
Submitted 23 January 2018
Accepted 11 April 2018
Published 4 May 2018

Corresponding author
Xiuwen Wang,
xiuwenwang12@sdu.edu.cn

Academic editor
Yong Wang

Additional Information and
Declarations can be found on
page 14

DOI 10.7717/peerj.4692

Copyright
2018 Chen et al.

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

Candidate genes in gastric cancer
identified by constructing a weighted
gene co-expression network
Jian Chen1,2, Xiuwen Wang1, Bing Hu2, Yifu He2, Xiaojun Qian2 and
Wei Wang2

1Department of Chemotherapy, Qilu Hospital, Shandong University, Jinan, Shandong, China
2Department of Chemotherapy, Anhui Provincial Hospital, Hefei, Anhui, China

ABSTRACT
Background. Gastric cancer (GC) is one of the most common cancers with high
mortality globally. However, the molecular mechanisms of GC are unclear, and
the prognosis of GC is poor. Therefore, it is important to explore the underlying
mechanisms and screen for novel prognostic markers and treatment targets.
Methods. The genetic and clinical data of GC patients in The Cancer Genome Atlas
(TCGA) was analyzed by weighted gene co-expression network analysis (WGCNA).
Modules with clinical significance and preservation were distinguished, and gene
ontology and pathway enrichment analysis were performed. Hub genes of these
modules were validated in the TCGA dataset and another independent dataset from
the Gene Expression Omnibus (GEO) database by t -test. Furthermore, the significance
of these genes was confirmed via survival analysis.
Results. We found a preserved module consisting of 506 genes was associated with
clinical traits including pathologic T stage and histologic grade. PDGFRB, COL8A1,
EFEMP2, FBN1, EMILIN1, FSTL1 andKIRRELwere identified as candidate genes in the
module. Their expression levels were correlated with pathologic T stage and histologic
grade, also affected overall survival of GC patients.
Conclusion. These candidate genesmay be involved in proliferation and differentiation
of GC cells. They may serve as novel prognostic markers and treatment targets.
Moreover, most of them were first reported in GC and deserved further research.

Subjects Bioinformatics, Genetics, Oncology
Keywords Gastric cancer, Weighted gene co-expression network analysis, Candidate gene,
Histologic grade, Overall survival, Pathologic T stage

INTRODUCTION
GC (gastric cancer) is the fifthmost frequently diagnosed cancer and the third leading cause
of death from cancer worldwide. In the year of 2015, 1,313,000 people were diagnosed
and 813,000 people died from GC (Global Burden of Disease Cancer Collaboration et al.,
2017). It is often diagnosed at an advanced stage since lack of specific early symptoms
and chemotherapy is the main treatment (Hohenberger & Gretschel, 2003). However, the
median survival of patients with advanced GC is less than one year (GASTRIC Group et
al., 2013). In recent years, anti-HER2 therapy has prolonged the survival of patients whose
HER2 amplified or overexpressed, but the rate of HER2-positivity is less than 30% in
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patients with advanced GC (Bang et al., 2010). Anti-angiogenic therapy is another strategy
for the treatment of patients with advanced GC. However, it prolongs the overall survival
by less than two months (Fuchs et al., 2014; Wilke et al., 2014). That means a small subset
of patients may benefit from these target therapies. Consequently, it is extremely crucial to
discover novel candidate genes, which play important roles in tumorigenesis and could be
new targets for treatment.

Technological development of microarray and high-throughput sequencing have shed
new light on the research of molecular mechanisms and screening for drug targets of
tumors. The Cancer Genome Atlas (TCGA), has provided a huge amount of publicly
available genomic and clinical data of many cancer types to help researchers around the
world to better study and understand the biology and pathology of each cancer. So far, a
few molecular mechanisms and characters in various cancers have been uncovered based
on it (Tomczak, Czerwińska & Wiznerowicz, 2015). To explore the underlying mechanisms
and identify novel prognostic markers and treatment targets of gastric cancer, in this
study, weighted gene co-expression network analysis (WGCNA) was performed on RNA
sequencing data of GC patients from TCGA, and significant modules and genes were
identified. These genes were confirmed in other independent datasets and may act as
oncogenes. They are potential prognostic biomarkers or therapeutic targets probably.

MATERIALS & METHODS
Acquiring and preparing genetic and clinical data
RNA sequencing and clinical data of GC patients were downloaded from TCGA data
repository (https://cancergenome.nih.gov/). The gene expression level was measured as
fragments per kilobase of transcript per million mapped reads (FPKM). Clinical data
contained the pathologic TNM stage, histologic grade, and survival information. Samples
with either pathologic stage or histologic grade information incomplete were not included.
Raw data of gene expression of GSE15459 and GSE26942 datasets were downloaded from
Gene Expression Omnibus (GEO) database (https://www.ncbi.nlm.nih.gov/geo/). The
clinical data of the GSE15459 dataset was obtained from a published literature (Ooi et al.,
2009). Samples with either pathologic stage or histologic grade information incomplete
were excluded. Both datasets obtained from GEO served as validation datasets.

As genes with little variation in expression usually represent noise, the most variant
genes were filtered for network construction. Gene variabilities were measured by median
absolute deviation (MAD).

Constructing gene co-expression network
Gene co-expression network was constructed by the WGCNA package (Langfelder &
Horvath, 2008) in R. Before co-expression network construction, squared Euclidean
distance of each sample was calculated by function adjacency, and whole sample network
connectivity according to distance was standardized by function scale. The outlier
samples whose connectivity less than −2.5 were excluded (Horvath, 2011). Function
pickSoftThresholdwas used to calculate scale-free topology fitting indicesR2 corresponding
to different soft thresholding powers β. The β value was chosen as long as R2 reached 0.8.
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After that, the gene expression matrix was transformed into an adjacency matrix and a
Topological Overlap Matrix (TOM), and then the corresponding dissimilarity of TOM
(dissTOM) was calculated. For module detection, hierarchical clustering was used to
produce a hierarchical clustering tree (dendrogram) of genes by function hclust based on
dissTOM. The Dynamic Tree Cut method was performed for branch cutting to generate
modules. During this, a relatively large minimummodule size of minClusterSize= 30, and
a medium sensitivity (deepSplit = 2) to branch splitting were chosen to avoid generating
too many small or large modules. The module eigengene (ME), which can be considered as
a representative of the gene expression profiles of a module, is defined as the first principal
component of a given module. It was calculated by function moduleEigengenes. Modules
would be merged if their correlation of MEs was greater than 0.75, which means they
have similar expression profiles. Co-expression networks of modules were visualized by
Cytoscape software (v3.4.0) (Shannon et al., 2003).

Identifying preserved modules associated with clinical traits
The correlation between MEs and clinical traits including pathologic stage and histologic
grade was evaluated by Pearson’s correlation tests, and p< 0.05 was considered to be
significantly correlated.

Module preservation, which is used to evaluate whether a module is robust and
reproducible across datasets, was calculated by themodulePreservation function (Langfelder
et al., 2011). If preservation statistics Zsummary >10, there is strong evidence that the
module is preserved. Preservation statistics medianRank is negatively correlated with
module preservation.

Gene ontology and pathway Enrichment analysis
To explore the potential biological themes and pathways of genes in the modules, the
clusterprofiler package (Yu et al., 2012) in R was used to annotate and visualize gene
ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways.

Screening for candidate genes with clinical significance
Module Membership (MM) of a gene represents the membership of the gene with respect
to the module. Highly connected intramodular genes, which tend to have high module
membership values, were defined as hub genes. To verify the clinical significance of these
hub genes, independent t -test was used to analyze the expression difference of these genes
in samples with different clinical traits in the TCGA dataset and the GSE15459 dataset
respectively. Furthermore, significant genes were confirmed via survival analysis. Overall
survival data of the TCGA dataset was analyzed. The R package survival was used to carry
out log-rank tests and plot Kaplan–Meier survival curves. Moreover, the online software
Kaplan Meier plotter (http://kmplot.com/analysis/index.php?cancer=gastric&p=service)
(Lánczky et al., 2016), which was capable to implement log-rank tests based on other
independent datasets, was used for the further verification.
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Figure 1 Clustering dendrogram of genes. The hierarchical clustering tree was produced by hierarchi-
cal clustering based on dissTOM of genes. Twenty-three modules were identified by Dynamic Tree Cut-
ting method with a medium sensitivity (deepSplit= 2) to branch splitting. Each module was assigned a
color as an identifier. Twenty modules were generated after merging according to the correlation of mod-
ules. In the colored rowrs below the dendrogram, the two colored rows represent the original modules and
merged modules.

Full-size DOI: 10.7717/peerj.4692/fig-1

RESULTS
Gene co-expression network of GC
Clinical and level-3 RNA sequencing data for 330 gastric adenocarcinoma samples
were obtained from TCGA database. For module detection, the 5,000 most variant
genes according to MAD value were selected for further analysis from the original over
16,000 protein-coding genes, and two outlier samples were removed according to sample
network. When the value of soft thresholding power β was 4, the connectivity between
genes met a scale-free network distribution (Fig. S1). Twenty-threemodules were identified
by hierarchical clustering and the Dynamic branch Cutting. Each module was assigned a
unique color as an identifier. The ME of each module was calculated (Table S1). Among
these modules, three were merged into others because of the similar MEs. Twenty modules
were generated finally (Fig. 1, Table S2). The number of genes in modules ranged from 31
to 1,090 (Table S3). The grey module represented a gene set that was not assigned to any
of the modules.
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Figure 2 Module-trait associations were evaluated by correlations betweenMEs and clinical traits.
Each row corresponds to a module eigengene, column to a trait. Each cell contains the corresponding cor-
relation (first line) and p-value (second line ). The table is color-coded by correlation according to the
color legend. Green, midnightblue, cyan, lightcyan and tan modules positively correlated to histologic
grade (p < 0.05). Darkgreen, turquoise, royalblue, black and lightgreen modules negatively correlated to
histologic grade (p < 0.05). Green, lightcyan and tan modules positively correlated to pathologic T stage
(p< 0.05). Greenyellow, turquoise and royalblue modules negatively correlated to pathologic T stage (p<
0.05). The grey modules positively correlated to pathologic N stage (p< 0.05).

Full-size DOI: 10.7717/peerj.4692/fig-2

Modules with clinical significance and preservation
To explore the clinical significance of themodule, correlations betweenMEs and pathologic
stage and histologic grade were analyzed. There were five and three modules positively
correlated with pathologic T stage and histologic grade, respectively, while another five
and three modules negatively correlated with T stage and histologic grade, respectively.
There was only one module positively correlated with pathologic N stage, and no module
correlated with pathologic M stage (Fig. 2).

Before module preservation analysis, six outlier samples in the GSE26942 dataset and
five outlier samples in the GSE15459 dataset were excluded according to sample network.
When compared with the GSE26942 dataset and GSE15459 dataset, there were five and
seven preserved modules respectively, whose Zsummery statistics were greater than 10
and Medianrank statistics were relatively low. Turquoise, blue, grey60, green and brown
modules were preserved in both validation datasets (Fig. 3). Among these modules with
preservation, according to the previous analysis of clinical significance of modules, green
and turquoise modules were correlated with pathologic T stage and histologic grade. Then,
the green module was further analyzed while the turquoise module was discarded because
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Figure 3 The medianRank and Zsummary statistics of module preservation.Module preservation was
evaluated by medianRank and Zsummary statistics which correlated to (continued on next page. . . )

Full-size DOI: 10.7717/peerj.4692/fig-3
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Figure 3 (. . .continued)
connectivity and density of networks. If Zsummary>10, there is strong evidence that the module is pre-
served. The module with lower medianRank tends to exhibit stronger observed preservation than the
module with a higher medianRank if both of them are preserved. Compared with the GSE15459 dataset,
turquoise, blue, grey60, green, brown, yellow and greenyellow modules with high Zsummary (>10) (A)
and low Medianrank statistics (B) were preserved; Compared with the GSE26942 dataset, turquoise, blue,
grey60, green and brown modules with high Zsummary (>10) (C) and low Medianrank statistics (D) were
preserved.

of the low MM value of genes in it. Gene co-expression network of the green module was
established and visualized by Cytoscape (Fig. 4).

Enrichment analysis of the green module
Five hundred and six genes in the green module were mapped to GO database to get
their potential functions. The results showed that extracellular matrix, extracellular matrix
organization and growth factor binding were the most significant enrichments in cellular
component (CC), biological process (BP) andmolecular function (MF) groups respectively.
In addition, these genes were also involved in angiogenesis, endothelial cell proliferation
and insulin-like growth factor binding, which have been proved to be related to cancer
(Figs. 5A–5C). KEGG pathway enrichment analysis suggested AGE-RAGE signaling
pathway in diabetic complications was the most significant pathway. These genes also
participated in ECM-receptor interaction, focal adhesion, PI3K-Akt signaling pathway,
pathways in cancer and TNF signaling pathway (Fig. 5D). All of them were cancer-related
signal pathways. In addition, the results of enrichment analysis on other modules were
shown in supplemental materials (Tables S4–S7).

Identification and validation of candidate genes
The significance of hub genes with high MM value in a module was consistent with the
significance of the module. These genes are also centers of the network and play important
roles in the network. Twenty-six genes with MM value greater than 0.8 in the green
module were identified as hub genes. The expression levels of hub genes of patients with
different pathologic T stages and histologic grades were analyzed by t -test. In the TCGA
dataset, 24 genes were significantly differentially expressed (p< 0.05). In the GSE15459
dataset, eight of these 24 hub genes were also differentially expressed (p< 0.05). They were
Elastin Microfibril Interfacer 1 (EMILIN1), Collagen Type VIII Alpha 1 Chain (COL8A1),
Follistatin Like 1 (FSTL1), EGF Containing Fibulin Like Extracellular Matrix Protein 2
(EFEMP2), Fibrillin 1 (FBN1), Kin of IRRE Like (KIRREL), Platelet Derived Growth Factor
Receptor Beta (PDGFRB) and Mannose Receptor C Type 2 (MRC2). All of them were
expressed at a low level in T 1 stage or grade 1–2 patients while at a high level in T 2–4 or
grade 3 patients in both datasets (Tables 1, 2). These results suggested that they may be
associated with proliferation and differentiation of GC cells.

Finally, the eight hub genes whose expression level correlated to pathologic T stage and
histologic grade were verified via survival analysis. The RNA sequencing data and survival
information in the TCGA dataset were subjected to survival analysis. Significant different
overall survival between the high expression groups and the low expression groups
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Figure 4 Co-expression network of 100 most connected genes in the greenmodule.Nodes and lines
represent genes and correlation between genes. Red nodes are the hub genes of the network.

Full-size DOI: 10.7717/peerj.4692/fig-4

for PDGFRB, COL8A1, EFEMP2, FBN1, EMILIN1, FSTL1 and KIRREL was observed
(p< 0.05). Their expression levels were associated with overall survival. Furthermore,
to confirm these results in other independent datasets, survival analysis was performed
through online software KaplanMeier plotter and consistent positive results were generated
(p< 0.05). Patients with lower gene expression had longer overall survival and vice versa
(Figs. 6, 7). Therefore, the expression levels of PDGFRB, COL8A1, EFEMP2, FBN1,
EMILIN1, FSTL1and KIRREL could be prognosticators of survival in GC patients. These
genes could be candidate genes of GC for further research.

DISCUSSION
Regulatory network methods are widely used for analyzing gene expression data,
especially large datasets. They provide a systematic interpretation of underlying molecular
mechanisms and valuable biomarkers associated with disease. Compared with node-based
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Figure 5 The most significantly enriched GO annotations and pathways of genes in the greenmodule.
The length of bars represents the numbers of genes, the color of bars corresponds to p value according to
legend. (A) Top 20 significantly enriched Cellular component GO annotations; (B) top 20 significantly en-
riched Biological process GO annotations; (C) top 20 significantly enriched Molecular function GO anno-
tations; (D) top 20 significantly enriched KEGG pathways.

Full-size DOI: 10.7717/peerj.4692/fig-5

Table 1 Expression levels of genes in different pathologic T stage groups.

Gene TCGA dataset GSE15459 dataset

Stage T1* Stage T2-4* p-Value Stage T1* Stage T2-4* p-Value

PDGFRB 11.27673 28.64472 0.000268 7.650427 8.468733 0.007058
COL8A1 1.405193 8.952865 0.000329 4.607863 5.796504 0.000669
EFEMP2 2.462167 7.409326 6.12E−05 7.862728 8.703876 0.007538
FBN1 2.676911 10.45695 0.000291 7.109844 8.152165 0.015591
MRC2 6.519095 14.13593 0.002959 8.24578 8.609288 0.035221
EMILIN1 7.989158 34.4808 9.30E−05 7.404825 8.254327 0.025756
FSTL1 13.30806 33.73668 0.000217 7.981347 8.575384 0.034181
KIRREL 3.34838 7.0049 0.001232 5.479368 5.832521 0.021507

Notes.
*Mean expression level.
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Table 2 Expression levels of genes in different histologic grade groups.

Gene TCGA dataset GSE15459 dataset

Grade 1–2* Grade 3* p-Value Grade 1–2* Grade 3* p-Value

PDGFRB 23.49514 30.17688 0.002416 8.250134 8.554542 0.020089
COL8A1 6.070836 10.00019 8.11E−05 5.544219 5.87443 0.023504
EFEMP2 5.779241 7.942439 0.000186 8.452001 8.811539 0.009623
FBN1 7.833488 11.33083 0.000521 7.800408 8.313964 0.008226
MRC2 11.80371 14.8516 0.009811 8.447961 8.693392 0.002748
EMILIN1 25.01557 37.77161 6.65E−05 8.017554 8.350455 0.042902
FSTL1 26.17743 36.42849 8.79E−05 8.317364 8.708802 0.003181
KIRREL 5.763699 7.420478 0.001808 5.705279 5.893113 0.007445

Notes.
*Mean expression level.

methods, regulatory network methods focus on not only differences but also correlations
between gene expression profiles. Therefore, they are more reasonable (Liu, 2016). Many
methods to construct gene regulatory network have been developed (Liu, 2015). Liu et al.
(2012) employed amethodbased ondifferential networks and identified 34 biomarker genes
with diagnostic value in gastric cancer. However, this method used a hard thresholding
to determine the correlation between genes and did not take into account changes in the
strength of the correlation between genes under different conditions.

WGCNA, one of regulatory network methods, is based on power law distribution
(scale-free topology) and constructing weighted networks by a soft thresholding. It can
detect modules, identify hub genes, and recognize candidate genes or modules relating to
external information. It has been proved thatWGCNAoutperformsmany othermethods in
constructing the global network structure (Allen et al., 2012) and can safely replace mutual
information networks based on non-linear gene expression associations (Song, Langfelder
& Horvath, 2012) such as ARACNE (Margolin et al., 2006). Therefore, it is a robust method
to understand gene expression information and has been widely and successfully applied
in various biological contexts (McKinney et al., 2015; Amin et al., 2016; Zhang et al., 2016).

However, to our knowledge, there was only one study researching gene expression
profiles of GC by WGCNA (Zhao et al., 2016). This study constructed gene co-expression
network, identified modules based on differential expressed genes and performed GO
and KEGG pathway enrichment analysis on modules. Finally, genes related to survival
were identified by Cox regression analysis. Nevertheless, it did not identify hub genes and
analyze the relationship between modules or hub genes and clinical traits. Furthermore,
it is not recommended to filter genes by the differential expression for WGCNA because
it completely invalidates the scale-free topology assumption and forms a single or a few
highly correlated modules.

In our present study, 5,000 most variant genes were filtered by MAD for the reason that
genes with little variation are less likely to have high MM value or will not be assigned to a
module. We identified modules and candidate genes associated with pathologic T stage and
histologic grade of GC. They may play important roles in proliferation and differentiation
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Figure 6 Survival analysis on seven candidate genes based on TCGA dataset. For each gene, the me-
dian overall survival of patients in low expression group was superior to that of patients in high expression
group (p< 0.05). (A) PDGFRB; (B) COL8A1; (C) EFEMP2; (D)FBN1; (E) EMILIN1; (F) FSTL1; (G) KIR-
REL.

Full-size DOI: 10.7717/peerj.4692/fig-6

of gastric adenocarcinoma cells and could be novel targets for the treatment of GC. Also,
the expression levels of these candidate genes were associated with overall survival of GC
patients, and they could be prognostic biomarkers for GC.

The enrichment analysis of genes in the green module revealed that they could encode
protein functioning as growth factor binding, platelet-derived growth factor binding,
insulin-like growth factor binding, transforming growth factor beta binding, etc. They
were also involved in the MF category and pathways relevant to tumorigenesis and tumor
progression such as angiogenesis, PI3K-Akt signaling pathway, pathways in cancer, TNF
signaling pathway, etc. These results can explain the correlations between the green module
and pathologic T stage and histologic grade.
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Figure 7 Survival analysis on seven candidate genes based on KaplanMeier plotter. For each gene, the
median overall survival of patients in low expression group was superior to that of patients in high expres-
sion group (p< 0.05). (A) PDGFRB; (B) COL8A1; (C) EFEMP2; (D) FBN1; (E) EMILIN1; (F) FSTL1; (G)
KIRREL.

Full-size DOI: 10.7717/peerj.4692/fig-7

We defined 26 genes with MM value greater than 0.8 as hub genes, and 24 of them were
differentially expressed according to different clinical traits in the TCGA dataset. However,
only eight genes were differentially expressed in the GSE15459 dataset. The explanation for
this could be the different genetic background of samples in these datasets. Most samples in
the TCGA dataset were white or black people while samples in the GSE15459 dataset came
from Singapore in Asia. However, the eight genes exhibited stable properties consistent
with the green module across datasets.

Among these candidate genes, PDGFRB is the most studied gene related to cancer.
Its production is one of the receptors of platelet-derived growth factor (Andrae, Gallini
& Betsholtz, 2008), which stimulates proliferation and migration of cancer cells and
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angiogenesis, and has been utilized as a target for several cancer treatments. It also has been
demonstrated that overexpression of PDGFRB is correlated with progression of gastric
carcinoma (Guo et al., 2013). This was consistent with the result of our present study and
FDGFRB might also be a potential target for GC treatments.

COL8A1, EFEMP2 and FBN1 with activities of oncogenes, have been reported in
many studies. The protein encoded by COL8A1 is a component of endothelium of
blood vessels. It is necessary for migration and proliferation of vascular smooth muscle
cells. Serum concentrations of COL8A1 increases in disease associated with vascular
remodeling and forming including cancer (Hansen et al., 2016). EFEMP2 encodes an
extracellular matrix protein which is a mutant p53-specific protein partner and contains
epidermal growth factor domain. It can enhance oncogenic activity such as neoplastic
transformation and proliferation of cancer cells (Gallagher et al., 1999). EFEMP2 is
upregulated in gliomas and promotes glioma cell proliferation and invasion (Wang et
al., 2015). It is also a promising serum biomarker for colorectal cancer early detection
(Yao et al., 2012). The protein encoded by FBN1 is microfibrils of the extracellular
matrix. This protein contributes to tissue homeostasis by interactions with growth and
differentiation factors, cell–surface integrins and other extracellular matrix protein. FBN1
silencing leads to decreased papillary thyroid carcinoma cell proliferation and enhances
apoptosis in vitro, up-regulation of FBN1 boosts xenograft tumor formation in vivo (Ma et
al., 2016). It is overexpressed in testicular germ cell tumors and could be a new marker of
germ cell neoplasia in situ (Cierna et al., 2016). However, there have been no studies on the
correlation between COL8A1, EFEMP2 and FBN1 and GC. Our findings demonstrated that
COL8A1, EFEMP2 and FBN1 correlate to pathologic T stage, histologic grade and overall
survival in GC patients. They may play important roles in proliferation and differentiation
of GC cells. These results in GC were similar to those in other various cancers.

There is controversy about the roles of EMILIN1 and FSTL1 in cancer. EMILIN1 encodes
a protein which is responsible for elastogenesis and also regulates the bioavailability of
TGF-β. It may suppress proliferation and metastasis of lung cancer cell (Edlund et al.,
2012) and is expressed at a lower level in breast cancer than in normal tissue (Rabajdova
et al., 2016). However, the opposite results are observed in soft tissue osteosarcoma and
ovarian serous tumors (Salani et al., 2007; Rao et al., 2013). FSTL1 encodes an activin-
binding protein with similarity to follistatin. It has been proved that FSTL1 activates NFκB
and regulates the TGF-β/BMP pathway involved in cell differentiation and subsequent
apoptosis (Wu et al., 2015). Knockdown of FSTL1 induces apoptosis of lung cancer cells
(Bae et al., 2016). In contrast, FSTL1 shows suppressive effects on ovarian and endometrial
carcinogenesis (Chan et al., 2009). Both EMILIN1 and FSTL1 exert contrasting effects in
different types of cancer probably because both interact with TGF-β which is a paradigm
of duality in cancer (Massagué, 2008). However, there have been no reports on the roles
of EMILIN1 and FSTL1 in GC and our study showed for the first time that they may be
pro-tumorigenic in GC.

The protein encoded by KIRRELmay be involved in glomerular permeability. It can also
modulate ERK signaling through interaction with growth factor receptor-bound protein
2 (Harita et al., 2008). So far, there have been no direct researches on the relationship
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between KIRREL and tumors. However, our study manifested that KIRREL may promote
the development of GC. It may be a novel oncogene and worth further study.

CONCLUSIONS
In summary, we identified PDGFRB, COL8A1, EFEMP2, FBN1, EMILIN1, FSTL1 and
KIRREL as candidate genes in GC. Most of them were first found to be associated with GC.
Their expression levels related to pathologic T stage, histologic grade and overall survival of
patients, and this means they may be involved in the development and progression of GC.
Thus, the candidate genes we identified can be novel prognostic biomarkers or therapeutic
targets of GC and deserve further study. These results, of great clinical significance, will
provide new insight into understanding GC and will contribute to personalized therapy.
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