toward this
end, we developed pattern recognition of RNA by small
molecules (PRRSM) basedon a training set of RNA sequenc-
eswith a rangeof simple,well-predictedsecondary structure
motifs and incorporated benzofuranyluridine (BFU)
(Eubanks et al. 2017) as a solvatochromic dye within each
secondary structure (Fig. 3A). Each construct was exposed
to elevenAGs at various concentrations, andemission inten-
sity was used as input for PCA. Unbiased clustering of each

secondary structure class, as well as unique structures within
each class, provided evidence for structure-specific recogni-
tion properties (Fig. 3B). Additionally, the results in different
buffer conditions suggested that RNA secondary structures
are best differentiated under conditions that favor dynamic
motion (Eubanks and Hargrove 2017). These results under-
scored the importance of shape complementarity and pro-
vided a better understanding of the role of RNA
conformational dynamics in SM recognition, with bulge
structures as particularly promising targets among the sec-
ondary structures studied. The classification of targets using
R-BIND ligands mentioned above (Donlic et al. 2022) sup-
ported the value and feasibility of using pattern recognition
tounderstandmore complex structures in the future.The ini-
tial classification was validated using differential labeling of
human immunodeficiency virus-1 trans-activation response
(HIV-1-TAR) element where PRRSM could predict bulge-la-
beled or apical-loop labeled RNA. Using this predictive
power, we were able to distinguish and predict specific
RNA-foldedstates as representedby thePreQ1and fluoride
riboswitches (Fig. 3C; Eubanks et al. 2019).
Other tools also allow for complementary methods of

elucidating binding patterns between SMs and RNA

A

C D

B

FIGURE 3. (A) The 16 RNA training set sequences, including stems, bulges (Blg), internal loops (IL), asymmetrical internal loops (AIL), and hairpins (HP)
used in PRRSM. BFU-labeledposition shownwith blue star. (B) Differentiation of the five structural classes of the training set using PCA. (C ) Differentiation
of the individual training set sequences. PC1 correlated to the increasing motif size (from stem to AIL), while PC2 correlated to the purine: pyrimidine
ratio, which is dependent on the sequence of the RNA (HP to IL); (D) PRRSM classification of Pre-Queuosine1 (PreQ1) and fluoride riboswitch confor-
mational changes. Each construct was labeled with BFU in three positions and subjected to the assay. PRRSMwas able to classify these RNA structures,
including folded and unfolded states, and provide insight into sites that are critical for these structural changes. All PRRSM-based observations of
unfolded and folded riboswitch states were confirmed via NMR (adapted with permission from Eubanks et al. 2017, 2019, # American
Chemical Society).
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secondary structural motifs, which emerge from several
RNA-targeting curated platforms, such as Inforna by
Disney (Disney et al. 2016), RNALigands by Zhang (Sun
et al. 2022), and RNAmigos by Waldispühl (Oliver et al.
2020). The last platform tries to bridge RNA targeting
and machine learning and gives more contribution to non-
canonical base pairs to explain higher-order RNA struc-
tures and ligand modulation, in agreement with the most
recent molecular dynamic (MD) simulation models.

Exploration of RNA-privileged small molecule space
via scaffold-based synthetic libraries

One strategy to continue the exploration, validation, and ex-
pansion of RNA-privileged chemical space is to generate
synthetic SM libraries, and we chose to use scaffolds with a
known propensity to bind nucleic acids and demonstrated
clinical utility (Patwardhan et al. 2017; Donlic et al. 2018;
Zafferani et al. 2022). Compared to current commercially
available libraries, which generally occupy a similar subsec-
tion of R-BIND chemical space, we cangenerate and analyze
synthetic libraries that complete coverage and push the
boundaries of R-BIND space. Continuous synthetic tuning
of these scaffolds has led to the discovery of lead molecules
for chemical probe development of medicinally relevant
RNA targets, including viral and long noncoding RNA struc-
tures (Patwardhan et al. 2019b). In subsequent analysis, ma-
chine-learning techniques have allowed insight into drivers
of selectivity and informed novel SM design based on the
analyzed physicochemical and spatial properties.

Our first efforts explored amiloride, an FDA-approved
diuretic, as an RNA-binding scaffold. Dimethyl amiloride
(DMA) was previously identified by the Al-Hashimi group
as a weak but selective binder to HIV-1 TAR RNA (Stelzer
et al. 2011). We synthesized a library of 28 amilorides
and evolved the lead molecule (DMA-1) into a strong,
selective TAR ligand (DMA-169) through modifications at
the C5 and C6 positions (Fig. 4A). Each member was as-
sessed for its affinity and selectivity for TAR with addition
of excess tRNA and DNA. This screening data allowed
for cheminformatic analysis by LDA to determine whether
a combination of the 20 cheminformatic parameters used
to analyze R-BIND could predict binding and/or selectivity
(Fig. 4B; Patwardhan et al. 2017). Predictive power was
achieved for selective binders, but separation was not
seen for promiscuous or nonbinders. Cheminformatics
with LDA provided specific insights into parameters critical
for the selective molecular recognition of amilorides to
TAR RNA, specifically those related to stacking and hydro-
gen bonding interactions.

To achieve better insights into differential drivers of selec-
tivity, promiscuity, and nonbinding SMs, we leveraged the
tunability of the amiloride scaffold, synthesizing new deriva-
tives and investigating their selectivity profile against five
HIV RNAs (Fig. 5A; Le Grice 2015). Some trends could be

observed directly from the screening results, particularly
for ligands demonstrating differential binding between
TAR and ESSV, but important insights into selective RNA
recognition were gained from pattern recognition. We
used hierarchical clustering of the screening data to define
classes and then combined cheminformatic analysis with
LDA. In this case, the LDA loading plots revealed several
qualitative trends for promiscuous and nonbinding ligands.
For example, nonbinding ligands tended to have more ox-
ygens, more sp3 centers, and higher relative polar surface
area (Fig. 5B,C), which correlated to the descriptors defining
FDA chemical space relative to R-BIND, validating our pre-
vious R-BIND analysis (Patwardhan et al. 2019b).

Diphenylfuran (DPF) and diminazine (DMZ) are other
promising scaffolds with synthetic versatility and known nu-
cleic acid binding properties (Fig. 6A; Pilch et al. 1995; Zhao
et al. 1995; Gelus et al. 1999; Chaires et al. 2004; Nguyen
et al. 2009). We first explored targeting of the 3′-triple helix
of the long noncoding RNA metastasis associated lung ad-
enocarcinoma transcript 1 (MALAT-1; Donlic et al. 2020),
which has been observed to accumulate at high levels in
many cancer types andwhere the 3′-triple helix acts as a sta-
bilizing structural motif to prevent the degradation of the
MALAT1 transcript. We synthesized derivatives with varying
subunits at the ortho-, para-, andmeta-positions of the phe-
nyl rings, which led to diversity of 3D shapes as determined

A

B

FIGURE 4. (A) Combinatorial modifications at the C5 (blue) and C6
(red) positions of the amiloride scaffold optimized affinity of DMA-1
to give lead DMA-169. Selective ligands showed competitive dis-
placement doses (CD50) of∼4–200 µM. (B) Linear discriminate analysis
(LDA) plot based on 20 cheminformatic parameters clusters selective
amiloride derivative ligands from nonbinding and nonselective li-
gands (panels A and B adapted with permission from Patwardhan
et al. 2017, # Royal Society of Chemistry).
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by PMI (Donlic et al. 2020). Combining screening with PMI
analysis of both libraries revealed a general trend that more
rod-like shapes, that is, para-substituted derivatives, exhib-
ited the strongest binding to the MALAT1 triple helix (Fig.
6C). Collectively, these studies established the importance
of shape-based recognition in high affinity triple helix bind-
ing, particularly validating the R-BIND analysis of biased
rod-like shapes. In addition to PMI, other methods such as
QSAR, which is discussed in more detail below, can be uti-

lized to allow identification of other 3D parameters that
directly contribute to SM binding events.
Together, the studies of the DMA, DPF, and DMZ scaf-

fold-based libraries have showcased the power of compu-
tational analysis to reveal important properties of tunable
and diverse RNA-privileged scaffolds and build diverse li-
braries that reveal important RNA-targeting properties for
additional investigation. Efforts to discover additional nov-
el RNA-binding scaffolds will lead to further insights into

A

B C

FIGURE 5. (A) Secondary structures of HIV RNAs screened with DMA library. (TAR) Trans-activation response element, (RRE) rev response ele-
ment, (FSS) frameshift-stimulating, (ESSV) exonic splicing silencer of Vpr. (B) Linear discriminate analysis (LDA) plot based on 20 cheminformatic
parameters clusters to differentiate five groups of ligands for HIV RNA targets. (C ) LDA loading plot for the qualitative analysis of the contribution
of each cheminformatic parameter contributing on F1 versus F2. (MW)Molecular weight, (HBA) number of hydrogen bond acceptors, (HBD) num-
ber of hydrogen bond donors, (LogP) n-octanol/water partition coefficient, (RotB) number of rotatable bonds, (tPSA) topological polar surface
area, (LogD) n-octanol/water distribution coefficient, (N) number of nitrogen atoms, (O) number of oxygen atoms, (Rings) number of rings,
(ArRings) number of aromatic rings, (HetRings) number of heteroatom-containing rings, (SysRings) number of ring systems, (SysRR) ring complex-
ity, (Fsp3) fraction of sp3 hybridized carbons, (ASA) accessible surface area, (relPSA) relative polar surface area, (VWSA) van der Waals surface area
(panels A–C adapted with permission from Patwardhan et al. 2019b, # Royal Society of Chemistry).
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the unique RNA features and SM properties critical for
binding. By leveraging this scaffold-based library strategy
in combination with cheminformatic and machine-learn-
ing–based tools, we have revealed preliminary guidelines
to understand the chemotypes and chemical properties
that drive affinity and selectivity in RNA:SM interactions
and unveil which factors are critical for development of fu-
ture novel chemical probes and therapeutics.

APPLICATIONS TO RNA-TARGETED CHEMICAL
PROBE DISCOVERY

Design of diverse RNA-privileged libraries

One promising application of these insights in RNA:SM rec-
ognition is the design of RNA-specific screening libraries.
Such libraries will be valuable given that RNA ligands have
distinct features from the protein ligands or FDA-approved
SMs around which most libraries are constructed. For exam-
ple,Nickbarg andcoworkers used affinitymass spectrometry
to screen 42 RNA ligands against∼55,000 SMs that had also
been screened against protein targets. Naïve Bayesianmod-
elswereconstructedwith thisdata to identifycheminformatic
properties biased toward RNA targeting. These features
were used to build an ∼3800-member RNA-specific library
that showed increased hit rates for RNA (Rizvi et al. 2020).

Recently, we chose to use the k-NN method using 20
cheminformatic parameters to design a screening set
based on the R-BIND library (SL Wicks, BS Morgan, A
Wilson, AE Hargrove, in prep.). k-NN effectively created
a 20-dimensional space in which distances between each
molecule were measured. We could then evaluate com-
mercial libraries using this same space to identify mole-
cules close in properties to R-BIND molecules. One
advantage of this method is that it avoids the use of scaf-
fold hopping or fingerprints, computational techniques
that rely on chemical substructures, which can limit the
structural diversity of the generated library. From more
than 2,500,000 commercially available ligands we select-
ed a diverse set of 804 molecules. Screens of this library
have identified ligands for all unique RNA targets tested
to date (n>10), validating this strategy (SL Wicks, BS
Morgan, A Wilson, AE Hargrove, in prep.). At the same
time, we discovered that specific regions of R-BIND chem-
ical space were either inaccessible or sparsely occupied by
commercially available molecules. Using methods such as
k-NN and QSAR, we are generating synthetic molecules
that cover this space and will allow for a comprehensive
RNA-targeting library.

Quantitative structure activity relationship (QSAR)
studies for RNA

The rational design of SMs for a specific RNA target is still a
hinderedmilestone, due to the difficulties in RNA structure
characterization and our incomplete understanding of
RNA:SM binding at the molecular level (Morgan et al.
2018; Cai et al. 2022). In this scenario, machine-learning–
aided tools have the potential to take up the challenge
(Dara et al. 2022). Recently, QSAR models have landed
in the RNA-targeting field as predictive tools to assist hit-
to-lead optimization against specific RNAs (Patwardhan
et al. 2019b; Cai et al. 2022). The QSAR model defines a
quantitative correlation between the experimental binding
profile and the molecular descriptors of ligands against a
target. A training set is used to create the model, and a
test data set evaluates the predictive power of the model.
The amount and quality of data in the training set are gen-
erally the limiting factors, and the data is usually processed
and refined prior to model construction (Cai et al. 2022).

We first pioneered RNA-targetingQSARmodeling with a
“one-library-one-target” approach using the data from the
amiloride screen mentioned above, which was trained with
data fromDMA titrations via a Tat peptide displacement as-
say (Patwardhanetal. 2019a,b) as aproxy forbindingaffinity,
andmolecular descriptor values fromcheminformatic analy-
sis. Here HIV-1 TAR and ESSV were used, while the other
three RNAs were discarded for lacking a sufficient number
of binders for analysis (Patwardhan et al. 2019b). Linear re-
gression, exhaustive search and leave-one-out cross valida-
tion (LOOCV) identified the best two-parameter linear

A

C

B

FIGURE 6. (A) Schematic diagram of MALAT1 triple helix base-pair-
ing and crystal structure. Protein Data Bank entry 4PLX. (B)
Diphenylfuran (DPF) and diminazene (DMZ) core scaffold structures.
(C) Envelop diagram of the principal moments of inertia (PMI) calcula-
tions of the 21-member DMZ-based focus library (panels A and C
adapted with permission from Zafferani et al. 2022, # American
Chemical Society).
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models for each RNA target, with R2 used to evaluate fit and
Q2 used tomeasure the predictive power (Patwardhan et al.
2019b).TheuseofdifferentRNAconstructsallowedustotest
whether a predictive QSAR model could be applied to any
RNAconstructandtoevaluatedifferences inmolecularprop-
erties contributing tobindingofdifferent targets, paving the
way to design selective ligands.
To expand beyond a single scaffold, we challenged the

QSAR predictive power in a “multiple-libraries-one-tar-
get”model using HIV-1 TAR, for which ligands from sever-
al SM classes have been published. Here, we combined
our three RNA-binding scaffold-based libraries, DMAs
(Patwardhan et al. 2017, 2019b), DPFs (Donlic et al.
2018; Donlic et al. 2020), DMZs (Zhou et al. 2014) with
AGs, and nucleic acid dyes (Fig. 7A). We calculated nearly
400 molecular descriptors using a molecular operating en-
vironment (MOE) and, due to the increased complexity,
optimized data refinement by Pearson correlation coeffi-
cient to remove descriptors with redundancy and/or multi-
collinearity. The optimized data was split using Kennard-
Stone subsampling (Kennard and Stone 1969), and guar-
anteed that the training and test set were obtained from
uniform regions of the descriptor space (Cai et al. 2022).
This study used surface plasmon resonance (SPR) data,
which generates KD, koff, and kon values, allowing QSAR
models to be trained for thermodynamic and kinetics pa-
rameters. Kinetic insight is particularly valuable as rates
are rarely measured for RNA:SM binding, a complex event
that must be properly considered to better predict biolog-
ical activity and eventual progression to in vivo studies

(Patwardhan et al. 2019b; Cai et al. 2022). SMs generally
have slower binding to RNA compared to protein–ligand
interactions, suggesting that taking kinetics into account
can be crucial to build reliable and robust predictive mod-
els (Cai et al. 2022). To control model complexity, LASSO
was used for descriptor selection to afford the final model,
which was derived from MLR after exhaustive search and
reported in Figure 7B (Cai et al. 2022). The predictive per-
formance of MLR was compared to ensemble tree meth-
ods, such as random forest and gradient boosting
machine (Cai et al. 2022). As shown in Figure 7C,D, ensem-
ble tree methods improved the R2, while Q2 values were
unchanged compared to MLR. While MLR allows in-
creased interpretability of the trends, successful model-
building with the other methods confirmed that the select-
ed descriptors are appropriate to interpret RNA:SM inter-
actions (Cai et al. 2022). This work established the
predictive power of QSAR models and the value of multi-
plemachine-learningmethods. Moving forward, the use of
additional machine-learning algorithms, such as neural
networks, will improve the versatility of the QSAR predic-
tive models and make it possible to couple QSAR predic-
tions with generative models to increase the chemical
diversity of RNA-binding molecules (Dara et al. 2022).

EMERGING OPPORTUNITIES

The application of machine learning to the development
of RNA-targeted chemical probes has led to growing
and convergent understanding of the ideal properties of

A

B C D

FIGURE 7. (A) Representative structure of the five scaffolds used in theQSARmodel (Cai et al. 2022); graph plotting of observed and predicted ln
KD, training set in red, test set in blue, comparing (B) multiple linear regression (MLR), (C ) random forest, and (D) gradient boosting machine
(adapted with permission from Cai et al. 2022, # American Chemical Society).
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RNA ligands and initial insights into ideal RNA targets, al-
lowing applications such as RNA-specific library design,
quantitative methods for RNA-binding SM optimization,
and even predicted off-target effects of approved drugs.
Expansion in these areas will require a significant increase
in data, including new chemical matter to explore the full-
ness of RNA-targeted chemical space, the creation of ad-
ditional methods to evaluate not only binding and
kinetics but also conformation and function-related behav-
iors, and the incorporation of more complex RNA targets.
These advances will also allow the coupling of SM gener-
ation methods (Popova et al. 2018; Brown et al. 2019;
Polykovskiy et al. 2020) and established machine-learning
methods for RNA, such as nearest neighbor searches or
neural networks to allow for the generation of entirely nov-
el RNA–SM binders.

In an ideal scenario, therewould be an increase in our un-
derstanding of individual noncovalent interactions. The
analysis of the limited structures available has revealed
rod-like binding pockets (Hewitt et al. 2019) and a preva-
lence of hydrogen bonding and stacking interactions
(Padroni et al. 2020), in linewith RNA-targeting SMproper-
ties. Cryogenic electron microscopy (Cryo-EM) may offer
additional high-resolution structures, and the establish-
ment of general methods for the smaller sizes of RNA often
used to study binding is ongoing (Kappel et al. 2020).
Another opportunity may lie in docking, though this re-
quires an ensemble of structures most often identified
through in-depth nuclear magnetic resonance (NMR) ex-
periments combined with molecular dynamics (MD)
(Ganser et al. 2018). RNA 3D structure prediction methods
such as Rosetta’s Fragment Assembly of RNA with Full
Atom Refinement (FARFAR; Watkins et al. 2020) may also
facilitate progress, though these algorithms have been
largely trainedonwell-structuredRNAs, such as those ame-
nable to crystallography, and it is not clear how representa-
tive the output ensembles are for more dynamic RNAs.
Finally, the current force-fields (FFs) used in MD and dock-
ing are based on protein training sets, and the develop-
ment of FFs specific to RNA will greatly facilitate progress
(Sponer et al. 2018;Manigrasso et al. 2021). All of these ad-
vances will rely on machine learning.

Finally, progression into functional and biological assays
is required to fully understand how to design bioactive
RNA ligands, the ultimate goal of most in the field.
Below we discuss outlooks for the use of machine learning
in improved molecular dynamics and in understanding
how to modulate RNA biological functions.

Machine learning and molecular dynamics to assess
RNA druggability

RNA druggability is no longer the myth that it used to be in
the past, and RNA ordered architectures can become suit-
able sites for structure-based SM design, leading to drug

discovery. Given challenges and limitations of RNA X-ray
crystallography, the characterization of structured RNAs
to examine potential binding pockets and SM interactions
is generally the result of a joint effort of computational, bio-
physical and structural biology techniques (Ganser et al.
2018; Zhang et al. 2022). These methods include Cryo-
EM (Ma et al. 2022), NMR spectroscopy (Scott and
Hennig 2008; Barnwal et al. 2017), small-angle X-ray scat-
tering (SAXS) (Chen and Pollack 2016; He et al. 2022),
chemical probing, such as selective 2′-hydroxyl acylation
analyzed by primer extension (SHAPE; Deigan et al.
2009; Mlýnský and Bussi 2018; Busan et al. 2019) and
dimethyl sulfate (DMS; Tijerina et al. 2007), computational
methods for de novo prediction (Manigrasso et al. 2021),
homology-based models (Flores et al. 2010; Rother et al.
2011) and covariance models (Fig. 8; Tourasse and
Darfeuille 2020). This combination allows for evermore de-
tailed descriptions of RNA as either conformational ensem-
bles or single energy-minimized structure, including
studying solvent effect and ion-dependency on RNA mo-
lecular dynamics, as reported by Bernetti et al. (2021).
The combination of computation prediction and Cryo-EM
is particularly promising (Kappel et al. 2020). As a de
novo predictionmodel, FARFAR2 leverages a combination
of score filters for a library of RNA fragments, Monte Carlo
minimization to describe base-pairing interactions and an
all-atom scoring function (Watkins et al. 2018) to predict
the conformations of complex folded ncRNAs, which has
been successful for structures such as riboswitches, T-box
riboswitches and the adenovirus viral-associated (VA)-I
noncoding RNA (Watkins et al. 2020). FARFAR was com-
bined with Cryo-EM in DRRAFTER, which leveraged
Cryo-EM maps of ribonucleoprotein complexes to inform
the de novo modeling of RNA structures (Kappel et al.
2018).

Once a structural ensemble or single conformation is de-
termined, the target druggability and the design of ligands
can be informed by computational tools able to generate
predictions of the RNA:SM complex. These techniques
are mainly molecular docking model and MD simulation
(Fig. 8).

Similar to protein targeting, docking studies search for
putative SM binding pockets within structures, identify
hits through virtual screening (VS), and predict RNA:SM
complexes. Internal Coordinate Mechanics (ICM,
Molsoft; Neves et al. 2012) represents amodeling-docking
platform successfully used to search for binding pockets in
RNA molecules and study RNA:protein (Arnautova et al.
2018) and RNA:SM (Zafferani et al. 2021) complexes.
Validated prospective docking studies have required ex-
perimentally informed ensembles but have also been
very successful, such as the work by the Al-Hashimi labora-
tory targeting HIV-1-TAR RNA (Ganser et al. 2018). The
analysis of RNA:SM complexes may also serve as a retro-
spective tool to corroborate binding and activity data. For
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example, we reported docking studies of DMA-132, DMA-
135, and DMA-155 in complex with FARFAR-generated
structures of SL 1 and 6 of SARS-CoV-2 (Zafferani et al.
2021) andofDPF-p8 onMALAT1 triple helix, using the avail-
able crystallographic structure (PDB ID: 4PLX) (Donlic et al.
2020). Often, however, shallow binding pockets and RNA
dynamics and flexibility make it difficult to generate reliable
binding poses with conventional docking protocols
(Manigrasso et al. 2021). Promisingly, some protein-based
scoring functions have been adapted to address RNA mo-
lecular properties, for instance considering the water solva-
tion state of boundRNA, the desolvation effect and the high
structural flexibility (Manigrasso et al. 2021). These functions
include AutoDock (Moitessier et al. 2006), MOlecular
Recognition with a Driven dynamics OptimizeR
(MORDOR; Guilbert and James 2008), rDock (Ruiz-
Carmona et al. 2014), DrugScoreRNA (Pfeffer and Gohlke
2007), and LigandRNA (Philips et al. 2013). Nonetheless,
the description of SM binding mode, including intercala-
tion, together with the dynamic conformational states that
may be sampled or induced by SMs can be better ad-
dressed by the use of methods to study the complex
dynamicity in a time-dependent way, such asMD simulation
systems assisted by machine learning (Manigrasso et al.
2021; Dara et al. 2022).
Given the dynamic RNA conformational landscape,

identifying metastable states is both critical and challeng-
ing (Sponer et al. 2018). MD simulations methods predict
RNA molecular conformations at the atomistic level and
would also increase understanding of RNA:SM binding ki-
netics (Manigrasso et al. 2021). As extensively reviewed by
Ganser et al. (2019), the postulated RNA-ensemble-func-
tion paradigm strongly underscores the importance of
understanding how RNA conformational fluctuationsmod-
ulate RNA, how to exploit them as drug targets, and how to
consider ligand-induced reorganization of RNA structure
(Ganser et al. 2020). Overall, development of performant

computer-aided simulations is a com-
pelling goal to expand the window of
RNA-targeting drug discovery.

MD simulations require basic ap-
proximation combined to specific pa-
rametrization to simulate atom
positions in a time-dependentmanner
(Sponer et al. 2018). The approxima-
tion is achieved bymolecularmechan-
ical (MM) FFs, which establish a
correlation betweenmolecular geom-
etry and potential energy (Sponer
et al. 2018). Generally employed FFs
can be suitable to study nucleic acids.
FFs differ in terms of accuracy andper-
formance and can be classified in two
categories, namely all-atom FFs and
the coarse-grained FFs. All-atom FFs

are the most used and include Assisted Model Building
with Energy Refinement (AMBER; Cornell et al. 1995;
Perez et al. 2007; Yildirim et al. 2010; Zgarbova et al.
2011), Merck molecular force field (MMFF; Tosco et al.
2014), and Chemistry at Harvard Macromolecular
Mechanics (CHARMM; Denning et al. 2011). Due to some
limitations such as the nucleobase overstacking of
AMBER and the nucleobase understacking of CHARMM
(Hall 2013), FFs are being reparametrized (Cesari et al.
2016) to become more descriptive of RNA. Refined FFs
can incorporate different contributions, including the ri-
bose 2′ OH, noncanonical interactions and charge transfer,
as in the polarizable FFDrude-2017 (Lemkul andMacKerell
2018).On theother hand, coarse-grainedmodels havealso
been successfully applied as demonstratedby RACER (RnA
CoarsE gRained), an example of an MD coarse-grained
RNA model used for the determination of RNA secondary
structures (Bell et al. 2017).
Despite the achievement of FFs predictions, quantum

mechanical (QM) calculations would increase the accuracy
of the model and give new insights into RNA structural
conformations. However, QM is still difficult to be applied
on large systems such as biomolecules due to its high time-
consumption (Noe et al. 2020). Machine learning can be
the keystone to speed up the transferability of QM calcula-
tions tomore complex systems and depict an evermore re-
liable RNA conformational landscape (Noe et al. 2020).
In the future, the reparametrization of existing FFs and

the support of machine learning in the use of QM calcula-
tions will help characterize the complex RNA conforma-
tions, unveiling pockets and sites to climb the cliff to
RNA druggability. Additionally, we also expect that MD
simulations will reveal how SMs can modulate RNA confor-
mations and ultimately correlate these modulations to
their bioactivity. For higher ordered architectures such as
triple helixes and pseudoknot, for example, it is still an
open question whether it would be more beneficial to

FIGURE 8. Potential workflows to allow the computational prediction of RNA:SM structures
and used methods.
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achieve RNA modulation by the stabilization into a locked
conformation or by destabilization followed by degrada-
tion or enzymatic read-through, respectively. Such in-
sights, which also depend on machine learning, would
revolutionize the process of drug-discovery.

Application in biological systems

Discovering novel SMs with the desired biological activity is
an essential step to develop new therapeutics and gather a
greater understanding of biological systems. Given that
RNA is highly diverse both in structure and function and
has pivotal roles that act at many levels of regulation includ-
ing diseases, a key area of need within the field is the com-
bination of large, complex biological data and machine
learning to predict broader ranges of biological activity.
Recent advances in machine learning have allowed biolog-
ical information to be systematicallymeasured andmined at
unprecedented levels using the increasing availability of
“omics” data and data-driven algorithms (Vamathevan
et al. 2019; Xu and Jackson 2019). Current machine-learn-
ing approaches within biological systems are being utilized
for the challenging prediction of genomic features, such as
binding sites of DNA- and RNA-binding proteins, enhancer
sites, and other regulatory regions (Libbrecht and Noble
2015). For instance, deep learning methods were used to
buildmodels to predict regulatory elements and noncoding
variant effects de novo from a DNA sequence that can then
be experimentally validated for their contribution to gene
regulation (Zou et al. 2019). Other applications have pre-
dicted DNA transcript abundance, imputation of missing
single-nucleotide polymorphisms, and DNA methylation
states (Zhao et al. 2008; Angermueller et al. 2017;
Washburn et al. 2019). It is imperative to continue to refine
and implement machine-learning–based tools that expand
applications to other underexplored areas, such as RNA
biology and RNA:SM targeting.

Current machine-learning approaches for protein-based
endeavors, particularly the functional prediction derived
from protein sequence and 3D structure, have foreseeable
applications to RNA:SM targeting (Dara et al. 2022). To
narrow the growing gap between the number of proteins
being discovered and their functional characterization
due to experimental limitations, established methods
such as random forests, support vector machines (SVM),
and ANN have shown to provide reliable protein function
prediction, even when the underlying mechanisms were
not well understood, and they have demonstrated effec-
tive use in drug discovery (Bernardes and Pedreira 2013).
The random forest technique has been used to improve
the prediction to select molecular descriptors of ligands
of kinases, nuclear hormone receptors, and other en-
zymes, which is seen as an important step in VS to identify
bioactivemolecules during the drug development process
(Cano et al. 2017). Similarly, the SVMmodel has the ability

to classify different varieties of active or inactive com-
pounds and to predict the biological activity of new mole-
cules from regression models, which has enabled the
identification of compounds in VS libraries that are not
only active for a target protein, but also selective for a par-
ticular target over a closely related member of the same
protein family (Maltarollo et al. 2019). Additionally, there
has been a rise in the use and rapid evolution of deep
learning techniques to extract meaningful features and
develop high performing predictors, even of multiple pro-
tein functions (Clark and Radivojac 2011; Gligorijevic et al.
2018). For example, autoencoders have been utilized for
generating de novo drug design (Gómez-Bombarelli
et al. 2018). Collectively, these methods should be ex-
plored as potential tools to predict the probability that
an RNA, especially as an experimentally informed RNA
conformational ensembles, is associated with a particular
function to validate as a target for SM probing.

Previous machine-learning applications, including our
QSAR studies, were aimed at exploring the chemical and
geometrical features important for binding of SMs to a spe-
cific RNA target in vitro. To increase the utility of thesemod-
els, they must also show experimental validation in a
biological system. Most likely, activity-basedmeasurements
within a biological context will be required to train new,
complementary models. Forging into this direction will im-
prove rational chemical optimization, particularly for func-
tion-based design of RNA-targeting SMs, and provide
essential insight into the future work to evaluate both ligand
selectivity and its correlation with biological activity.

CONCLUSION

In this Perspective, we contend that machine learning has
made significant contributions in advancing the field of
RNA:SM targeting and offers untapped opportunities to
bring RNA targeting on par with protein targeting, and
even beyond. We have discussed how currently available
machine-learning–based approaches, often refined and
optimized for protein targeting, can be used in the under-
explored context of RNA targeting. Moreover, these mod-
els and techniques have been used to characterize RNA-
privileged chemical space and reveal pertinent molecular
features that can identify putative RNA-binding SMs with
drug-like properties. Finally, this work emphasizes several
machine-learning approaches that, if developed and opti-
mized, would significantly accelerate the understanding
and efficient development of RNA-targeted SMs as novel
therapeutics.
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