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Abstract

The SLA (swine leukocyte antigen, MHC: SLA) genes are the most important determinants of immune, infectious disease and
vaccine response in pigs; several genetic associations with immunity and swine production traits have been reported.
However, most of the current knowledge on SLA is limited to gene coding regions. MicroRNAs (miRNAs) are small molecules
that post-transcriptionally regulate the expression of a large number of protein-coding genes in metazoans, and are
suggested to play important roles in fine-tuning immune mechanisms and disease responses. Polymorphisms in either
miRNAs or their gene targets may have a significant impact on gene expression by abolishing, weakening or creating
miRNA target sites, possibly leading to phenotypic variation. We explored the impact of variants in the 39-UTR miRNA target
sites of genes within the whole SLA region. The combined predictions by TargetScan, PACMIT and TargetSpy, based on
different biological parameters, empowered the identification of miRNA target sites and the discovery of polymorphic
miRNA target sites (poly-miRTSs). Predictions for three SLA genes characterized by a different range of sequence variation
provided proof of principle for the analysis of poly-miRTSs from a total of 144 M RNA-Seq reads collected from different
porcine tissues. Twenty-four novel SNPs were predicted to affect miRNA-binding sites in 19 genes of the SLA region. Seven
of these genes (SLA-1, SLA-6, SLA-DQA, SLA-DQB1, SLA-DOA, SLA-DOB and TAP1) are linked to antigen processing and
presentation functions, which is reminiscent of associations with disease traits reported for altered miRNA binding to MHC
genes in humans. An inverse correlation in expression levels was demonstrated between miRNAs and co-expressed SLA
targets by exploiting a published dataset (RNA-Seq and small RNA-Seq) of three porcine tissues. Our results support the
resource value of RNA-Seq collections to identify SNPs that may lead to altered miRNA regulation patterns.
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Introduction

The swine major histocompatibility complex (MHC), also

known as swine leukocyte antigen (SLA) complex, spans 2.4 Mb

on swine chromosome 7 and is one of the regions of the swine

genome with the highest gene density. More than 150 loci have

been identified, with 129 of them annotated as protein-coding

genes, including the classical and the non-classical MHC class I

antigens and the MHC class II antigens [1]. An additional 124

‘non-MHC genes’ are involved in natural immunity or have

unknown functions. The Immuno Polymorphism Database-MHC

(IPD-MHC) website (http://www.ebi.ac.uk/ipd/mhc/sla/) serves

as a dedicated repository for maintaining a list of all SLA

recognized genes and their allelic sequences [2].

As in MHC of other species, the swine MHC (SLA) region is

highly polymorphic, with little recombination, producing large

numbers of haplotypes segregating in populations [1], [3]. Several

genetic associations with immunity and disease have been

reported, as well as with production and reproduction traits [2].

However, most of the current knowledge on SLA is largely based

on data from coding regions. Some sequence variants appear to

regulate gene expression, rather than coding sequence [4]. A
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complex transcriptional pattern of non-classical SLA Ib genes,

possibly due to post-transcriptional regulation, has been observed

[5].

MicroRNAs (miRNAs) are small molecules (18–25 nt long) that

post-transcriptionally regulate gene expression in metazoans. Most

mammalian mRNAs (.60%) are predicted to be targeted by

miRNAs, thus creating a complex layer of transcriptional re-

pression that acts to diversify cellular phenotypes in a wide range

of biological processes [6], [7]. Recent studies have revealed that

miRNAs can often profoundly influence the response of fully

developed tissues to physiologic and pathophysiologic stress, and

that miRNAs play an important role in fine-tuning inflammatory

mechanisms [8]. This functional niche indicates a central role for

miRNA-regulated networks in disease states, which often represent

an insufficient or aberrant response under conditions of stress or

injury [9].

It is widely accepted that 39 untranslated gene regions (39-UTR)

are the predominant location of miRNA target sites. In the

canonical scenario, a perfect base-pairing complementarity

between the critical ‘‘seed’’ region of the mature miRNA (nt 2–

7) and the 39-UTR of a target expressed gene leads to mRNA

decay and/or translational inhibition; multiple binding sites for the

same miRNA in 39-UTRs can strongly enhance the degree of

regulation [10], [11], [12]. Functional genomics and computa-

tional approaches are revealing additional complexity as well as

alternative modes of miRNA and gene target recognition [13],

[14]. An increasing number of bioinformatic strategies have been

proposed to model miRNA-39UTR interactions. Most methods

require a perfect sequence complementarity between the miRNA

seed region and the 39-UTR. This has been supplemented by

various filters taking into account additional criteria, including the

phylogenetic conservation of miRNA recognition sites [6], [15],

the thermodynamic stability of the putative miRNA:mRNA

duplex [16], [17], and the structural features of the 39-UTR

region, in particular site accessibility or local context [18], [19],

[10].

A DNA sequence polymorphism (DSP) in either the miRNA or

its gene target sequence (poly-miRTS) may have a significant

impact on gene expression by abolishing, weakening or creating

miRNA-binding sites, and potentially lead to phenotypic con-

sequences. For example, in the Texel sheep, the creation of miR-1

and miR-206 binding sites by a SNP in the 39 UTR region of the

GDF8 shows perfect association with sheep hyper-muscularity

[20], [21]. Genome wide catalogues of DSPs predicted to perturb

miRNA-mediated gene regulation have been reported for miRNA

target sequences of vertebrates (Patrocles database: www.patrocles.

org; [22]) and for miRNA sequences [22], [23]. However, these

predictions are based on perfect-seed matching of miRNA-binding

sites and, furthermore, the pig species is not yet included in the

Patrocles database [22].

We aimed to discover novel 39-UTR variants in transcripts

mapping to the whole SLA region, potentially leading to altered

post-transcriptional regulation mediated by miRNAs, by taking

into account different biological parameters to predict 39-UTR

miRNA target sites. We first explored the impact of SNPs on the

39-UTR miRNA target sites of three SLA class I genes

characterized by a different range of sequence variation. This

provided proof of concept information for exploiting a collection

of porcine RNA-Seq data from different individual animals and

tissues. Finally, the analysis of a published ‘whole transcriptome’

deep sequencing dataset (RNA-Seq and small RNA-Seq) provided

evidence of opposite expression levels between miRNAs and their

co-expressed SLA targets.

Results

39-UTR Variants of SLA-1, SLA-3 and SLA-6
We first focused on three SLA genes known from previous

studies to exhibit a different range of sequence variation. Coding

variants within classical SLA-1 (MHC class Ia antigen 1; 44 alleles),

and SLA-3 (MHC class Ia antigen 3; 26 alleles) are localized to

exons 2 and 3, which form the class I protein peptide-binding

groove. By contrast, the non-classical SLA-6 (MHC class Ib

antigen 6) is almost monomorphic (nine variants; [2]). By reference

to the SLA sequence (haplotype Hp-1a.1) of the Vertebrate

Genome Annotation (VEGA) database [24] and all available

NCBI accessions, a set of non-redundant representative 39-UTRs

was compiled for the three genes. This set contained 32 unique 39-

UTR sequences from the 44 identified SLA-1 alleles, 17 39-UTR

sequences from the 26 SLA-3 alleles, and three 39-UTR sequences

from the nine SLA-6 alleles. The nucleotide variation of 39-UTR

sequences of SLA-1 (,39%) exceeded levels of variability at exon 2

and exon 3. The variation of 39-UTR sequences of SLA-3 and

SLA-6 was ,12% and ,2%, respectively (Table S1).

miRNA Targets and Poly-miRTSs of SLA-1, SLA-3 and SLA-
6

The combined use of three software programs (TargetScan,

PACMIT, and TargetSpy) allowed us to take into account

different biological parameters to predict 39-UTR miRNA target

sites, namely seed perfect matching and 39-UTR local context

(TargetScan), seed perfect matching and site accessibility (PAC-

MIT), and 39 compensatory sites (TargetSpy). The miRNA

binding site conservation could not be used as a criterion for

these genes, due to the absence of clear orthology in the human

genome for SLA class Ia and Ib genes [1].

In order to categorize miRNA-binding sites that may be altered

by SNPs, we qualified any sites absent in the 39-UTR VEGA

reference but present in one or more alleles as a ‘created site’. A

‘disrupted site’ was defined as a site present in VEGA but absent in

one or more alleles. Short retrieved allele sequences may be either

real variants or result from prematurely truncated sequencing, and

would thus lead to overestimation of the number of disrupted sites

and to underestimation of the number of created sites. Therefore,

no miRNA binding site was considered as disrupted in the absence

of sequence information.

As expected, TargetScan predicted the highest number of

miRNA target sites in the three genes (Table 1, Figure 1). A lower

number of gene targets were predicted by PACMIT due to the

additional constraint on site accessibility, all of which were

common to TargetScan output, thus providing a first selection of

TargetScan predictions based on site accessibility. TargetSpy was

supposed to identify targets that were missed by TargetScan and/

or PACMIT; indeed its output showed limited overlap with

TargetScan and no overlap with PACMIT. Three, one, and two

putative miRNA target sites were recognized by all three

algorithms in SLA-1, SLA-3, and SLA-6, respectively. These

predicted sites were jointly supported by a perfect seed match,

3-UTR local context, site accessibility, and 39 compensatory sites

criteria (Figure 1).

To distinguish ‘‘created’’ versus ‘‘disrupted’’ miRNA-targeting

sites, our strategy needed to define a reference. Although the

VEGA sequence was arbitrarily chosen, it turned out that the

miRNA-binding sites predicted on VEGA were the most frequent

in the alleles of the three genes. Based on this reference, all

software programs predicted an excess of creation vs. disruption of

miRNA target sites in the three genes (Table 1), and in several

cases the same SNPs created and disrupted a targeting site for

Polymorphic miRNA Target Sites: RNA-Seq of SLA
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a different miRNA. These features are graphically illustrated in

the case of SLA-3 (Figure 2). A prevalence of created vs. disrupted

sites has been reported in humans, leading to the hypothesis that

a stronger purifying selection acts against SNPs destroying target

sites than against SNPs creating target sites [25].

All the miRNA-binding sites predicted on the VEGA reference

sequence were present in at least one of the described alleles of

each gene (Table S2) and poly-miRTSs were predicted both in

variable and highly conserved portions of the 39-UTR regions of

the three genes. Each poly-miRTS was either found in several

alleles (e.g. miR-224 site in SLA-3), or in a single allele (e.g. miR-

216 site in SLA-3: gb_EU432082.1 allele) (e.g. SLA-3: Figure 2).

The number of poly-miRTSs reflected the different levels of 39-

UTR nucleotide variation (Table S1), with few poly-miRTSs

found in SLA-6.

Collection and Mapping of Porcine RNA-Seq Reads
A total of 144 M porcine RNA-Seq reads were obtained from

alveolar macrophages (from a 10 week old Large White x

Landrace cross pig), placenta (from a Duroc clone TJ Tabasco x

Duroc cross pig), a pool of eleven tissues (from a three year old

clone of TJ Tabasco pig), testis (from an European wild boar) and

whole blood (from two commercial crossbred pigs). Reads were

mapped against a custom swine genome (Table 2).

As expected, the proportion of reads that mapped to the SLA

region varied across the different tissues. Alveolar macrophages

had the highest proportion of reads (3.7%) that mapped to the

SLA complex, reflecting their known high expression of both class

I and class II MHC genes and several inducible non-classical

MHC products such as TNF-alpha (DAH, RK, unpublished).

As we were interested in identifying the largest set of

polymorphisms in the 39-UTRs of the SLA region, we looked at

the fractions of the 39-UTR sequences covered by at least one

read. Among the 151 genes localized in the region, 118 had 39-

UTR that were annotated and, of those, 111 genes had a non-zero

coverage for more than 50% of their 39-UTR sequence (Table 2).

Analysis of DNA Sequence Polymorphisms (DSPs) from
RNA-Seq Data

A total of 44 SNPs were identified in the 39-UTRs of 25 genes in

the SLA region (Table S3), of which 42 were not previously

submitted to dbSNP. Only ten of the 44 SNPs were common to

multiple datasets. This low degree of overlap is probably due to the

stringent SNP calling criteria applied (see Material and Methods)

and to the different depths of RNA-Seq coverage in these regions,

and possibly to the effect of different breed of origin of individual

animals (Table S3).

The complexity of the SLA region due to repeats, pseudogenes

and paralogous gene families makes accurate mapping of short

reads potentially difficult. The concept of sequence mappability

has been introduced to discern, given the length of the sequenced

reads and the number of mismatches allowed during the mapping

step, the regions producing reads which map back unambiguously

to themselves [26]. We computed the mappability of each of the

44 identified SNPs based upon the technical specifications of the

sequencing experiment from which they originate. Only six out of

the 44 SNPs had a mappability greater than 1, meaning that reads

covering them could map more than once on the genome (Table

S3). Therefore, only the 38 remaining SNPs were considered in

further analysis.

Effect of Sequence Polymorphism on Predicted miRNA
Target Sites

Poly-miRTS in RNA-Seq data were evaluated using the same

combined approach of target site prediction (TargetScan,

PACMIT and TargetSpy software). A total of 46 39-UTR SNPs

were taken into account, which included the 38 SNPs identified

Figure 1. Venn diagrams of miRNA target sites at the 39-UTRs of SLA-1, SLA-3 and SLA-6. Predictions were performed by TargetScan,
PACMIT and TargetSpy algorithms.
doi:10.1371/journal.pone.0048607.g001

Table 1. miRNA-binding sites and poly-miRTSs (created and
disrupted sites predicted by TargetScan, PACMIT and
TargetSpy) in SLA-1, SLA-3 and SLA-6 porcine genes.

TargetScan PACMIT TargetSpy

VEGA sequencea

SLA-1 11 1 4

SLA-3 10 1 3

SLA-6 10 5 3

Disrupted sites

SLA-1 10 1 4

SLA-3 6 1 3

SLA-6 1 0 3

Created sites

SLA-1 21 8 8

SLA-3 11 8 6

SLA-6 1 0 2

aThe VEGA sequence is the reference haplotype Hp-1a.1.
doi:10.1371/journal.pone.0048607.t001

Polymorphic miRNA Target Sites: RNA-Seq of SLA
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Figure 2. Influence of sequence variants on predicted miRNA target sites at the 39-UTRs of SLA-3. Known alleles (17 sequences) were
retrieved from NCBI database. TargetScan (blue), PACMIT (green), TargetSpy (brown). The miRNAs targeting the VEGA reference are indicated in text.
The complete list of miRNAs targeting the altered target sites in SLA-3 alleles is reported in Table S2.
doi:10.1371/journal.pone.0048607.g002

Table 2. Mapping statistics (number of reads) of 144 M RNA-Seq reads obtained from different pig tissues.

Alveolar macrophages Pool of fetal tissues Placenta Testis Whole blood

Reads located in the SLA
region

1177825 97651 101556 126306 268162

Number of 39-UTRs
covereda

69 84 59 73 102

Total mapped 31487788 14617543 10063066 8306799 41488609

Proper pairs 22786379 11397820 8169118 6868205 -

Total reads 36168380 38116682 11620273 9608149 48973230

aNumber of 39-UTRs mapping to the SLA region with more than 50% of the sequence covered by at least one read.
doi:10.1371/journal.pone.0048607.t002

Polymorphic miRNA Target Sites: RNA-Seq of SLA
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from RNA-Seq datasets, plus eight known SNPs previously

reported in the dbSNP database.

More than half of these SNPs (24 out of 46) were annotated as

potentially altering miRNA binding in a total of 19 genes of the

SLA region (Table S4). As previously found for SLA-1, SLA-3 and

SLA-6 known alleles (Table 1), all three software programs

predicted an excess of created miRNA target sites, and often the

same SNPs created a new site while disrupting a targeting site for

a different miRNA. For example, both TargetScan and PACMIT

predicted that the DSP in the ABCF1 39-UTR created a new ssc-

miR-34a/c target site while disrupting the ssc-miR-885-3p

predicted target site (Table S4).

While PACMIT confirmed most (17 out of 23) of the created

sites predicted by TargetScan, pronounced differences were found

for disrupted sites (4 common sites out of 13 sites predicted by both

software applications). This can be explained by the additional

accessibility criterion of PACMIT as sites considered as created or

disrupted by PACMIT may only reveal changes in secondary

structures which are not predicted by TargetScan (e.g. the created

ssc-miR-339-5p and ssc-miR-4334-3p sites in CREBL1 39-UTR,

and the disrupted ssc-miR-148a, ssc-miR-148b and ssc-miR-152

sites in HSPA1A).

As expected, the output of TargetSpy (whose main criterion is

the alteration of 39 compensatory sites) was considerably different

from TargetScan and PACMIT. For example, only TargetSpy

predicted the creation of a ssc-miR-376a site in PPP1R10 and the

disruption of a site for ssc-miR-181c in SLA-DRA (Table S4). Two

created sites, ssc-miR-19a and ssc-miR-19b targeting HSPA1A

(encoding the heat shock 70 kDa protein 1A), found by

TargetScan and PACMIT overlapped with TargetSpy predic-

tions.

Conservation of Predicted miRNA Target Sites in Humans
A consideration of inter-specific conservation of miRNA target

sites can significantly improve target prediction, the rationale

being that highly conserved miRNA-binding sites are more likely

functional. Among the three chosen algorithms, only TargetScan

is implemented to exploit this filter.

Out of the 13 genes in which polymorphic miRNA target sites

were predicted by TargetScan, 11 had a human ortholog. At three

of these genes, we identified miRNA-binding sites conserved

between pigs and humans (Table S4). In particular, the miR-139-

5p target site in SLA-DQB1 was conserved in HLA-DQB1, and we

found a variant that disrupted this site in the pig. Three target sites

were predicted for miR-1296 in the 39-UTR of both human and

pig DDR1, with one out of the three sites altered in one pig variant

(i.e. one disrupted poly-miRTS). Finally, the miR-423-5p target

site in the 39-UTR of human RNF5 was conserved in one porcine

variant (i.e. one ‘created’ poly-miRTS) (Table S4).

Co-expression Patterns of miRNAs and Poly-miRTSs from
Porcine RNA-Seq and Small RNA-Seq Data

The biological relevance of predicted poly-miRTS (Table S4)

would require validation on a case by case basis, as it is directly

dependent on the co-expression patterns of the miRNA and its

predicted target in the same tissue and at a given physiological

state [27]. Consequently, we reasoned that preliminary informa-

tion on the relationship between poly-miRTSs and their cognate

miRNAs expression levels could be inferred by the joint analysis of

available RNA-Seq and small RNA-Seq data generated from the

same cells or tissue. Poly-miRTSs may either determine acquisi-

tion or loss of a miRNA target for a given gene. Thus, expressed

gene variants harboring a poly-miRTS for any co-expressed

miRNAs should be represented by a lower (if the target site is

created) or higher (if the site is disrupted) number of reads than the

reference allele.

We analyzed the RNA-Seq and small RNA-Seq expression

profiles of three porcine tissues (abdominal fat, liver and long-

issimus dorsi muscle obtained from two individual pigs) of

a recently published study [28]. The raw reads from the six

RNA-Seq libraries and the six small RNA-Seq libraries were

mapped against the custom swine genome, and transcripts and

miRNAs expression levels were quantified. The 19 previously

identified genes in the SLA region harboring poly-miRTSs (Table

S4) were expressed in at least one of the tissues, and more than 44

potential mRNAs and cognate miRNAs pairs showed evidence of

co-expression (Figure S1).

Although this study evaluated only two individuals, we expected

a high degree of polymorphism as these animals had been

obtained by an F2 inter-cross of divergent breeds [28]. Indeed, we

could identify 16 out of the 24 poly-miRTSs previously identified

in the 19 expressed genes (Table S4).

We focused on the subset of genes expressing both the reference

allele and a variant carrying a poly-miRTS, and for which the

analysis of reads indicated different levels of allele specific

expression between at least two tissues. Four poly-miRTSs in

three genes (SLA-1, HSPA1A and RNF5) predicted to be targeted

by a total of 13 co-expressed miRNAs fulfilled these criteria

(Figure 3, Table S5).

At these three genes, we found evidence of inverse expression of

the alleles bearing the poly-miRTS and seven cognate miRNAs.

This pattern included the two created target sites for ssc-miR-34a

and ssc-miR-34c, both predicted by TargetScan and PACMIT in

SLA-1 (Figure 3 A); the disrupted target site for ssc-miR-148a in

HSPA1A predicted by PACMIT and TargetSpy (Figure 3 B); the

ssc-miR-133b (TargetScan and PACMIT), ssc-miR-133a-3p

(TargetScan) and ssc-miR-323 (TargetSpy) created target sites in

RNF5 (Figure 3 C); and the disrupted site for ssc-miR-2320

predicted by TargetSpy in SLA-1 (Figure 3D).

Allele-specific Expression at Poly-miRTS Positions
We searched for evidence of allele-specific expression at poly-

miRTSs in the previously analyzed RNA-Seq libraries. Interest-

ingly, two poly-miRTSs localized in regions of the 39-UTR of SLA-

DQA, with a mappability of one, showed allele specific expression.

One of them was observed in the alveolar macrophage library,

while the other was found in one of the whole blood samples. In

both cases, the variant allele was significantly represented by more

reads than the reference alleles (Figure 4). The predicted targeting

miRNAs of SLA-DQA are known to be co-expressed with HLA-

DQA1 in human whole blood [29,30].

Discussion

Extensive Predictions of Poly-miRTSs
TargetScan, PACMIT and TargetSpy allowed us to predict

potential miRNA 39-UTR target sites, and ultimately to discover

potential poly-miRTSs, by multiple criteria. In addition to the

canonical seed pairing mechanism, site secondary structure can

influence the strength of miRNA regulation [31] and SNPs located

outside the seed region may influence target expression [32], [33].

Moreover, although 39 compensatory sites are considered to be

rare, there is functional evidence of their importance. Matching of

the miRNA’s nt 13–17 can compensate for a single-nucleotide

bulge or mismatch in the seed region, as illustrated by the

experimentally validated let-7 sites in LIN41 [34] and the miR-196

site in HOXB8 [35]. Furthermore, 39 compensatory sites could be

Polymorphic miRNA Target Sites: RNA-Seq of SLA
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a way to favor regulation by a specific miRNA which belongs to

a family with members sharing the same seed [36].

The combination of multiple algorithms for miRNA target

prediction provides a better specificity (i.e. an higher probability to

detect true negatives) but a lower sensitivity in predicting real

target sites [37]. In the context of an exploratory analysis of a large

genomic region, it would seem more relevant to minimize the

number of false predictions, even at the cost of missing some of the

true target sites. A high level of precision (,50%) may be obtained

by taking into account the criterion of inter-specific conservation

in addition to perfect seed pairing (as implemented by TargetS-

can), but this approach alone would miss the most numerous non-

conserved target sites (sensitivity: ,12%) [37]. PACMIT has

a slightly lower performance in terms of precision (sensitivity: 20%,

and precision: 40%) but it permits consideration of accessibility

and perfect seed matching independently of conservation [19].

Finally, although identifying 39 compensatory sites without

filtering by perfect seed pairing is difficult, as evident from the

low performance of most tools that allow identification of these

sites, TargetSpy has been described as the best available approach

for identifying such sites [38].

The predictions on SLA-1, SLA-3 and SLA-6 (Table 1, Figure 1,

Figure 2), characterized by a different range of sequence variation,

provided proof of concept information for this combined

approach, encouraging further analysis of poly-miRTSs from

RNA-Seq data. Furthermore, this allowed investigating co-

occurring SNPs that could impact several miRNA target sites.

As illustrated in Figure 2, one of the poly-miRTSs identified by

TargetSpy (a created site for miR-224 at position 50 of SLA-3 39-

UTR) was always associated with a miR-27a/b created site

predicted by TargetScan and PACMIT at position 298. These

three miRNAs are expressed in human placenta [39], indicating

that they may act cooperatively in that tissue.

Predictions of Poly-miRTS in RNA-Seq Data
The analysis of 144 M RNA-Seq reads permitted the systematic

exploration of the 39-UTR variability of the whole SLA complex,

which is so far one of the best characterized and annotated regions

of the swine genome [40]. TargetScan, PACMIT and TargetSpy

predicted a total of 24 novel poly-miRTSs in 19 genes mapping to

the region, including seven genes (SLA-1, SLA-6, SLA-DQA, SLA-

DQB1, SLA-DOA, SLA-DOB and TAP1) linked to antigen

processing and presentation functions (Table S4). In humans,

altered miRNA binding to MHC class I classical and non-classical

genes has been associated with disease control or susceptibility.

Allele-specific targeting of HLA-G, a non-classical HLA class I

locus, by miR-148a and miR-148b, is associated with risk of

asthma [41]. Kulkarni et al. [42] reported a SNP in the 39-UTR of

the classical HLA class I molecule, HLA-C, associated with HIV

control, directing miRNA-mediated regulation of HLA-C allo-

types. Both studies emphasize the potential role of regulatory

regions in order to obtain a comprehensive view of MHC

variability [43]. The same argument is obviously valid in livestock

species. In this context, the combined predictive approach is of

particular relevance for the SLA gene complex. Only a fraction of

the porcine SLA genes have known orthologs in humans and other

model genomes, thus limiting the possibility to use the criterion of

inter-specific conservation of miRNA target sites.

Figure 3. Co-expression patterns of four poly-miRTSs and their cognate miRNAs. RNA-Seq and Small RNA-Seq reads were obtained from
abdominal fat (AF), liver (LI) and longissimus dorsi muscle (LD) of two individual pigs (pig 2268 and pig 2270). Left y-axis: ratios of the number of
reads of reference allele vs. variant allele at poly-miRTSs positions; right y-axis: expression levels of targeting miRNAs. Numbers in parenthesis indicate
the position of the poly-miRTSs in the 39-UTR. The asterisks indicate significant differences between tissues (p-values ,0.05).
doi:10.1371/journal.pone.0048607.g003
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Co-expression Patterns of miRNAs and Poly-miRTSs in
Porcine RNA-Seq and Small RNA-Seq Data

The reanalysis of ‘whole transcriptome’ public sequencing data

from three porcine tissues (RNA-Seq and small RNA-Seq) [28]

allowed us to obtain a global picture of the co-expression of 16

predicted poly-miRTS of the SLA region and at least one of their

respective cognate miRNAs (Figure S1, Figure 3, Table S5). Co-

expression is one of the fundamental criteria for functionality of

predicted miRNA-mRNA interactions which concerns both

evolutionary conserved and non conserved miRNA-mRNA

interactions. In humans, it has been estimated that 30%–50% of

non conserved miRNA target sites are functional when the mRNA

and miRNA are endogenously co-expressed [44].

For two of the three miRNA-target interactions conserved in

humans in which we have identified a poly-miRTSs in pig (see

Results Conservation of predicted miRNA target sites in humans), we could

find evidence of co-expression in the three porcine tissues. In

particular, ssc-miR-139-5p and its putative target SLA-DQB1 were

co-expressed in the three tissues, and ssc-miR-423-5p and its

putative target RNF5 were co-expressed in Abdominal Fat and

Longissimus Dorsi muscle. No functional validation has been

reported for these interactions in other species. However, available

information in humans and mice point to evidence of co-

expression in spleen and in the lymphoid lineage [30,45].

Although our observations represent only a subset of genes, tissues

and physiological conditions, and cannot take into account other

cis- and trans- factors, the analysis of the whole transcriptome data

provided significant examples of inverse expression levels between

the expression levels of targeted alleles and their cognate miRNAs.

Such matches of expression profiles were found for four (three

created, one disrupted) of the nine predictions supported by

multiple algorithms, while only one out of the eight sites predicted

by a single algorithm was consistent (Figure 3). Although miRNA-

mediated regulation does not always lead to a change in mRNA

abundance [46], these results suggest that predictions supported by

multiple algorithms are more reliable for genome wide predictions

of poly-miRTSs, especially when the inter-specific conservation

criterion is missing.

Conclusions
The increasing amount of RNA-Seq data generated in pigs and

other livestock can be used as a resource to identify SNPs that

potentially impact miRNA regulation, particularly for genome

wide association studies of disease and ‘robustness’ traits. There is

high genetic diversity segregating in livestock breeds in spite of

artificial selection and, as expected, several novel miRNAs have

been described in livestock (e.g. [47]). Although most miRNA

target sites are usually considered under strong purifying selection

in humans due to their impact on disease traits, a study in cichlid

species has suggested that diversification of miRNA targets may be

an important evolutionary mechanism of phenotypic diversifica-

tion and speciation (reviewed by [48]). The forthcoming

availability of well-annotated genomes and data from ‘1000

genomes’ and ENCODE projects in animals will be a fundamental

step for the further implementation of combined poly-miRTS

predictions, as well as of co-expression analyses of poly-miRTSs

and miRNAs on the genome wide scale.

Materials and Methods

SLA Sequences
We used annotation and sequences from the Vertebrate

Genome Annotation database (VEGA) (Release 44) for the SLA

region as a reference. Reference 39-untranslated region (39-UTR)

locations were considered as annotated in VEGA database. VEGA

database [24] provides a high quality manual annotation of

specific regions or entire genomes of vertebrate species. Sequences

of additional alleles of the SLA class I genes (SLA-1, SLA-3 and

SLA-6; Table S1) were retrieved from NCBI RefSeq database

[49].

miRNAs Target Prediction
TargetScan algorithm was used to predict messenger RNAs

targeted by microRNAs (miRNAs) [10] The specificity of this

approach is based on the calculation of a context score for the 39-

UTRs. This score takes into account five additional features of 39-

UTRs outside of the seed complementarity that influence miRNAs

binding site efficiency. TargetScan can use information of site

inter-specific conservation to strengthen predictions. However, no

clear human orthologs have been identified for SLA class I genes

Figure 4. Allele-specific expression at two poly-miRTSs in SLA-
DQA. RNA-Seq reads were obtained from alveolar macrophages (A) and
whole blood (B) libraries. The asterisk indicates a significant difference
between reads bearing the reference and the variant alleles assessed by
a binomial test, p-value ,0.001.
doi:10.1371/journal.pone.0048607.g004
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[2] and, in consequence, this criterion was restricted to genes for

which we could find human orthologs.

PACMIT proposes to complement matching of the miRNAs

seed region and site accessibility with a ranking strategy relying on

over-representation [19]. The rationale for considering site

accessibility is that the secondary structure of 39-UTRs may

facilitate or prevent miRNA binding. The criterion to consider

a site ‘accessible’ is that at least four nucleotides of the site

complementary to the seed (nt 2–8 of the miRNA) are in an open

loop structure. The predictions are then ranked according to over-

representation assuming that functional targets should contain

complementary sites that are over-represented among the

accessible ones. TargetSpy implements a supervised machine

learning algorithm for identification of miRNAs targets [38]. This

approach allows the prediction of miRNA-binding sites without

seed perfect complementarity. It relies on a set of discriminative

features to be used for machine learning. Like PACMIT,

TargetSpy is able to identify species-specific target sites in-

dependent of site conservation.

Poly-miRTS Prediction
A miRNA binding site was considered as a polymorphic

miRNA target site (Poly-miRTS) when there was a different

miRNA prediction for the reference and the variant sequences.

miRNA target sites predicted by one or several algorithms in the

reference sequence, but not present in the variant sequence were

considered as disrupted sites. miRNA target sites predicted by one

or several algorithms in the variant sequence, but not in the

reference sequence were considered as created sites.

We also considered the score attributed by each algorithm to

identify perturbed, but not disrupted, miRNA-mRNA interac-

tions. For TargetScan algorithm, we used the context score given

for each miRNA target sites, which is based on several UTR

features, local AU content, miRNA binding site position and site

type, whereas for PACMIT and TargetSpy, we used the score

which was associated with each prediction. Thus, a SNP is

perturbing UTR context when there is a difference of .2 units

between the reference and the variant UTR scores.

RNA-seq Datasets
RNA-Seq reads (Illumina) were collected from different

experiments (Table 2).

Alveolar macrophages. Cells were collected from a 10 week

old Large White x Landrace cross pig. The pig was sedated with

a mixture of azaperone (1 mg/kg) and ketamine (6 mg/kg) and left

undisturbed for a minimum of 15 min before being killed by

captive bolt. Trachea was clamped, lungs were harvested and

washed twice with 500 mL of PBS in sterile environment. The

resultant bronchoalveolar washes were filtered (100 microns) and

spun at 400 g for 10 min. These alveolar macrophage cells were

resuspended in a freezing medium (90% heat-inactivated FCS,

10% DMSO) and frozen overnight in a ‘Mr. Frosty’ isopropanol

box at 280uC (Nalgene) allowing a controlled decrease of

temperature. The next day, cells were transferred to a 2150uC
freezer for long-term storage. The alveolar macrophages were

quickly thawed and cultured as in [50] with minor modifications.

Briefly, cells were washed with PBS to remove DMSO and

cultured in complete medium-RPMI 1640, 10% heat-inactivated

FCS, penicillin/streptomycin, and GlutaMAX-I supplement (Life

Technologies), without addition of rhCSF-1. The next morning

non adherent cells were removed. Adherent macrophages were

stimulated with LPS (100 ng/ml) for 7 h. Total RNA was

extracted with the RNeasy mini kit (Qiagen) following manufac-

turer’s instructions and stored at 280uC until used. The Illumina

mRNA-seq Sample Preparation Kit was used for sample

preparation (,5 ug of total RNA) following manufacturer’s

instructions (Illumina, Part # 1004898 Rev. D). RNA quality

and yield after sample preparation were affirmed by Agilent

Bioanalyzer analyses. Library size was ,200 bp. Sequencing of

the library was performed on an Illumina Genome Analyzer IIx

and generated 35 bp paired-end reads.

All animal care and experimentation procedures were con-

ducted in accordance with the guidelines of Roslin Institute and

the University of Edinburgh and under Home Office Project

License PPL 60/4259.

Placenta. The placenta was collected at day 113 of fetal

development/pregnancy from a Duroc (clone TJ Tabasco)6
Duroc cross pig. Total RNA was extracted with the RNeasy mini

kit (Qiagen) following manufacturer’s instructions and stored at

280uC until used. The Illumina mRNA-seq Sample Preparation

Kit was used for sample preparation (,5 ug of total RNA)

following manufacturer’s instructions (Illumina, Part # 1004898

Rev. D). Quality and yield after sample preparation was measured

with a DNA 1000 Lab-on-Chip (Agilent Technologies, Inc.).

Library size was ,200 bp. Sequencing was performed on the

Illumina Genome Analyzer IIx and generated 51 bp paired-end

reads.

Pool of eleven tissues. Ten tissues (colon, kidney, hypothal-

amus, spleen, small intestine, lymph node, liver, lung, frontal lobe,

cerebellum) were obtained from a three year old clone of TJ

Tabasco (the mother in the cross above), plus the placenta sample

(thus in total 11 tissues). Total RNA was extracted from each

sample separately with the RNeasy mini kit (Qiagen) following

manufacturer’s instructions, pooled in equally molar ratios and

stored at 280uC until used. The pooled RNA sample was used for

‘Full-length cDNA library cloning’ and prepared for Illumina GA

IIx sequencing at DNAFORM/RICKEN Institute, Japan (http://

www.dnaform.jp/products/cdna_e.html). Sequencing generated

51 bp paired-end reads. The sample collection protocol for the

preparation of the ‘placenta and ‘pool of eleven tissues’ libraries

was approved by the Institutional Animal Care and Use

Committee of the University of Illinois at Champaign-Urbana,

USA.

Testis. This sample was obtained from a one year old

European wild boar (sampled at the Veluwe, The Netherlands).

Total RNA was extracted with the RNeasy mini kit (Qiagen)

following manufacturer’s instructions and stored at 280uC until

used. The Illumina mRNA-seq Sample Prep Kit was used for

sample preparation (,5 ug of total RNA) following manufac-

turer’s instructions (Illumina, Part # 1004898 Rev. D). Quality

and yield after sample preparation was measured with a DNA

1000 Lab-on-Chip (Agilent Technologies, Inc.). Library size was

,200 bp. Sequencing was performed on the Illumina Genome

Analyzer IIx and generated 51 bp paired-end reads. The sample

collection protocol for the preparation of the testis library was

approved by the Institutional Animal Care and Use Committee of

the University of Wageningen, The Netherlands.

Whole blood. Blood samples were collected using TempusTM

Blood RNA Tubes (Applied Biosystems) from two commercial

crossbred pigs at Kansas State University as part of the PRRS

Host Genetics Consortium (http://www.animalgenome.org/

lunney/index.php). Samples were stored at 220uC until ready

for RNA extraction. Thawed samples were processed following the

Spin RNA isolation protocol (Applied Biosystems, Part # 4329232

rev. D). RNA quality and yield were affirmed by Agilent

Bioanalyzer analyses. The TruSeq RNA Sample Prep Kit was

used for sample preparation (,5 ug of total RNA) according to the

TruSeq Sample preparation guide (Illumina, Part # 15008136
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Rev. A). Sequencing was performed on the Illumina Genome

Analyzer IIx and generated 70 bp single-end reads.

The Kansas State University Institutional Animal Care and Use

Committee approved all experimental protocols for this study.

All the RNA-Seq datasets have been submitted to the NCBI

Sequence Read Archive (SRA) under accession numbers:

SRA057401 (alveolar macrophages), SRA057367 (placenta and

pool of tissues) and SRA057414 (whole blood).

Read Mapping
Before mapping, reads were trimmed on quality, adaptors and

poly(A) tail using BRAT [51] and custom Perl scripts.

Reads were mapped with Tophat v.1.3.1 [52] against a pig

custom reference genome with the SLA region sequence and

annotation obtained from the VEGA database (release 44); the

remaining sequences and annotation were from Ensembl release

61 (Sscrofa9.2 sequence). The following Tophat settings were used:

maximum alignments per read were set to 1, expected mean inner

distance between mate pairs of 100 and other parameters set to

default.

To get an overview of the coverage of the 39-UTRs in the SLA

region, each of the 118 39-UTRs annotated in VEGA database

was qualified as ‘covered’ when more than 50% of its sequences

was covered by at least one RNA-Seq read.

SNP Identification
Before SNP identification, Picard tools (http://picard.

sourceforge.net) were used in order to remove duplicate reads

that may lead to overestimation of read depth and SNP

misannotation.

SNPs were identified from individual samples using Samtools

[53] mpileup function on Tophat mapped reads. The minimum

SNP quality was set to 50 and the minimum read depth to 15.

Only SNPs in annotated 39-UTRs of genes located in the SLA

locus were retained for further analyses.

Mappability
Concept and implementation procedures of the mappability

method are fully described in [26]. Briefly, the rationale is to

identify the regions of the genome which are truly ‘mappable’, i.e.

producing reads which map back uniquely to their regions of

origin. Computing mappability for a given genome mostly

depends on the length of the sequence reads produced by the

experiment, and on the number of mismatches allowed during the

mapping step.

We estimated the mappability of the custom genome sequence

using the ‘gem-mappability tool’, according to each different

technical specification of the RNA-Seq experiments (read length

parameter of 90 bp, 70 bp, 50 bp and 35 bp). The number of

mismatches was set to 2 for each estimation.

To assess mappability of poly-miRTS locations, we averaged

the mappability of each SNP position within a 26 read length

region surrounding the poly-miRTS. Only the poly-miRTSs with

an average mappability equal to 1, i.e. those on which reads tend

to map back uniquely, were retained.

SNPs from Public Databases
We retrieved annotated SNPs in this region from dbSNP

database (release136) and the porcine Illumina 60 K SNP chip

[54]. Eight SNPs belonged to the 39-UTR region of 7 genes of the

SLA locus (genes and SNPs accession IDs are summarized in table

S6).

miRNA and Predicted Target Co-expression
Chen et al. [28] have described the whole transcriptome

(mRNA and miRNA expression) from two full-sib Duroc6Erhua-

lian F2 individuals with extreme growth and fat phenotypes. To

investigate allelic differential expression, we retrieved the raw data

of this study from NCBI Gene Expression Omnibus under

accession no. GSE26572 (small RNAs and mRNAs). About

118 M reads corresponding to the six mRNA libraries were

processed (trimming and mapping) as described above. Addition-

ally, transcripts were assembled and quantified by Cufflinks v2.0.0

[55]. Cufflinks provides expression levels using an estimation of

fragments per kilobase of exon per million reads mapped (FPKM).

More than 67 M reads sequenced from the six small RNA libraries

were trimmed for low-quality ends (cutoff 20) and adapters using

cutadapt [56] and mapped with Bowtie [57] against the pig

custom genome reference. A maximum of 2 mismatches were

allowed. In order to avoid discarding of identical mature

sequences from distinct precursors, reads mapping at a maximum

of 5 different positions on the genome were retained.

We considered as co-expressed a miRNA represented by more

than 10 reads and a mRNA with more than 1 FPKM.

To examine miRNA and cognate mRNA expression levels

across tissues, we plotted the allelic proportions at the poly-miRTS

sites and the expression levels of the cognate miRNAs. We focused

on poly-miRTSs showing different allelic proportions (ratios of the

number of reads of reference allele vs. variant allele at poly-

miRTS positions) between at least two tissues. To assess the

statistical significance of these differences, we assigned a p-value

(Fischer’s exact test) to the pairwise comparisons of allelic

proportions between tissues at (inferred) heterozygous poly-miRTS

sites.

Allelic Specific Expression
For all poly-miRTSs, we performed a two-sided binomial exact

test of the null hypothesis that the variant and reference read

counts are equal (i.e. binomial success probability = 0:5). We used

the ‘‘binom.test’’ function in R [58] to carry out this test for each

gene and chose a P-value threshold of 0.001.

Supporting Information

Figure S1 Venn diagrams of miRNA target sites predicted in pig

2268 and pig 2270. Predictions were performed on genes

expressed in abdominal fat (AF), liver (LI) and longissimus dorsi

muscle (LD) by TargetScan, PACMIT and TargetSpy algorithms.

(TIFF)

Table S1 Nucleotide variability of SLA-1, SLA-3 and SLA-6, and

accession numbers of the retrieved SLA-1, SLA-3 and SLA-6

alleles.

(XLSX)

Table S2 miRNA target prediction in SLA-1, SLA-3 and SLA-6

alleles by TargetScan, PACMIT and TargetSpy. Underlined

microRNAs were predicted by both TargetScan and PACMIT.

(XLSX)

Table S3 SNPs identified in the SLA gene complex using

a RNA-Seq data collection from different tissues. The ‘‘Y’’

indicates a SNP passing the identification filters.

(XLSX)

Table S4 List of created and disrupted miRNA target sites in the

SLA region predicted from RNA-Seq data. Target sites conserved

in humans are marked by #. Target sites with perturbed but not

disrupted structure are designated by (s).
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(XLSX)

Table S5 Number of reads corresponding to the reference and

the variant alleles at poly-miRTSs positions in abdominal fat, liver

and longissimus dorsi muscle.

(XLSX)

Table S6 Accession numbers of the eight known SNPs within 39-

UTRs of genes of the SLA region retrieved from dbSNP database.

(XLSX)
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