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Abstract

There is widespread interest today in understanding enhancers, which are regulatory elements typically harboring several transcrip-

tion factor binding sites and mediating the combinatorial effect of transcription factors on gene expression. The evolution of

enhancers poses interesting unanswered questions, for example, the evolutionary time taken for a typical enhancer to emerge or

the factors shaping its evolution. Existing approaches to cis-regulatory evolution have often ignored the combinatorial nature and

varied biochemical mechanisms of gene regulation encoded in enhancers. We report on our investigation of enhancer evolution

through the use of PEBCRES, a framework for evolutionary simulation of enhancers that employs a mechanistic and well-supported

sequence-to-expression model to assign fitness to the evolving enhancer genotype. We estimated the time necessary to evolve, from

genomic background, enhancers capable of driving complex gene expression patterns similar to those involved in early development

in Drosophila. We found the time-to-evolve to range between 0.5 and 10 Myr, and to vary greatly with the target expression pattern,

complexity of the real enhancer known to encode that pattern, and the strength of input from specific transcription factors. To our

knowledge, this is the first estimate of waiting times for realistic enhancers to evolve. The in silico evolved enhancers had, with a few

interesting exceptions, site compositions similar to those seen in real enhancers for the same patterns. Our simulations also revealed

that certain features of an enhancer might evolve not due to their biological function but as aids to the evolutionary process itself.
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Introduction

The evolution of regulatory sequences is an active area

of research today, with important questions such as

the following: 1) How long does it take for regulatory

sequences to evolve under various assumptions?

(Stone and Wray 2001; Carter and Wagner 2002;

Gerland and Hwa 2002; MacArthur and Brookfield

2004; Durrett and Schmidt 2007, 2008), 2) do specific

regulatory sequences display signatures of positive

selection or negative selection? (Moses et al. 2004;

Moses 2009; He et al. 2011), 3) what is the evolutionary

history of a particular regulatory sequence? (Francois et al.

2007; Josephides and Moses 2011), and 4) how to math-

ematically model the evolution of regulatory sequences?

(Berg et al. 2004; Kim et al. 2009; Nourmohammad and

Lässig 2011).

The time scale for evolutionary changes in regulatory sys-

tems is an important question that has puzzled biologists for

many years, especially since it was first noticed that the gen-

eral organization of regulatory sequences can be maintained

for tens of millions of years (Damjanovski et al. 1998; Ludwig

et al. 1998) (also see review in Maeso et al. 2013), despite

evidence that functional differences can evolve over signifi-

cantly shorter time scales (Ross et al. 1994), and sequence

comparisons showing that transcription factor (TF) binding

sites could appear and disappear among closely related spe-

cies and even within a population (Damjanovski et al. 1998;

Segal et al. 1999). Such observations led Stone and Wray

(2001) to ask the following question as a first step towards

solving this puzzle: “What time period would be required

for new transcription factor binding sites to evolve . . . as a

consequence of local point mutations . . . under the
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assumption of neutral evolution?” (Stone and Wray 2001).

They estimated that new binding sites can emerge due to

point mutations alone on extremely short time scales, for ex-

ample, about 24 years in Drosophila or about 6,000 years in

humans, even in the absence of selection. The work by Stone

and Wray opened a debate over the time scales necessary for

the emergence of single binding sites. Durrett and Schmidt

(2007) revisited the question while accounting for dependen-

cies present in the population due to common descent, and

found that the average time for an 8-bp binding site to appear

in humans can range between as little as 60,000 years and as

much as 650 Myr, depending on whether a perfect match is

required or a fuzzy match suffices, and on whether a partial

match pre-existed.

Although these initial studies theorized (Stone and Wray

2001; Durrett and Schmidt 2007) about the evolution of a

single binding site, the time scale of major cis-regulatory inno-

vations is a more involved question, because in reality the

function and evolution of binding sites depends on their con-

text (Duque et al. 2014). Cis-regulatory modules (CRMs, also

called enhancers) are approximately 1-kb long sequences that

typically harbor multiple binding sites for one or more TFs and

mediate the combinatorial influence of those TFs on gene

expression (Davidson 2010). The emergence of cis-regulatory

functionality is strongly linked to the appearance of CRMs,

and needs to be studied in this context. This is an important

issue because, as Stone and Wray (2001) point out, it is un-

likely that the dozens of binding sites present in, say, typical

Drosophila CRMs could emerge one by one, under neutral

evolution, without older binding sites getting destroyed. The

significance of studying binding site evolution in context is also

exemplified by the work of Carter and Wagner (2002), who

considered the phenomenon of compensatory mutations

leading to a turnover of binding sites (Ludwig et al. 1998;

Sinha and Siggia 2005; Moses et al. 2006; Swanson et al.

2011; Kim et al. 2013). They showed the need to explicitly

model the evolution of pairs of binding sites, instead of single

binding sites, in order to explain relative rates of binding site

turnover in invertebrate and vertebrate populations (Aparicio

et al. 1995; Ludwig et al. 1998; Swanson et al. 2011)

(supplementary note S1, Supplementary Material online).

Similarly, Durrett and Schmidt (2008) specifically examined

the case of pairs of sites and estimated that in Drosophila a

pair of mutations can inactivate a binding site and activate

another on the time scale of several million years, consistent

with empirical observations (Ludwig et al. 1998; Swanson

et al. 2011).

Although the above-mentioned studies were important

steps in the right direction, they were not meant to tackle

the more ambitious questions of how fast can entire CRMs

evolve and what factors might influence this “time-to-

evolve.” CRMs are usually composed of more than a pair of

binding sites; as noted above, they harbor several binding sites

for multiple TFs that exhibit different roles (e.g., activator or

repressor) and potency (strong or weak) and are expressed in

different spatiotemporal domains. In fact, the creation of a

CRM to perform a specific regulatory function cannot gener-

ally be reduced to the emergence of predetermined numbers

and types of TF binding sites. Comparison of orthologous

CRMs (Kim et al. 2009; Swanson et al. 2011) and quantitative

modeling of CRM function (Zinzen et al. 2006; He et al. 2010)

suggests considerable flexibility in the “cis-regulatory code,”

in that the same function can be achieved by different com-

binations (types, numbers, and strengths) of binding sites.

Perhaps due to these complexities, there does not exist a com-

putational model capable of estimating the time necessary to

evolve a realistic CRM involving multiple TFs with distinct roles,

under a range of population genetic and mechanistic assump-

tions. This is the gap that we attempt to bridge in this work.

We considered approximately 30 bona fide CRMs involved

in anterior–posterior (A/P) axis specification in the blastoderm

stage Drosophila embryo and asked how long it might take for

these CRMs or other CRMs of comparable functional com-

plexity to appear under strong positive selection for the ex-

pression pattern encoded by them. We then explored a variety

of factors that might influence this time-to-evolve. Our anal-

yses were enabled by a flexible, simulation-based model of

CRM evolution, called PEBCRES (He et al. 2012; Duque et al.

2014). It relies on a state-of-the-art sequence-to-expression

model called GEMSTAT (He et al. 2010) that can predict the

spatial expression pattern driven by an arbitrary CRM-length

sequence, given sufficient information about the trans con-

text. The PEBCRES framework then uses a specialized function

(Samee and Sinha 2013; Duque et al. 2014) to compare the

predicted gene expression pattern with an ideal expression

pattern, and thus estimate the fitness of the evolving se-

quence. The fitness value then plugs into a standard evolu-

tionary simulation. Previous work has demonstrated the

accuracy of GEMSTAT for modeling A/P patterning CRMs

(He et al. 2010; Samee and Sinha 2013, 2014), thereby lend-

ing credibility to inferences based on its use in assigning fitness

values for CRM genotypes in this study. Furthermore, in recent

work by Duque et al. (2014), we used PEBCRES to model the

evolution of A/P patterning CRMs under negative selection

and showed that it can 1) explain rates of conservation and

loss of binding sites within CRMs and 2) correctly predict

mechanistic properties such as cooperative DNA binding by

specific TFs. This previously demonstrated success of PEBCRES

(He et al. 2012; Duque et al. 2014) justifies its use as a model

to study the appearance of complex developmental CRMs

during evolution.

We estimate that CRMs of considerable complexity, for

example, CRMs that have the information required to drive

A/P patterns in the early Drosophila embryo, may evolve in as

little as approximately 0.5 Myr, but this time-to-evolve can

range widely, with some expression patterns requiring up to

30 times longer. Our simulations suggest that the time-to-

evolve depends in part on the complexity of the combinatorial
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logic encoded by the CRM, and may be strongly influenced by

the requirement for binding sites of a single TF. In silico

evolved CRMs by and large resemble the corresponding

Drosophila melanogaster CRM, with a few interesting excep-

tions where CRMs evolved in our simulations appear to be

more parsimonious than their natural counterparts. To ac-

count for uncertainties in our model, we repeat our experi-

ments under varying assumptions about (parameter values of)

the underlying population genetics and mechanistic models.

In doing so we find that insertions and deletions seem to be

more disruptive than constructive, in a manner consistent with

our previous work (He et al. 2012; Duque et al. 2014). We also

find that changes to the selection strength and mutation rate

have their expected effects: Decreasing either parameter in-

creases the time-to-fit estimates. Finally, we note that activa-

tors that are uniformly expressed across all modeled cell types

may reduce the time-to-evolve, even though their regulatory

function need not be essential to the target gene’s expression

pattern. We speculate that this may be an example of evolu-

tion of evolvability (Wagner and Altenberg 1996), in which a

genotypic feature evolves not due to its functional effect, but

due to its effect on the ability of DNA to evolve more quickly.

Materials and Methods

Procedure for Selecting Expression Patterns for
Simulation

To select the 28 patterns used in our experiments reported in

figures 1–5, we repeated the following procedure on each of

the 37 expression patterns predicted by GEMSTAT (denoted

by “EP”), noting that these are the same expression patterns

whose evolution was previously modeled using PEBCRES

(Duque et al. 2014). First, we generated a set of random se-

quences that are fed into our fitness function. The fitness of

each sequence was calculated using EP as the target expres-

sion pattern. If the average fitness of the random sequences

was above 0.2, EP was not considered further. In other words,

we chose to work with 28 expression patterns for which a

random sequence has low fitness. At the same time, we know

that the selected expression patterns are “achievable” in our

framework because in each case we have a real CRM for

which GEMSTAT predicts that expression pattern. We refer

to each of these expression patterns by the name of the CRM

from D. melanogaster that generated the pattern. The 28 ex-

pression patterns used for our experiments are shown supple-

mentary figure S1, Supplementary Material online.

Fitness Estimation and Selection Scale

In our PEBCRES simulations, the GEMSTAT model was run

with six TFs—BICOID (BCD), CAUDAL (CAD), KRUPPEL (KR),

HUNCHBACK (HB), KNIRPS (KNI), and GIANT (GT)—as regu-

lators, and configured to include self-cooperativity for BCD,

CAD, and KNI, exactly as in the experiments described in

Duque et al. (2014). The fitness estimation in PEBCRES com-

pares the GEMSTAT-predicted expression for a sequence with

the target expression profile to assign a numeric fitness be-

tween 0 and 1 to that sequence. This numeric fitness is used

by a Wright–Fisher simulator to decide the evolutionary fate of

arbitrary sequences in the population.

More specifically, PEBCRES uses the weighted Pattern

Generating Potential (wPGP) function (Samee and Sinha

2013; Duque et al. 2014), which assigns fitness to a genotype

g with predicted pattern p given a target pattern t (Samee

and Sinha 2013; Duque et al. 2014). After computing

wPGP(p, t), it computes a “fitness functional” as f gð Þ

¼ ½max 0;wPGPðp; tÞð Þ�
2 and then converts this to a fitness

value as F gð Þ ¼ 1þ Kf ðgÞ, where K is a free parameter called

the selection scale. The wPGP function has a range between

�1 and +1, which is mapped to a fitness functional between 0

and 1, as in Duque et al. (2014) and Samee and Sinha (2013).

The selection scale parameter (K) may be interpreted as the

selection coefficient (typically denoted by s in the literature) in

the case where two competing genotypes (a and b) have

fitness F að Þ ¼ 1 and F bð Þ ¼ 0.

Because the fitness functional f ðgÞ (and consequently the

fitness FðgÞ) is dependent on the assumptions of the se-

quence-to-expression model, it is unviable to determine the

value of the selection scale experimentally. Instead, we rely on

data to find the best fit value of K. This was done by Duque

et al. (2014) and we use the value obtained there. Duque et al.

(2014) also offer a detailed explanation of the wPGP function

and its advantages over alternative functions (such as SSE

[Sum of Squared Errors] or correlation), as well as a detailed

explanation of the relationship between the selection scale K

and the selection coefficient s.

Time Rescaling

To speed up simulation time, we use time rescaling (Hoggart

et al. 2007) as in our previous work (He et al. 2012; Duque

et al. 2014). The time-rescaling procedure enables the simu-

lation of �t generations of unscaled time in t generations of

simulated time by scaling the population size by a factor of 1/�

and the selection coefficient and mutation rate by a factor of

�, keeping the population genetics parameters 2Nm and 4Ns

(population-scaled mutation rate and selection coefficient,

respectively) unchanged.

Unless otherwise stated, we use time-scaling factor

�= 1,000, time-scaled population size 2N = 1,000, and muta-

tion rate m= 10�5. These parameters correspond to an

unscaled population size of 2N = 106 and mutation rate of

m= 10�8, both within estimated ranges from the literature

(2N ~ 105–106 [Thornton and Andolfatto 2006] and

m~ 10�9–10�8 [Drake et al. 1998]). As mentioned in the pre-

vious section, we do not explicitly model a selection coefficient

s, but rather use a selection scale parameter K, which is sim-

ilarly scaled by �.
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To convert time-to-evolve estimates from number of

generations to time in years, we first calculate the median

of the number of generations (t) until a sufficiently fit pheno-

type emerges in the population (the median is calculated

among all simulations of the evolution of the same expression

pattern). This is equivalent to �t generations in real time.

Finally, we multiply this number by the average length

(in years) of a generation. In the case of Drosophila, this num-

ber is approximately 0.027 years per generation or 10 days per

generation.

Occupancy Calculation

Computation of TF occupancy uses the efficient dynamic pro-

graming implementation of GEMSTAT (He et al. 2010) to cal-

culate the relative probability of each binding site being in the

bound state, called the fractional occupancy of a binding site.

The probability here refers to the Boltzmann distribution

over all configurations of sites in the sequence being bound

or free, following a statistical mechanics treatment. We com-

pute the occupancy of a TF by summing the fractional occu-

pancy of all putative binding sites for that TF in the given

sequence. The procedure to calculate the fractional occupancy

is described in He et al. (2010), and this method of estimating

TF occupancy was also used in our earlier work (He et al.

2012).

Procedure for Selecting Starting Sequences

By default, our simulations begin with a random sequence. In

the section “Dependence on initial conditions and the possi-

bility of exaptation,” we report on two sets of experiments

where the initial sequence was not random. Here, we first

calculate the correlation between the expression patterns of

FIG. 1.—Estimating the time necessary for a CRM to evolve. (A, B) Methodology. A schematic representation of the PEBCRES framework describing how

it is used to estimate the time necessary for a CRM to evolve from genomic background. Expression readout of the evolving CRM is predicted using

GEMSTAT, producing a fitness value (A), which is then plugged into a Wright–Fisher simulation with selection (B). (C) Top panel: Time-to-evolve estimates

(y axis), in Myr, for each of the 28 target expression patterns (x axis). Bottom panel: A representation of the 28 A/P expression patterns that serve as target

patterns in our simulations, sorted by time-to-evolve estimate (same order as in top panel). Each expression pattern is represented by a column in the

heatmap, with red representing high expression and white representing absent expression. The anterior end of the embryo is at the top and posterior end at

the bottom. Only 20–80% egg length interval is shown.
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every pair of CRMs and simulate the evolution of sequences

targeting the expression pattern of one CRM while initializing

the population with the sequence of another CRM. In one set

of experiments, we evolved an expression pattern from a se-

quence that already drove a similar pattern, by choosing the

initial sequence for each simulation randomly from one of the

5 CRMs whose expression is most correlated with the target

expression pattern. In the other set of experiments, we

evolved a pattern from a sequence that drove a very different

pattern, by choosing the initial sequence randomly from one

of the five CRMs whose expression is most anticorrelated with

the target expression pattern.

Procedure for Comparing Simulations with Different
GEMSTAT Model Specifications

Our evolutionary simulations require a model of CRM func-

tion, which is provided by GEMSTAT, to help define the fitness

function. The model in GEMSTAT can be specified to include

or exclude a specific regulator, and once a regulator is added

to the model, all parameters are learnt from appropriate train-

ing data. Our goal was to compare evolutionary simulations

made with two different specifications of the GEMSTAT

model: One that includes a ubiquitous activator and one

that does not. However, there are a couple of concerns to

be addressed before such comparisons can be made.

Recall that the baseline model, that is, the model without

the universal activator, is used to define the target expression

pattern of a simulation. Specifically, as noted in the section

“Uniformly expressed activators can speed up emergence of

CRMs,” we take a D. melanogaster CRM, use the baseline

model to predict its expression pattern (say “T”), and use this

pattern as the target of a PEBCRES simulation. This ensures

that the simulation is using a fitness function such that there is

at least one sequence with perfect fitness. Now, we may train

a new GEMSTAT model (say “MU”) that includes the universal

activator, and perform simulations using this new model to

define fitness. These simulations must target the same expres-

sion pattern (T) as before, to make claims about the role of the

ubiquitous activator in shaping the evolutionary dynamics.

However, there is no guarantee that there exists a sequence

with perfect fitness when using the new model MU. That is,

there may not exist a sequence for which model MU predicts

expression pattern T exactly. This makes the comparison

unfair, because the existence of a perfect solution is only

guaranteed for one of the models. An alternative is to run

both the simulations (with baseline model or with MU) with

a new target expression pattern (say T’), set to be the predic-

tion of MU on the D. melanogaster CRM. This guarantees that

the simulations with MU as fitness function can in principle

find a sequence with perfect fitness, but the new pattern T’

may require the use of the ubiquitous activator and simula-

tions with the baseline model may not have any chance of

finding the perfectly fit CRM. Our hypothesis is that ubiquitous

activators reduce the time necessary to evolve certain expres-

sion patterns, even if the same pattern might have been

evolved without utilizing the ubiquitous activator. To test

this hypothesis, we need a setup where the fitness function

includes regulatory input by a ubiquitous activator but the

latter is not necessary for a solution to have high fitness. To

this end, we use the experimental setup described below:

1. Start with the baseline GEMSTAT specification (TFs: BCD,
CAG, GT, HB, KNI, KR; self-cooperativity for BCD, CAD,
KNI).

2. Train on all 37 CRMS an alternative GEMSTAT specification
that includes a ubiquitous activator (either DSTAT or ZLD).
All other assumptions of the baseline model are main-
tained. The alternative specification should be trained
to match the expression patterns predicted by the base-
line model. This will result in an alternative model (say MU)
whose predicted expression for each of the 37 CRMs is
very close to the predictions from the baseline model.

3. For each CRM, merge the predicted expression patterns
from the baseline model and from MU by taking their av-
erage. The merged expression pattern is thus equally
achievable by either model.

4. Repeat the experiment to determine median time-to-
evolve per CRM using the baseline model as the fitness
function, but targeting the merged expression pattern.
This is only done for the 28 CRMs shown in figure 1.

5. Repeat the experiment to determine median time-to-
evolve per CRM using MU as the fitness function, again
targeting the merged expression pattern.

6. Compare median time-to-evolve per CRM for simulations
from steps 4 and 5.

Our experimental setup still does not guarantee that there

exists a solution with fitness of 1 during simulations, but

manual inspection assured us that in each simulation, whether

it uses the baseline model or MU, there is at least one sequence

with fitness approximately 1 with respect to the target expres-

sion pattern defined as above. We repeated the above proce-

dure for two alternative models of MU, the first one including

ZLD and the second including DSTAT as the additional ubiq-

uitous activator.

Results

Overview of Simulations

We used the PEBCRES simulation framework (He et al. 2012;

Duque et al. 2014) (fig. 1A and B) to evolve sequences that

drive a predetermined expression pattern, simulating the pro-

cess of evolutionary adaptation under a variety of scenarios.

The main simplifying features of a PEBCRES simulation are the

following: 1) A constant-sized population of 2N haploid indi-

viduals evolves as per the Wright–Fisher model (Wright 1931;

Fisher 1999), 2) each individual’s genotype is a DNA sequence

500–2,000 bp long (typical length of a CRM), 3) mutations

occur at a fixed rate and independently at each nucleotide,
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and 4) no recombination occurs. Selection is modeled so that

an individual i spawns an expected number of offspring pro-

portional to 1 + KFi, where K is a constant called the “selection

scale” and Fi is the fitness of individual i on a scale of 0 (unfit)

to 1 (fit). Additional details are in Materials and Methods sec-

tion and in Duque et al. (2014) and He et al. (2012).

The distinguishing feature of a PEBCRES simulation is its

calculation of a fitness value (F) for any given CRM-length

sequence and a given expression pattern called the “target

pattern.” The target pattern is prespecified as a (say M dimen-

sional) vector of gene expression values on a scale of 0 to 1

(fig. 1A). The sequence is mapped to the expression pattern it

encodes (also an M-dimensional vector) by the statistical ther-

modynamics-based GEMSTAT model (He et al. 2010). Note

that the parameters of GEMSTAT, representing the trans con-

text, are trained before and outside of PEBCRES simulations.

(Also see next paragraph for comments about reliability of

these parameters.) The predicted expression pattern corre-

sponding to the sequence is then compared with the target

pattern by a specialized function called “weighted Pattern

Generating Potential” or wPGP (Samee and Sinha 2013;

Duque et al. 2014) to produce a fitness value between

0 and 1, which is 1 if and only if the two pattern vectors are

identical. (See supplementary fig. S6, Supplementary Material

online, for a visual depiction of predicted expression profiles

across the spectrum of fitness values.)

To decide on the target expression patterns to use in our

study, we considered a set of 37 bona fide CRMs from

D. melanogaster that drive well-characterized A/P patterns in

the blastoderm stage embryo. These 37 CRMs were the sub-

ject of a detailed modeling exercise in our previous work (He

et al. 2010), and the accuracy of model fits for a majority (see

supplementary note S2, Supplementary Material online) of

CRMs in that exercise assures us that the genotype-to-pheno-

type mapping used in PEBCRES simulations here is a reason-

able approximation of reality. Furthermore, in Duque et al.

(2014) we analyzed the evolutionary changes within these

37 CRMs across the Drosophila subfamily (12 sequenced spe-

cies separated by�65 Myr) and were able to accurately model

these changes using PEBCRES simulations of a functionally

constrained CRM. The selection strength on CRMs (i.e., the

selection scale parameter K mentioned above) estimated in

that study as providing the best fits between models and

data was used as the default value in this study. We selected

28 of the 37 A/P patterning CRMs as the subject of our anal-

yses (see Materials and Methods for selection criterion), pre-

dicted their expression patterns using GEMSTAT, and used

these 28 predicted patterns (see supplementary fig. S1,

Supplementary Material online), which are in approximate

agreement with experimental CRM readouts, as the target

patterns in PEBCRES simulations. We will refer to each

target expression pattern by the name of the D. melanogaster

CRM associated with that pattern.

Thus, using a carefully constructed fitness function and

with target patterns representing the typical complexity of a

developmental CRM, we hoped that our simulations will pro-

vide meaningful insights into what it takes to evolve an

enhancer.

Estimating the Time to Evolve a CRM

Our first goal was to estimate how long it might take for a

typical developmental CRM to evolve from genomic back-

ground, under a variety of assumptions. We simulated the

evolution of random sequences targeting each of the 28

target patterns (at least 30 simulations for each pattern) and

recorded the time-to-evolve for each simulation, that is, the

earliest generation in which an individual with fitness above

0.8 emerged in the population (we noted that fixation quickly

follows the emergence of a fit genotype). Using ideas from

population genetics theory and properly accounting for the

time rescaling used by PEBCRES (see Materials and Methods)

(Hoggart et al. 2007; He et al. 2012), we converted the time-

to-evolve value from generations to an estimate of time in

millions of years of Drosophila evolution. Finally, we examined

the median over all of our simulations for each target pattern.

The results of this computational experiment are presented in

figure 1C and discussed below.

Our simulations predict that, under strong selection, func-

tional CRMs for complex spatial patterns could evolve in sur-

prisingly short evolutionary times. For example, the average

time necessary to evolve the pattern for gt_-10, as per our

simulations, is only approximately 0.3 Myr. As a point of ref-

erence, this is nearly 10 times smaller than the divergence

between D. melanogaster and Drosophila simulans (2.5 Myr

[Ranz et al. 2003], synonymous substitution rate of approxi-

mately 0.04 [Bedford and Hartl 2008]), predicting that even

between these two closely related species there could be lin-

eage-specific CRMs driving simple expression patterns defined

by the response to a single TF. (The gt_-10 pattern is mediated

by activating sites of the BCD TF.) Other quickly evolving

patterns were mostly BCD-driven anterior patterns like gt_-

10, but also included more central patterns such as

“h_stripe_34_rev” and “run_stripe5” (fig. 1C), which are reg-

ulated by two or more TFs (supplementary fig. S1,

Supplementary Material online).

On the other hand, some target patterns require much

longer time to evolve, with the longest time being about 9

Myr (median) for the expression pattern “kni_83_ru,” roughly

30 times longer than that for gt_-10. There is a clear trend of

anterior patterns to have lower time-to-evolve estimates,

while central and posterior patterns have larger estimates

(fig. 1C, bottom). We noticed that half of the expression pat-

terns have time-to-evolve estimates that are higher than the

distance between D. melanogaster and D. simulans (2.5 Myr,

the closest of the currently sequenced species; Ranz et al.

2003)), while all the patterns have time-to-evolve that is
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shorter than the divergence between D. melanogaster and

Drosophila yakuba (13–17 Myr; Satta et al. 1987; Satta and

Takahata 1990). This suggests an opportunity for future stud-

ies to compare these sequenced genomes, which are amena-

ble to high-quality alignments, for the existence and function

of many lineage-specific CRMs. Our theoretical findings are

also supported by the recent discovery of hundreds of CRMs

(driving expression in Drosophila S2 cells) being gained since

the D. melanogaster–D. yakuba split (Arnold et al. 2014).

Evolutionary Sampling of the Fitness Landscape: Real
Versus In Silico Evolved CRMs

We next examined the in silico evolved CRMs (also called

“simulated” CRMs below) from the previous section more

closely, with a view to gain deeper insights into the “fitness

landscape” (Berg et al. 2004) associated with each target ex-

pression pattern. Our primary goal was to determine 1) if

these simulated CRMs resemble the real D. melanogaster

CRM associated with the target pattern, as might be expected

and 2) whether cases that deviate from this expectation pro-

vide clues about shortcomings in our models of CRM function

(Duque et al. 2014), reveal signatures of the evolutionary pro-

cess (He et al. 2012), or suggest multiple optima in the fitness

landscape. For this investigation, we chose to describe a CRM

by the estimated “occupancy” of each TF in the CRM (see

Materials and Methods; He et al. 2012), which is an integrated

score reflecting the total number of binding sites, both strong

and weak, of that TF (supplementary note S3, Supplementary

Material online). It also enables easy comparison of two CRMs

for similarity of cis-regulatory logic. We compared any two

CRMs, real or evolved, by the Euclidian distance between

their respective six-dimensional vectors of TF occupancy

counts (GEMSTAT modeling was based on six TFs, see

Materials and Methods).

We first examined all in silico evolved CRMs for all 28 target

patterns and noted that CRMs associated with similar expres-

sion patterns are closer to each other than distinctly expressed

CRMs (supplementary fig. S2, Supplementary Material online),

as expected. We then asked if in silico evolved CRMs for the

same target pattern cluster in the vector space, and how tight

these clusters are. Table 1 presents two relevant metrics to

answer these questions. The first metric, dintra, represents the

average distance between any pair of evolved CRM for a par-

ticular target pattern, and a second metric, dinter, denotes the

average distance between CRMs for a specific expression pat-

tern and CRMs representing other patterns. (We restricted the

other patterns to be those that are least correlated with that

pattern, because several of the target patterns are highly sim-

ilar to each other.) As table 1 shows, the ratio dinter/dintra is

almost always �2, indicating that distinct target patterns

are associated with well-clustered simulated CRMs. A few ex-

amples are depicted in figure 2 (note black circles in each

panel), which further confirms this observation.

We next asked if in silico evolved CRMs for a target pattern

are similar to the D. melanogaster CRM (henceforth, “real”

CRM) associated with that pattern. For this, we calculated a

metric, dWT, as the average distance between the real CRM

and all simulated CRMs for each target pattern, and compared

it with the intercluster distances dinter as well as intracluster

distances dintra defined above. A large relative value of dWT

indicates that CRMs resulting from evolutionary simulation are

different from the real CRM. As table 1 shows, dWT is in most

cases slightly larger than dintra but smaller than dinter, indicating

that the real CRM falls more or less within the cluster of

evolved CRMs for the same expression pattern (fig. 2A–D).

There were a few interesting exceptions to this trend,

marked with a “y” in the table. For example, the in silico

evolved CRMs for kni_83_ru and h_15_ru (fig. 2E and F)

seem to be distinctly more parsimonious than the real CRM,

although GEMSTAT predicts their functionality to be the same

(supplementary note S4, Supplementary Material online). We

may speculate on why high occupancy evolved in the real

CRM for these patterns. One hypothesis is that the evolution-

ary history of the real CRMs is more complicated than our

Table 1

Average Pairwise Distance between CRMs Evolved In Silico for the

Same Expression Pattern (dintra) and for Distinct Patterns (dinter)

Target Pattern dWT dintra dinter dinter/dintra dinter/dWT

h_15_ruy 6.13 2.36 4.66 1.97 0.76

kni_83_ruy 4.35 1.67 3.76 2.25 0.87

h_6_ruy 3.57 0.86 3.71 4.34 1.04

Kr_CD2_ruy 3.44 1.26 3.61 2.86 1.05

run_stripe3y 4.21 2.20 4.52 2.05 1.07

eve_37ext_ruy 4.19 1.68 5.03 3.00 1.20

kni_+1 2.62 1.36 3.54 2.61 1.35

D_+4 2.54 1.10 3.43 3.11 1.35

Kr_CD1_ru 2.40 0.79 3.37 4.29 1.41

run_-9 2.92 1.48 4.13 2.79 1.41

gt_-3 2.39 1.08 3.38 3.13 1.41

gt_-1 2.26 0.73 3.25 4.48 1.44

odd_-3 2.33 1.12 3.59 3.19 1.54

pdm2_+1 2.10 1.10 3.30 3.00 1.57

eve_stripe4_6 2.23 1.03 3.63 3.53 1.63

nub_-2 2.02 1.11 3.40 3.07 1.68

oc_+7 1.92 1.15 3.44 3.00 1.79

h_stripe34_rev 2.44 1.31 4.55 3.48 1.87

run_-17 1.81 1.15 3.86 3.36 2.13

gt_-10 1.51 0.73 3.68 5.03 2.43

hb_centr__post 1.48 1.05 3.59 3.41 2.44

btd_head 1.51 0.65 4.01 6.15 2.67

run_stripe5 1.19 1.14 3.40 2.97 2.86

prd_+4 1.16 0.56 3.51 6.23 3.01

Kr_AD2_ru 1.03 1.08 3.16 2.92 3.07

eve_stripe5 1.07 1.07 3.59 3.35 3.35

run_stripe1 1.04 0.61 4.24 6.90 4.06

eve_1_ru 0.81 0.40 3.77 9.37 4.65

NOTE.—Patterns marked with y are those where the real CRM falls outside the
cluster of simulated CRMs.
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simple simulations assume, for example, they have been

“exapted” (de Souza et al. 2013) from other functional se-

quences to perform a different function. An alternative pos-

sibility is that the high occupancy values seen in the real CRM

are functionally necessary due to some unknown mechanism

not modeled by GEMSTAT.

Features of CRM Composition May Influence Its
Time-to-Evolve

As noted above, time-to-evolve estimates for CRMs of differ-

ent expression patterns vary greatly, by at least one order of

magnitude. We sought to determine the factors that can ex-

plain such variability, focusing on two classes of potential

FIG. 2.—Visual representation of real and in silico evolved CRMs. A two-dimensional projection of the six-dimensional “TF occupancy” space occupied

by these CRMs. The axes represent the first and second principal components. The panels correspond to CRMs for patterns eve_1_ru (A), “run_stripe1” (B),

“run_stripe5” (C), “eve_stripe5” (D), kni_83_ru (E), and “h_15_ru” (F). In each panel, simulated CRMs of respective pattern are shown in small black circles,

and the real Drosophila melanogaster CRM for that pattern as a larger black circle; points in other colors represent simulated CRMs (smaller icons) and the

real CRM (larger icon, same color) for other target patterns.
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determinants: Binding site content of the CRM and features of

the target expression pattern itself.

We first tested for a correlation between time-to-evolve for

a target pattern and each TF’s binding site count (or estimated

occupancy) in the real CRM associated with that pattern. We

found that binding site content of the TF HB has a strong

positive correlation with time-to-evolve estimates (Pearson

CC = 0.70, P = 1:5� 10�5; fig. 3A). We also found that

total binding site content of a CRM, aggregated over all six

TFs, significantly positively correlates with time-to-evolve esti-

mates (fig. 3B); however, this effect can be attributed mostly

to HB site content, as indicated by a weak partial correlation

coefficient (Johnson et al. 1992) with P of 0.45.

We next asked if certain aspects of the target pattern make

it harder to evolve. A visual inspection (fig. 1C) suggested

that expression in the anterior domain of the embryo marks

smaller time-to-evolve estimates. To probe this point further,

we calculated the Spearman’s correlation coefficient between

the expression level of a CRM at a fixed position along the A/P

axis and the time-to-evolve estimate of that CRM, and re-

peated this procedure for every axial position. We found

strong negative correlation at anterior positions (fig. 3C),

that is, anterior expression patterns appear to be easier to

evolve. We also noted that the plot of correlation coefficients

in figure 3C very closely a resembles “flipped” version of the

expression pattern of HB (fig. 3C, dashed line), suggesting

FIG. 3.—Features of CRMs that influence time-to-evolve. (A) A scatter plot relating the estimated occupancy of HB in a real CRM (x axis) and the median

estimated time to evolve a CRM for the corresponding pattern (y axis). The Pearson’s correlation coefficient between the two variables is of 0.7, which is

significant at a P value of 1:4� 10�4. The best fit line is also shown (solid line). (B) A scatter plot relating the estimated TF occupancy in a CRM, summed over

all TFs used in the model (x axis), and the median estimated time-to-evolve for the corresponding pattern (y axis). Pearson CC = 0.47, P = 0.005. However, the

partial correlation, discounting the contribution of HB sites, is not significant (P = 0.45). The best fit line is also shown (solid line). (C) Time-to-evolve estimates

of CRMs are highly negatively correlated with expression level in anterior parts of the embryo. The y axis shows for each position along the A/P axis (“%egg

length,” x axis) the Spearman’s correlation coefficient between a target pattern’s expression level at that axial position and the time-to-evolve estimate for

that pattern. The concentration profile of HB across the axis is also shown (dashed line). (D) Scatter plot relating the number of TFs with at least one binding

site present in the D. melanogaster CRM (x axis) and the median estimated time-to-evolve for the corresponding pattern (y axis). The Pearson’s correlation

coefficient between the two variables is 0.49, P-value= 0.004, indicating the number TFs acting in a pattern correlates with the time-to-evolve that pattern.
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again that the faster evolution of CRMs with anterior patterns

may be related to their HB binding levels. This is consistent

with the fact that HB is modeled in GEMSTAT as a repressor,

and therefore high levels of expression in the anterior end of

the embryo indicate absence of HB sites in the CRM, which in

turn correlates with shorter time-to-evolve estimates. We find

it surprising that a single TF correlates so strongly with time-to-

evolve estimates, and speculate that it may be due to

the repeat-like T-rich motif of HB (supplementary fig. S3,

Supplementary Material online), or an artifact of mechanistic

details about HB regulation not captured in GEMSTAT (see

Discussion).

Finally, we find that the number of TFs involved in gener-

ating the pattern also correlates with high time-to-evolve es-

timates for that pattern (fig. 3D), with Pearson’s correlation

coefficient of 0.49 (P = 0.004). We calculated the number of

TFs needed to generate a pattern as the number of TFs that

have at least one site above the LR threshold of 0.25 (He et al.

2012), but the correlation remains significant for other thresh-

olds on the strength of sites (data not shown).

Dependence on Initial Conditions and the Possibility
of Exaptation

Recall that each of our simulations begins with a random se-

quence. If the initial random sequences have a higher fitness

value for certain target patterns, perhaps due to a greater

frequency of random occurrence of certain binding sites nec-

essary for that pattern, then such patterns may be quicker to

evolve. This is the reason why we selected only 28 expression

patterns out of the 37 A/P expression patterns modeled in

Duque et al. (2014) (see Materials and Methods). Even

within these 28 target patterns, we observed a significant

positive correlation between the average fitness of random

(initial) sequences and median time-to-evolve estimate (sup-

plementary fig. S4, Supplementary Material online). However,

a partial correlation analysis (Johnson et al. 1992) revealed that

this correlation with fitness of initial sequences is not signifi-

cant if we discount the already noted correlation with HB site

counts in the real CRM. This was not true when partialing out

the effect of other TFs’ site counts (data not shown).

Moreover, the correlation between HB site content and esti-

mated time-to-evolve remains significant after partialing out

the effect of initial fitness (data not shown). We interpret

these observations to suggest that the number of HB sites in

the initial random sequences influences the fitness of those

sequences for certain target patterns, and therefore their

time-to-evolve estimates.

Simulations beginning with random sequence represent an

extreme scenario of evolution of regulatory sequences. In re-

ality, features of the initial sequence where a CRM is to arise

may strongly influence the waiting time. For instance, as pre-

viously noted by Durrett and Schmidt (2007, 2008) and

MacArthur and Brookfield (2004), the composition of the

genomic background affects the time required to evolve bind-

ing sites and regulatory sequences. Dermitzakis et al. (2003)

noted that CRMs have short words that are close to becoming

functional sites, and thus have the potential to quickly gain

new function. Taking this line of reasoning further, one might

argue that a CRM may readily evolve by transformation of a

sequence that already contains several relevant binding sites

(Prud’homme et al. 2007; Okada et al. 2010; Emera et al.

2012; de Souza et al. 2013), a scenario that may be consid-

ered as an example of exaptation, also known as co-opted

evolution (Hoekstra 2006).

We designed two computational experiments to explore

the effect of initial sequences on time-to-evolve. The first ex-

periment simulates evolution under the favorable scenario

where a CRM evolves from a sequence that drives an expres-

sion pattern very similar to the target pattern (see Materials

and Methods). The second experiment explores an opposite

scenario, in which a CRM evolves from a sequence that drives

a very different pattern (e.g., in which a CRM with anterior

expression evolves from a sequence that drives posterior ex-

pression). As expected, the time to evolve each of the CRMs in

the first experiment is largely reduced (supplementary fig.

S5A, Supplementary Material online) due to the abundance

of binding sites for the necessary TFs. However, simulations

from initial sequences that drive a pattern anticorrelated with

the target has a negative effect on evolutionary time of several

CRMs (supplementary fig. S5B, Supplementary Material

online). This is due to the contrasting roles that some pairs

of CRMs have. Binding sites present in the initial sequence are

expected to reduce time-to-evolve only if they are for the right

TFs, that is, ones that can contribute to the target pattern. If,

on the other hand, the starting sequence has several sites that

disrupt the target pattern and few sites that contribute to it,

evolution will have to proceed by deconstructing the initial

sequence before it can start constructing the target pattern.

For example, the kni_83_ru CRM drives expression in a stripe

in the posterior end of the embryo (supplementary fig. S1,

Supplementary Material online), and contains many binding

sites for CAD, GT, HB, and KR. If we used this sequence to

initiate simulations for the target pattern “eve_1_ru,” a stripe

in the anterior end of the embryo, the evolving sequence

would have to lose most of its binding sites for CAD

and HB, maintaining the sites for KR and gaining new sites

for BCD.

Uniformly Expressed Activators Can Speed Up
Emergence of CRMs

Patterning of the early Drosophila embryo is well known to be

achieved by gradients of maternally deposited TFs and by their

patterned regulatory targets. Recent studies have focused also

on uniformly expressed TFs that function as important activa-

tors in patterning systems (Liang et al. 2008; Harrison et al.

2011; Tsurumi et al. 2011). These activators by themselves do
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not or may not have the patterning ability of nonuniformly

expressed TFs, but can modulate the response of a CRM to a

patterned signal (Kanodia et al. 2012). They are present in

several regulatory systems including the A/P system

(Arbouzova and Zeidler 2006; Liang et al. 2008; Kanodia

et al. 2012), the Dorsal–Ventral patterning system (Liang

et al. 2008; Kanodia et al. 2012), and other patterning or

developmental systems (Arbouzova and Zeidler 2006; Nien

et al. 2011; Tsurumi et al. 2011). Here, we pursued the hy-

pothesis that the deployment of uniformly expressed activa-

tors in patterning systems also has an evolutionary

explanation: That they improve the “evolvability” of target

patterns, by increasing the number of viable paths evolution

can take from a random initial sequence to a functional CRM.

To explore this hypothesis, we repeated the time-to-evolve

simulations from above with a GEMSTAT (CRM function)

model specification that includes a ubiquitous activator, and

compared the results with those from the original model. We

designed a methodology that ensures that there exists a fit

solution (CRM) for the target pattern under either function

model, with and without the ubiquitous activator, so that any

difference in time-to-evolve can be attributed to the evolution-

ary ramifications of the ubiquitous activator (see Materials and

Methods). We tested the effects of two well-characterized

ubiquitous activators, ZLD (Liang et al. 2008; Harrison et al.

2011) and DSTAT (Tsurumi et al. 2011), separately. As shown

in figure 4, each of these TFs reduces the median time-to-

evolve for several target patterns, with the effect of ZLD

being clearly more prominent. A two-way analysis of variance

supported these observations, with P value of 2� 10�4

(ZLD) and 0.03 (DSTAT) (supplementary tables S1 and S2,

Supplementary Material online), indicating that adding

either ubiquitous activator to the model has a statistically sig-

nificant effect of decreasing time-to-evolve.

For deeper insights into the effect of ubiquitous activators

on time-to-evolve, we discuss the example of the target pat-

tern “eve_37ext_ru,” which comprises a single stripe of ex-

pression peaking at about 49% egg length (fig. 4D). (This is

the third stripe of eve expression along the A/P axis, with stripe

7 being outside the modeled range of 20–80% egg length.)

To drive this pattern using the TFs in the baseline model (BCD,

CAD, GT, HB, KNI, and KR), whose A/P expression profiles are

shown in figure 4C, evolution could add activator sites for TFs

BCD and CAD, generating expression across all the A/P axis,

and add repressor sites for KNI and HB to create repression at

the anterior and posterior sides of the desired stripe. Indeed,

this may be the strategy employed by nature (Goltsev et al.

2004), because these are the TFs for which sites are present in

the real CRM from D. melanogaster (fig. 4E). However, neither

BCD nor CAD has maximal concentration around 49% egg

length (fig. 4C), and to create sufficient activation in the cen-

tral domain of the A/P axis, it would be necessary to add

several strong sites to the CRM. On the other hand, if

DSTAT is also available (as a ubiquitous activator), evolution

could use DSTAT sites to add to the weaker activation by BCD

and CAD in the central domain. This offers another avenue for

evolution to explore, ultimately leading to a lower time-to-

evolve in our simulations. Intriguingly, the D. melanogaster

CRM for eve_37ext_ru has two DSTAT sites (not shown), sug-

gesting that this may indeed have been the avenue taken by

evolution. Our interpretation is in agreement with theories of

evolutionary computation (Holland 1975; Goldberg 1989,

2002), according to which if a combinatorial problem has

many fit solutions we are more likely to find one of these

solutions quickly (Goldberg 2002).

Sensitivity to Evolutionary Parameters

We began this study by estimating the time necessary to

evolve 28 different expression patterns starting from a

random sequence. These estimates are expected to depend

on values of the population genetics parameters used in the

simulations, in particular the population size N, the mutation

rate m, and the selection coefficient s. We explored these de-

pendencies next, varying the simulation parameters within

reasonable ranges.

All our simulations used a time-rescaling heuristic (Hoggart

et al. 2007; He et al. 2012) for speeding up simulations, with a

scaling factor �= 1,000, a time-scaled population size

2N = 1,000, and a time-scaled mutation rate m= 10�5 (muta-

tions per generation per base pair), resulting in a scaled mu-

tation rate 2Nm= 10�2, which is within the estimated range of

10�2
� 10�4 (Drake et al. 1998; Thornton and Andolfatto

2006) for Drosophila (see Materials and Methods). We note

however that this mutation rate is higher than that used in

Duque et al. (2014). The higher mutation rate reduces the

computational time required for a simulation and as men-

tioned is still within the estimated range for Drosophila.

However, to understand the effect of mutation rate on our

results, we repeated the time-to-evolve estimation procedure

with values of 2Nm that are an order of magnitude greater or

lesser than 10�2. Figure 5A shows how the time to evolve a

CRM, averaged over the 28 target patterns, changes with the

values of 2Nm. Changing the scaled mutation rate 2Nm by a

factor of 10 results in time-to-evolve estimates that change by

less than 10 times, which is not unexpected because different

values of 2Nm result in different balances between selection

and drift. In particular, reducing 2Nm from 0.01 to 0.001

(a factor of 10) results in average time-to-evolve increasing

about 7-fold from approximately 2.1 to approximately 18

Myr, with estimates for individual target patterns ranging be-

tween 2.1 and 25 Myr. (As a comparison point, we note that

the estimated divergence time between D. melanogaster and

Drosophila pseudoobscura to be 25–55 Myr; Richards et al.

2005.)

Another important population genetics parameter is the

selection coefficient s, or equivalently, the population-scaled

selection coefficient 4Ns. In our simulations, the strength of
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selection is controlled by the selection scale parameter K,

which is analogous to s when two competing individuals

have fitness of 0 and 1. For the experiments reported

above, we used K = 50, which is of the same order as the

value determined in Duque et al. (2014) to provide the best

fit to real evolutionary data. In the absence of better tools to

estimate the actual strength of selection, this value is our best

guess in the context of our experiment. Nevertheless, we re-

peated our experiments with different values of K (2, 5, 25,

50, 100), as shown in figure 5B, in part to compensate for our

lack of knowledge of the real selection strength and in part to

understand how the selection strength influences the time-to-

evolve. As expected, smaller values of the selection scale K

result in longer times necessary to evolve CRMs. For instance,

FIG. 4.—The effect of uniformly expressed activators on time-to-evolve for each target pattern. (A) Comparison of time-to-evolve estimates between the

baseline model and a model that includes ZLD as a uniform activator. Expression patterns are sorted based on time-to-evolve estimates from the baseline

model. (B) Comparison of time-to-evolve estimates between the baseline model and a model that includes DSTAT as a uniform activator. (C) Concentration

profiles of seven TFs across the A/P axis. Activators are indicated with an A and repressors with an R. (D) Target expression pattern for the CRM eve_37ext_ru.

(E) Number of sites present in the eve_37ext_ru CRM in D. melanogaster, for each of the six TFs (other than DSTAT). Sites are called at relative strength of

0.25 following the procedure described in Materials and Methods.
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reducing the selection scale by a factor of 10 (K = 5) results in

time-to-evolve estimates increasing by less than a factor of 10.

We also found an apparent saturation in the effect of increas-

ing the selection strength from 50 to 100 (fig. 5B).

Finally, we note that other assumptions about the evolu-

tionary model might also influence time-to-evolve estimates.

For example, insertions and deletions (indels) have been sug-

gested to have important effects on the evolution of regula-

tory sequences (Sinha and Siggia 2005; Lusk and Eisen 2010;

Nourmohammad and Lässig 2011); recombination has

also been suggested to influence the rate of adaptation

(Schoustra et al. 2007) and even ploidy had been suggested

to influence adaptation (Orr and Otto 1994; Zeyl et al. 2003).

It is beyond the scope of this work to test for the effect of all

such mechanisms, but we examined the effects of indels on

time-to-evolve estimates (fig. 5C). We find that adding indels

(insertions implemented as short tandem repeats, as in He

et al. 2012) to our model increases time-to-fit estimates

from approximately 2.8 to approximately 3.6 Myr on average

(fig. 5C), a statistically significant increase (paired t-test with

pooled standard deviation, P = 0.0002). One way to interpret

this is that insertions and deletions are more likely to comple-

tely destroy binding sites than point mutations, and therefore

are more likely to be selected against. Interestingly, the effect

of indels reverses direction when performing the same com-

parison using simulations where the initial sequence was a real

CRM sequence that drives a highly dissimilar pattern. (These

simulations were done in a manner similar to that reported

above and in supplementary fig. S5B, Supplementary Material

online, except for the choice of initial sequence.) In particular,

the salient trend was for time-to-fit estimates to decrease

(fig. 5D). It appears that indels might have a role in making

FIG. 5.—Sensitivity of time-to-evolve estimates to simulation parameters. (A) Sensitivity to the scaled mutation rate (2Nm). Shown are the average time-

to-evolve (median of all simulations for a pattern, averaged over 28 target expression patterns) for three values of 2Nm. (B) Sensitivity to selection scale

parameter (K). (C) The effect of indels. The plot shows time-to-evolve estimates (y axis) for each of the 28 target expression patterns (x axis) for an evolutionary

model without insertions or deletions (black circles) and an evolutionary model that includes indels (red triangles). Adding indels significantly increases time-

to-evolve estimates (P = 0.0002). (D) Same as (C), except that the initial sequences for simulations are real CRMs that drive a pattern anticorrelated with the

target pattern. The trend is that including indels in these simulations reduces the time-to-evolve estimates.
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it easier to “exapt” a CRM that starts from a very different

expression pattern. Similar tests with initial sequences driving

patterns similar to the target pattern are reported in supple-

mentary figure S5C, Supplementary Material online, but show

a less clear trend.

Discussion

We used the evolutionary simulation framework of PEBCRES,

from our previous work (He et al. 2012; Duque et al. 2014), to

study what it might take for a functional CRM to evolve, first

asking how long this may take under strong selection, and

then investigating various factors that may influence the esti-

mated time-to-evolve. These questions have been addressed

in various ways by other authors before us, for instance, by

Stone and Wray (2001), MacArthur and Brookfield (2004),

and Durrett and Schmidt (2007, 2008). Early approaches to

this question focused on the independent evolution of single

binding sites (Stone and Wray 2001; Durrett and Schmidt

2007), pairs of binding sites (Durrett and Schmidt 2008), or

simple CRMs composed of a single TFs (MacArthur and

Brookfield 2004). However, questions regarding CRM evolu-

tion assume additional complexity due to the diverse mecha-

nisms and combinatorial nature of gene regulation, which

have not been adequately addressed in previous work. In

recent work, we developed the PEBCRES evolutionary frame-

work to bridge this gap, and used it to accurately model the

evolutionary dynamics of binding sites within CRMs under

strong negative selection for a fixed regulatory function

(Duque et al. 2014). The success of that work encouraged

us to explore here a complementary aspect of CRM evolu-

tion—that of emergence of a new CRM under strong adap-

tive forces.

Before discussing our findings further, we note that our

simulation-based inferences are theoretical projections, given

the many unknown aspects of regulatory and evolutionary

biology that our formalism does not capture. For instance,

our fitness function is based on comparing predicted and

target expression patterns and the mapping of the resulting

deviation to a fitness score is an ad hoc choice. (It is a simple

nonlinear function so that fitness rises much more rapidly

when the evolving pattern is close to the target.) There is

little guidance from the literature regarding a realistic map-

ping, and this will be a major research direction in itself. The

wPGP score used here for comparing two expression patterns

is itself subject to questioning, although we have argued in

previous work (Samee and Sinha 2013) why this is preferable

to more obvious alternatives. Caveats arise not only from the

evolutionary aspects but also the cis-regulatory aspects of the

model, which are far from being fully characterized, even

though we intentionally focused on one of the best charac-

terized regulatory systems here. The impact of chromatin

structure and nucleosome positioning is not included in our

function model, which operates under the assumption that

the entire enhancer is an “open chromatin” region; this as-

sumption is true only to a first order of approximation.

We estimated that CRMs that exhibit the combinatorial

complexity associated with early developmental enhancers

(specifically, those involved in A/P patterning in Drosophila

embryos) can emerge on fairly short time scales, of the

order of few millions of years, even when starting from

random sequences of little or no functional ability. A recent

study by Arnold et al. (2014) used massively parallel enhancer

screens (Arnold et al. 2013) to find that hundreds of novel

CRMs have emerged on the scale of approximately 10 Myr,

lending credibility to our theoretical findings. Although we are

not aware of other previous studies reporting time-to-evolve

estimates for CRMs, it is worth noting that Durrett and

Schmidt (2007) estimated that an 8-bp long “fuzzy” binding

site (one mismatch allowed) might emerge in the human pop-

ulation on a time scale of 60,000 years. A CRM evolved in our

simulations for the gt_-10 pattern, for example, has about 7

binding sites on average, and takes about 0.3 Myr to evolve.

This agrees roughly with an extrapolation from Durrett and

Schmidt (2007) whereby the time for 7 binding sites to

emerge should about 0.42 Myr, assuming sites are not lost

and sites emerge sequentially. This is a ballpark comparison,

because the two estimates are for human and fruitfly popu-

lations respectively and contingent on different assumptions

about a binding site’s information content.

Here, CRMs were evolved in silico to drive predetermined

expression patterns along the A/P axis. CRMs arising from

different simulations for the same target expression pattern

tended to cluster strongly in terms of site composition, with

distinct expression patterns defining distinct clusters of “fit”

enhancers. Importantly, we noted evolved sequences to be

similar in site composition to the real D. melanogaster CRMs

associated with their respective patterns, thus demonstrating

agreement between model-based evolutionary simulations

and real data. The few exceptions from this general trend

were also illuminating, with the evolved CRMs being signifi-

cantly more parsimonious than their real counterparts, leading

to speculations about a more complex evolutionary history of

those real CRMs or about missing regulatory mechanisms in

the PEBCRES/GEMSTAT framework (Duque et al. 2014). This

latter point deserves special mention as missing regulatory

mechanisms can shade the findings of simulation-based stud-

ies, as was demonstrated in our recent work (Duque et al.

2014). For instance, we note that the A/P patterns used as

targets in our simulations lack terminal aspects—we only con-

sidered the regulatory function of a CRM in the range 20–

80% egg length. This may lead to underestimates of time-to-

evolve CRM for certain patterns. Proper modeling of these

CRMs requires that the underlying fitness function, specifically

GEMSTAT, uses additional TFs, some of which are not known

(He et al. 2010). Additionally, previous work on GEMSTAT

(He et al. 2010) and PEBCRES (Duque et al. 2014) have pro-

duced careful estimates for many of the free parameters used
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in this work by modeling expression patterns that excluded

the terminal ends. These were two major reasons why we

decided to exclude the terminal ends of the embryo from

our analysis.

We noted up to a 30-fold variation in the time-to-evolve

CRMs for different expression patterns, naturally raising the

following question: What causes this variable time-to-evolve?

The flexibility inherent in the PEBCRES framework (as opposed

to a purely analytical framework; Durrett and Schmidt 2007,

2008) allowed us to explore different aspects of the evolution-

ary process and regulatory mechanisms, and how they might

affect emergence time of CRMs. For example, we asked how

these times might be affected if a CRM, instead of evolving

from genomic background, arose from a sequence that

already drives some expression pattern. Unsurprisingly, we

found that if the two expression patterns (that driven by the

original sequence and the target pattern) are highly similar,

the time to evolve a CRM is greatly reduced; however, perhaps

more interestingly, the emergence time can also be signifi-

cantly greater if the expression patterns are very dissimilar.

Dependence of evolution times on initial sequences has

been proposed in previous work. For instance, MacArthur

and Brookfield (2004) argued that the time to evolve a CRM

that drives a certain level of activation by a TF may be influ-

enced by the CG-content of the initial sequence.

As another example of factors affecting time-to-evolve, we

found that ubiquitous activators, which are not by themselves

capable of patterning a target gene, may work with other TFs

and reduce the time to evolve a CRM. We speculate that this

may be due to two complementary reasons: 1) Ubiquitous

activators provide alternative solutions to the underlying com-

binatorial optimization problem of finding a fit CRM and 2)

ubiquitous activators reduce the number of binding sites nec-

essary to create certain expression patterns, and thus the

number of steps (mutations) needed to find a fit solution.

Both situations are expected to reduce the time to find one

such solution, as per theories of evolutionary computation

(Goldberg 2002).

Our simulations suggest that CRMs with more combinato-

rial regulation (measured by the number of TFs with sites in

the D. melanogaster CRM for the same pattern) should take

longer to evolve. Perhaps more surprisingly, we noted that the

binding site content for a particular TF—HB—is one of the

strongest predictors of time-to-evolve values. It is possible

that this points to shortcomings of our simulation framework.

We noted that the HB motif can be characterized as a poly-T

repeat (supplementary fig. S3, Supplementary Material

online). Such repeat patterns might be easily created through

mutational mechanisms that we have not modeled ade-

quately in PEBCRES (Nourmohammad and Lässig 2011).

Moreover, there is evidence that HB might play dual roles of

activator and repressor depending on the regulatory context

(Papatsenko and Levine 2008; Bieler et al. 2011). The absence

of this mechanism in our GEMSTAT-based fitness function

may be related to the strong correlation noted above, and

illustrate more generally how evolutionary modeling may

lead us to closer examination of mechanisms encoded in cis-

regulatory sequences (Duque et al. 2014).

We also found that anterior expression patterns

were quicker to evolve sequences than posterior patterns.

However, this observation is likely a consequence of the al-

ready mentioned influence of HB site counts. Noting that HB is

modeled as a repressor and is largely expressed in the anterior

end of the embryo, anterior expression correlates with lesser

site content for HB, which in turn correlates with shorter time-

to-evolve values.

Our application of PEBCRES to understanding the evolution

of CRMs can be extended in several ways. For example, our

model could be used to shed light on shadow enhancers (Perry

et al. 2010; Barolo 2012), by using the GEMSTAT-GL model of

locus-level modeling for regulatory function prediction instead

of the GEMSTAT model of enhancer function. Other avenues

of future exploration include understanding the effect of

indirect activators (Kanodia et al. 2012), the effect of local

duplications (Sinha and Siggia 2005) on time-to-evolve esti-

mates, exploring the robustness of evolved CRMs to fluctua-

tions in input TF concentrations (Pujato et al. 2013) and how

such robustness might evolve (Wagner 2005), and under-

standing how evolvability (Wagner and Altenberg 1996;

Wagner 2005) affects the architecture of cis-regulatory se-

quences and how it evolves in the first place (Wagner and

Altenberg 1996).

Supplementary Material

Supplementary figures S1–S6, tables S1–S2, and notes S1–S3

are available at Genome Biology and Evolution online (http://

www.gbe.oxfordjournals.org/).
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