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Abstract

Alzheimer’s Disease (AD) is a chronic neurodegenerative disease that affects over 5 million 

individuals in the United States alone. Currently, there are only two kinds of pharmacological 

interventions available for symptomatic relief of AD; Acetyl Cholinesterase Inhibitors (AChEI) 

and N-methyl-D-aspartic Acid (NMDA) receptor antagonists and these drugs do not slow down or 

stop the progression of the disease. Several molecular targets have been implicated in the 

pathophysiology of AD, such as the tau (τ) protein, Amyloid-beta (Aβ), the Amyloid Precursor 

Protein (APP) and more and several responses have also been observed in the advancement of the 

disease, such as reduced neurogenesis, neuroinflammation, oxidative stress and iron overload. In 

this review, we discuss general features of AD and several small molecules across different 

experimental AD drug classes that have been studied for their effects in the context of the 

molecular targets and responses associated with the AD progression. These drugs include: 

Paroxetine, Desferrioxamine (DFO), N-acetylcysteine (NAC), Posiphen/-(−)Phenserine, JTR-009, 

Carvedilol, LY450139, Intravenous immunoglobulin G 10%, Indomethacin and Lithium 

Carbonate (Li2CO3).
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Introduction

Alzheimer’s Disease (AD) is a chronic neurodegenerative disease that typically occurs in 

those aged 65 years and older [1]. It presents with a broadly related pathophysiology as 

Frontotemporal Dementia (FTD) and Amyotrophic Lateral Sclerosis (ALS), also known as 
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Lou Gehrig’s disease. AD is a senile dementia with its pathology occurring up to 18 years 

before its definitive diagnosis [2]. In 2017, the Alzheimer’s association published a 2017 

Facts and Figures report indicating that approximately 5.5 million people in America have 

Alzheimer’s and of those 5.5 million, 5.3 million are 65 years of age or older. Additionally, 

by 2050, the number of people that have Alzheimer’s may triple. The report also shows that, 

between 2000 and 2014, the death rate of Alzheimer’s has increased by 89%, by contrast, 

other public health conditions such as stroke and HIV have observed a 14% and 54% death 

rate decline, respectively.

AD and other types of dementia are characterized by a loss of ability to solve problems or 

maintain emotional control. Individuals with dementia experience personality changes and 

behavioral problems such as agitation and impaired intellectual functioning that interfere 

with normal activities and relationships. Dementia also generates hallucinations and 

delusions.

There are currently only a few FDA-approved treatments for AD, which belong to two 

classes of drugs: Acetyl cholinesterase Inhibitors (AChEI) and N-methyl-D-aspartic Acid 

(NMDA) antagonists. These treatments have been used for treating the symptoms of 

cognitive decline and language deficits and do not slow down or stop the progression of the 

disease. A drug that cures or at least slows down the disease is necessary, as Alzheimer’s is 

becoming pandemic.

Here we review select aspects of the AD pathogenesis, focusing on iron homeostasis and 

oxidative stress, dysregulation of the APP translation and processing, Amyloid-beta (Aβ) 

deposition, the proinflammatory cytokine Interleukin-1 beta (IL-1β), tau protein 

hyperphosphorylation and reduced neurogenesis. Moreover, we address a few compounds 

that provide alternatives to the current FDA approved drugs and target many different 

components and pathways of AD.

General Features of AD

Risk factors attributed to AD

There are many environmental and biological risk factors attributed to the pathogenesis of 

AD, which include, but are not limited to: chronic alcoholism, age, neuroinflammation, 

Apolipoprotein E fibrillation, iron dysregulation, cerebral ischemia, stress, lack of sleep, 

genetic mutations, mitochondrial dysfunction, iron overload and oxidative stress and metal 

dyshomeostasis (i.e., copper, aluminum, iron, manganese)[3–18].

Pathogenesis of AD

AD is a highly complex disease with numerous features. A common generalization is that 

AD results from insoluble Aβ plaque formation in hippocampal neurons and neuro-

fibrillations of tau protein created via tau hyperphosphorylation [19–21]. Eventually, these 

plaques and neuro-fibrillations cause neuronal apoptosis and neurodegeneration [20,21]. 

Although Aβ plaques and tau neuro-fibrillations are critically important features of AD, 

there are many other components of the disease as well, some still unknown that should be 

considered equally in the search for a cure.
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Iron and oxidative stress: Iron (Fe) is one of the redox-active transition metals and Fe, 

along with other metals, has been shown to promote the formation of Aβ plaques and 

engender neuronal oxidative stress [18]. The ability of Fe to induce oxidative stress is 

attributed to the valence state of iron (Fe) being reduced from Fe (III) to Fe(II) and this 

reduction is coupled with hydroxyl radical formations in the brain through the Fenton 

reaction [15,18]. As shown in multiple studies, the radical formations reduce the 

proliferation of Neural Stem Cells (NSCs) and neurogenesis in an AD brain [22–24]. 

Furthermore, oxidative stress has been known to cause tau neurofibrils, neurogenesis 

deterioration and increased ferritin levels that have been correlated with cognitive decline 

[25–28].

Amyloid precursor protein: The Amyloid Precursor Protein (APP), which can generate 

Amyloid-beta (Aβ) through proteolysis, plays a vital role in synaptic formation, iron 

regulation, neural plasticity and neurogenesis [9,29–33]. The 5’ UTR region of the APP 

plays a role in APP expression and the formation of Aβ and it remains a possibility that 

these processes are accelerated in the presence of iron through a 5’-Untranslated Region 

(UTR) iron response element (IRE) in the APP transcript [34,35]. The 5’ UTR specific IRE 

RNA stem loop was first reported in 2002 and has since proven to present a target for 

chelators and other drugs that inhibit APP translation, such as desferrioxamine, clioquinol, 

VK-28, piperazine-1, phenserine, tetrathiomolybdate, dimercaptopropanol, paroxetine, 

azithromycin and a high throughput benzimidazole 5’UTR translation blocker designated as 

JTR-009 [35–39]. JTR-004, JTR-009, JTR-0013 were among the most potent compounds 

tested in the high throughput study that inhibit the 5’ UTR APP translation, with JTR-009 

being the most potent blocker, whereas other endogenous compounds or hormones and 

amyloid expression such as glucocorticoids have been implicated in increasing APP 

translation [40].

β-amyloid plaques: Beta-amyloid plaques are one of the two most distinguishing features 

of AD. There are two types of Aβ subtypes which have been implicated in causing AD 

progression, these mutations are Aβ1/40 and Aβ1/42. In the context of AD, Aβ has been 

known to cause insoluble plaques and inhibit neurogenesis by suppressing proliferation of 

NSCs, this suppression eventually leads to neuronal apoptosis in vivo [41–43]. The build-up 

of these plaques can create inflammation and oxidative stress [44,45]. A vast amount of 

research regarding the role of Aβ in Alzheimer’s already exists and this research is ongoing.

Tau and tauopathy: The second distinguishing feature of AD other than beta-amyloid 

plaques is the appearance of tau neurofibrillary tangles. Tau is highly soluble microtubules 

associated protein that is part of a superclass of Microtubule Associated Proteins (MAP) 

which regulates neuronal microtubule within axons and are localized in dendrites in AD 

neuropathology [46]. AD is classified as a tauopathy, tauopathies are a group of 

neurodegenerative diseases that involve tau tangles. Some other tauopathies include ALS, 

FTD and Pick’s Disease [47–49].

Research about tau is ongoing; a recent report shows that tau protein causes a decline in 

neurogenesis. In this 12 month study, as tau levels increased, the level of neurogenesis in the 

hippocampus and Subventricular Zone (SVZ) decreased [50]. Furthermore, prion proteins 
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(PrPC), which prevent cells from oxidative stress, interact with tau, but the mechanism and 

effects of these proteins are unclear, some evidence shows that these proteins stabilize tau 

and Aβ production, while other evidence suggests that the proteins can arrest APP 

translation and tau production [51,52]. Tau is regulated by 2 factors: Glycogen Synthase 

Kinase-3 (GSK-3β) and Cyclin-Dependent Kinase 5 (CDK5). GSK-3β and CDK5 regulate 

the activation of tau phosphorylation and this phosphorylation leads to tauopathy [53–55]. 

Researchers studying the inverse effects of GSK-3β have determined that GSK-3β 
inhibitors, such as Lithium Carbonate (Li2CO3), can inhibit the tauopathy in AD [56].

Interleukin-1 beta (IL-1β): Proinflammatory cytokines have been implicated in AD 

pathogenesis. The most common of the cytokines with respect to AD pathology is 

Interleukin 1 beta (IL-1β). IL-1β is in the supergroup of Interleukin-1 (IL-1), which includes 

a plethora of other proinflammatory and anti-inflammatory cytokines. IL-1β is regulated by 

several factors including, but not limited to, caspase-1, IRAK1/2, transcriptional and 

translational level regulation and procaspase-1. Limited data indicates IL-1β’s role in iron 

regulation, but one study showed an increase in ferritin protein expression levels due to 

increased levels of IL-1β in the mitochondria [57]. IL-1β also has a connection to oxidative 

stress, it is spliced by caspase-1, which is downstream of the cellular oxidative stress 

pathway [58]. Further review of IL-1β’s biochemical properties can be found in Dinarello 

CA 2011[59].

IL-1β in the brain is localized within microglial cells, astrocytes and B and T cells within the 

periphery [60–63]. IL-1β has toxic effects because it serially increases APP translation and 

increases tau phosphorylation [64,65]. Aβ has also been classified as a proinflammatory 

peptide because it enhances production of pro IL-1β into mature IL-1β and this mature form 

can create microglial toxicity [66]. Recently, one study showed that a drug called Edaravone 

can alleviate this microglial toxicity and stop the release of proinflammatory cytokines such 

as IL-1β [67].

IL-1β can even trigger a positive, inflammatory feedback loop in some vertebrae cells [68]. 

It is not known whether increased IL-1β and microglial toxicity as a result of this positive 

feedback loop might precede Aβ production and plaque formation over the time span of AD 

pathogenesis and more research should be conducted about the relationship between IL-1β 
and AD, as IL-1β could be an AD drug target, IL-1β is already a drug target for autoimmune 

disorders [69].

Moreover, a groundbreaking study by Monje et al. showed that inhibiting inflammatory 

cytokines increases neurogenesis in hippocampal neurons and a more recent review suggests 

that IL-1β negatively affects neurogenesis, this research further implicates IL-1β’s role in 

neurogenesis and, ultimately, AD [70,71].

Pathology of AD Effects on Neurogenesis

Neurogenesis in humans is found in the the Subventricular Zone (SVZ), the Dentate Gyrus 

(DG) of the hippocampus and the Olfactory Bulb (OLFB) [72,73]. Neurogenesis is the 

process of producing adult neurons from Neural Stem Cells (NSCs) [38]. Many studies 
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suggest that neurogenesis is decreased in AD [73–76]. There are several biological factors 

that inhibit neurogenesis, such as IL-1β, serotonin depletion, mutations in presenilin-1 and 

normal aging and shortening of telomeres [19,43,77,78]. It has been hypothesized that since 

neurogenesis in humans is in the OLFB, early signs of AD progression can manifest in 

neurogenesis decline, where decreased smell correlates with AD advancement, thus, smell 

could be helpful in early detection of AD [79]. Moreover, tau presence in the OLFB also 

correlates with early stage AD [80]. Thus, further understanding of the molecular pathology 

and the decline of neurogenesis should advance our knowledge about the early signs of 

clinical AD.

Current Small Molecule Treatments for AD

There are currently two classes of drugs that are used to treat the symptoms of AD: 

Acetylcholinesterase Inhibitors (AChEI) and N-Methyl-D-Aspartate (NMDA) receptor 

antagonists [81]. Acetylcholinesterase (AChE) is an enzyme which degrades acetylcholine 

(ACh) in the synapse [82]. The drugs that belong to the AChEI class are donepezil, 

rivastigmine and galantamine.

Decreased ACh in the AD brain has been well documented and evidence suggests that an 

AD-associated lowering of ACh activity in the basal forebrain leads to compromise of 

executive functions, ACh plays a role in certain cognitive abilities such as attention [83–86]. 

Studies also show a decrease in AChE activity in AD patients and that AChEI’s can reduce 

IL-1β and increase interleukin-4 (IL-4) [87,88]. There are several reviews on how AChE 

inhibitors work by arresting the activity of AChE, thus leading to increases in Ach [89–91].

By comparison, NMDA receptor antagonists are used to treat the toxic increases in 

Glutamate (Glu) within the brain [92]. Glu excitotoxicity has been hypothesized to play a 

pivotal role in AD pathology because excess Glu in synapses leads to neuronal apoptosis 

[93]. Memantine, at the time of this review, is the only NMDA antagonist available on the 

market. Memantine has been shown to be neuroprotective as well as increase LTP in CA1 

hippocampal neurons [94–96]. Both NMDA antagonists and AChEI’s have been shown to 

have neurotrophic effects [97,98].

Drawbacks to current AD treatments

Both AChEI’s and the NMDA antagonist memantine have a few benefits for AD patients, 

such as displaying mild neuroprotective properties inhibiting cognitive decline for severe 

AD patients and facilitating neurogenesis [87,99–103]. However, these drugs do not slow 

down or stop the progression of the disease, they simply try to relieve symptoms and they 

become less effective over time [86,104]. Because the current drugs are not curative, many 

new drugs are in development. According to a September 2017 report, at that time there 

were 150 drugs in the AD treatment development pipeline, in various clinical stages [105].

Alternative Treatments for AD

There are many benefits and drawbacks to the following alternative treatments. These 

therapies are possible alternatives to AChEI’s and the NMDA antagonist memantine and 
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have multiple implications for efficacy and improvement of cognition in AD patients. The 

main goal of these alternative therapeutic compounds is to manage the symptoms of AD and 

improve a patient’s quality of life, while also improving the underlying AD pathology via 
their molecular and biochemical properties. The issue is that definitive conclusions cannot 

be made about these drugs due to lack of research and/or conflicting research. However, the 

results from the research that has been done should shed light on more individualized 

therapies that can assist in AD pathology reversal and enhance hippocampal neurogenesis 

and memory.

We present several different novel treatment options entering the pipeline that have 

somewhat been or will be considered for AD or that have not been extensively studied, but 

have positive effects on different AD targets discussed in the first section of this review.

Paroxetine and various selective serotonin reuptake inhibitors

Paroxetine (Paxil) is a Selective Serotonin Reuptake Inhibitor (SSRI) and is FDA approved 

for treating depression, mood disorders and anxiety disorders [106,107]. The drug works by 

inhibiting the reuptake of serotonin (5-HT) on the presynaptic neuron, which then increases 

5-HT within the synapse. Paroxetine has been shown to enhance iron homeostasis and act as 

an inhibitor of the 5’-UTR for APP to generate anti amyloid efficacy [108]. Tucker et al. 

employed western blotting experiments to demonstrate a consistent 20% reduction in the 

steady-state levels of APP holoprotein in the brain cortex of paroxetine treated mice [109]. 

Likewise, according to Payton et al. paroxetine decreased intracellular APP translation 

[110].

Recent studies have looked at the implications of SSRI’s for enhancing cognitive abilities in 

the context of AD. SSRI’s have been shown to be beneficial to hippocampal function with 

chronic use because they increase NSCs both in vivo and in vitro through up-regulating 

phosphorylation of GSK-3β, which in turn modulates the 5-HT1A receptor [111–113]. 

Fluoxetine and imipramine, two other SSRI’s, can reverse the loss of NSCs, so Paroxetine 

may have this capability as well [114]. Furthermore, Paroxetine has been shown to increase 

neurogenesis in human stem cells and in rats and improve memory after cerebral ischemia in 

a rat model [115–118]. Along with Paroxetine, other anti-depressants like amitriptyline, 

which is a tricyclic antidepressant, have been shown to increase levels of a non-toxic Aβ 
peptide and neurogenesis [119]. However, one study showed that Paroxetine does not 

increase total granular neurons or spatial memory [120]. More research needs to be done to 

determine the effects of Paroxetine and other antidepressant drugs on neurogenesis in AD 

patients specifically. A 2017 study has shown that Paroxetine can increase ROS, 

mitochondrial dysfunction and astrocyte apoptosis, so more research about the downsides of 

Paroxetine is also required [121].

Desferrioxamine (DFO)

Desferrioxamine (DFO) is an FDA approved drug for treatment of iron overload from blood 

transfusions and it is a potent iron and aluminum chelator. DFO works by binding to metals 

to create iron displacement and this displacement ultimately prevents the Fenton reaction 

[122]. DFO has had several benefits for AD patients. First, daily doses of intramuscular (IM) 
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DFO slowed the progression of AD by decreasing tau and either reduced inflammation or 

free radical production [49,57]. Second, DFO inhibited the tau protein from 

hyperphosphorylation via GSK-3β [123]. Third, the drug slowed cognitive decline in 

transgenic APP/PS1 mice and nontransgenic mice and increased memory in an AD rat 

model [124–126]. Finally, DFO has been proven to inhibit Aβ deposits and apoptosis in the 

brain of APP/PS1 double transgenic mice [127]. Iron chelators such as DFO are attractive 

agents that merit further investigation for use in AD. A recent study has shown that iron-

chelating nanogels containing DFO components may be more effective for treating iron 

overload than DFO itself and more research about these nanogels is required [128,129].

N-acetylcysteine (NAC)

NAC is currently an FDA approved antioxidant and it has been shown to suppress the 

inflammatory nuclear factor-kappa B (NF-kB), which has been implicated in AD [130,131]. 

NAC works by reducing reactive oxygen species and apoptosis and by modulating 

glutathione levels [132–134]. Another benefit of NAC is that it enables neuritogenesis and 

differentiation of stem cells [135]. One recent study showed that NAC reverses oxidative 

stress due to anxiety in a zebrafish model [136]. There are very few studies on the efficacy 

of NAC for treating AD and one concern about NAC is its low membrane permeability, but 

more information on the subject is needed [137].

Posiphen/phenserine/JTR selective APP inhibitors

Phenserine both inhibits the 5’UTR of APP and also has AChEI properties, furthermore, it 

reduces APP expression in response to IL-1β and it inhibits translation of APP [138,139]. 

Posiphen is an enantiomer of phenserine and it is not an AChEI. Both posiphen and 

phenserine metabolites exhibit neuroprotective behaviors [140]. Furthermore, a recent study 

explored the relationship between phenserine and its inhibition of Pre-Programmed Cell 

Death (PPCD), which is a feature of Alzheimer’s and this study serves as a starting model 

for further research [141]. However, how phenserine promotes neuroprotection or acts as an 

APP translation blockade is unknown. Despite the biological benefits, there have been 

statistical controversies over the efficacy of posiphen and phenserine, based on their clinical 

trials [142]. More information is required concerning posiphen and phenserine.

Along with posiphen/phenserine, another preclinical compound mentioned previously in this 

review, designated as JTR-009, more effectively blocks APP translation via the 5’ UTR than 

phenserine and posiphen. JTR-009 inhibited the APP 5’UTR to directly limit Aβ [39,108]. 

JTR-009 has an IC50=100 nM inhibition value for the 5’ UTR region of APP, while 

posiphen has an IC50=5µM inhibition value [39,143]. JTR-009 is an interesting compound 

and more current research about its properties is required.

Carvedilol

Carvedilol is an FDA approved agent which blocks the beta adrenergic receptor and is 

mainly prescribed for high blood pressure [144]. Carvedilol protects against Aluminum 

toxicity and a recent study has shown that aluminum oxide particles inhibit spatial learning 

and memory [145,146]. However, it is unclear if this drug affects iron homeostasis [145]. 

Carvedilol has also been shown to decrease IL-1β levels, so it could possibly promote 
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neurogenesis because IL-1β has been shown to decrease neurogenesis [147]. Furthermore, in 

one study, carvedilol prevented toxicity via Aβ, reduced ROS levels and decreased apoptosis 

signaling in mice Neuro 2a (N2a) cells [148]. Carvedilol is the only screened compound of 

its kind for its effects on various components of AD and whether or not other beta blocker 

drugs such as propranolol or metoprolol could produce similar effects is unknown.

LY450139

Pharmacologically, γ-secretase inhibitors like LY450139 (also known as Semagcestat) could 

potentially prevent APP progression into Aβ, previous studies have shown that γ-secretase 

inhibitors reduce Aβ peptides in vitro and one study has shown that LY450139 reduces Aβ 
in vivo [149–151]. A few studies in particular have demonstrated the positive effects of 

LY450139. In one study, the drug was shown to target Aβ and PS-1 by increasing the Aβ40/

Aβ42 ratio [152]. Another study showed that it reduced newly synthesized Aβ peptides and 

yet another showed that it improved cognition in patients that had medium to high levels of 

Aβ [153,154].

However, there are several issues with LY450139 1) it worsened cognitive abilities in AD 

patients in some research settings, 2) it showed an increase in skin cancer and 3) it is 

neurotoxic (decreases dendritic spine density) [149,155,156]. In summary, this drug is a 

promising compound for the reduction of Aβ, nevertheless, like other drugs that showed 

initial promise, LY450139 has not been well tolerated in clinical trials, it has been 

terminated at phase 3 and other γ-secretase inhibitors have also been unsuccessful thus far 

[157–159]. Perhaps a formula that combines LY450139 with a less problematic drug would 

be more successful, as LY450139 does have some positive molecular capabilities but seems 

to be harmful to patients. One study suggests that the drug has failed in clinical trials 

because modulators of activity surrounding γ-secretase can aid in the progression of 

Alzheimer’s and that moderate inhibition of γ-secretase does not have beneficial effects, 

LY450139 may only be moderately inhibiting γ-secretase and this may be the reason that it 

has been unsuccessful [160]. Furthermore, an intriguing study complicates the discussion 

about this drug, as it states that Semagcestat is not actually a γ-secretase inhibitor and the 

results of this study warrant further investigation as to the true role of LY450139 [161]. 

LY450139 has some promising molecular capabilities despite its flaws, so its potential for 

AD should continue to be explored.

IVIG 10%

IVIG (intravenous immunoglobulin) is an FDA approved biologic for the treatment of 

autoimmune diseases like Kawasaki disease [162]. A recent phase 3 clinical trial of IVIG for 

Alzheimer’s patients showed that the drug did not measurably improve cognition or function 

in a time span of 18 months, however, an older study showed that it increased Mini-Mental 

State Examination (MMSE) results over a 6 month period [163,164]. Moreover, many 

studies have indicated that IVIG treatment has many benefits for the AD brain, such as: 1) 

protecting against Aβ toxicity, 2) protecting against oxidative stress, 3) inhibiting levels of 

IL-1β and 4) promoting beneficial synaptic function [164–168]. One study has shown that 

IVIG treatment increased neurogenesis [10]. Studies have yet to be conducted about whether 

IVIG treatments may mediate or even block activation of the APP 5’ UTR specific IL-1 
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responsive acute box element when APP translation is induced in a pro-amyloidogenic 

pathway. These studies could reveal another mechanism by which immune suppressing 

antibodies may carry out beneficial effects for AD patients.

Indomethacin and other NSAIDS

Neuroinflammation has been strongly implicated in AD pathology and non-steroidal anti-

inflammatory drugs (NSAIDs) like Indomethacin may reduce the expression and signaling 

of neuroinflammatory cytokines IL-1β and IL-6 [70,169]. This reduction may help to slow 

the progression of AD at early stages. Indomethacin and other NSAIDs have also been 

shown to prevent the Aβ plaques found in AD by indirectly inhibiting the effects of Aβ 
aggregation via IL-1β and Indomethacin has been proven to reduce oxidative stress in the rat 

brain [170,171].

Furthermore, NSAIDS affect neurogenesis, a recent study showed that Indomethacin helped 

to improve decreased neurogenesis due to alcohol exposure, while another from 2017 

showed that it elevated numbers of new hippocampal neurons [172,173]. A recent review 

discusses relevant research surrounding NSAIDS and Alzheimer’s, particularly in the 

context of the allegedbutsofarunclearneuroprotective role of NSAIDS and proposes that low 

concentrations of NSAIDS may be neuroprotective because of their inhibition of 

mitochondrial calcium overload [174,175]. Although indomethacin and other NSAIDS have 

some promising capabilities, the drugs have produced mixed effects in AD clinical trials and 

their precise mechanism of action on AD is still unclear, therefore, more research is required 

[176,177].

Lithium carbonate (Li2CO3)

Lithium Carbonate (Li2CO3) is an FDA approved agent used to treat Bipolar disorder and 

other behavioral disorders. Research has shown that Lithium Carbonate can inhibit GSK-3β 
and GSK-3β is known to increase tau neurofibrils via tau phosphorylation [178,179]. In 

addition, an increase in GSK-3 was implicated in Aβ-induced neurodegeneration [180]. 

Additionally, Li2CO3 protects newly proliferated neurons and other hippocampal neurons 

and increases neural precursors, but it is unknown if the compound is neurogenic or if it 

simply increases fetal progenitors [181–183]. However, Lithium Carbonate can cause 

serious side effects in AD patients and a 2017 study proposed that ionic co-crystal of 

Lithium Salicylate and 1-Proline (LISPRO) is a more effective form of Lithium (Li) 

treatment for Alzheimer’s because it creates higher and more stable levels of Li, is safer for 

patients and significantly reduced Aβ and tau-phosphorylation [184]. More research about 

this alternate form of Li is needed.

Furthermore, Li is also of interest to the APP 5’ UTR translation model. It is an alkali metal 

that may impart anti-amyloid therapy by competing with iron to bind to the IRE RNA stem 

loop in APP mRNA. Therefore, it is critical to test the anti-amyloid efficacy of lithium via 
the IRP/APP IRE interaction in the 5’ UTR of APP transcript while noting that Li, at the 

same time, may enhance neurogenesis.

Kisby et al. Page 9

J Alzheimers Dis Parkinsonism. Author manuscript; available in PMC 2019 October 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Conclusion

AD is an extremely complex, polygenic and multifactorial disease that incorporates several 

biochemical proteins such as Tau, APP, Aβ, etc. Since AD is so complex, the development 

of new pharmaceuticals is necessary to combat such a detrimental disease. There are 

currently only four FDA approved medications that treat AD symptoms: donepezil, 

galantamine, rivastigmine and memantine. They work by either inhibiting AChE or 

antagonizing NMDA receptors, however, they present issues. The treatments only slow the 

cognitive decline by increasing ACh or attempting to prevent neural damage by Glu 

neurotoxicity and no current treatment can fully stop or slow down the progression of the 

disease. The discussed experimental treatments in this review show great promise for 

arresting AD pathology. However, there are also several downsides to these treatments. 

While many of the drugs discussed have relevant molecular properties, some have not 

worked well in clinical trials. In addition, there is still a lack of research about these 

experimental treatments. The treatments listed in this review are not the only drugs currently 

being tested and more research needs to be done about the effectiveness of these drugs and 

others in the context of AD.

Furthermore, neurogenesis in AD patients is severely reduced and most of the discussed 

treatments have had a positive effect on neurogenesis in some studies, however, it is not 

entirely known how these drugs actually affect neurogenesis. It is also unclear how these 

drugs affect the anatomy of the brain. Further insights into the way neurogenic processes can 

establish new neurons and new connections between neurons and the way that alternative 

drug treatments for AD affects these processes are necessary, because neurons in the brain 

can become so vulnerable to AD.
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