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Abstract: Artificial intelligence is comprehensively transforming the food safety gover-
nance system by integrating modern technologies and building intelligent control systems
that provide rapid solutions for the entire food supply chain from farm to fork. This article
systematically reviews the core applications of AI in the orbit of food safety. First, in the
production and quality control of primary food sources, the integration of spectral data
with AI efficiently identifies pest and disease, food spoilage, and pesticide and veteri-
nary drug residues. Secondly, during food processing, sensors combined with machine
learning algorithms are utilized to ensure regulatory compliance and monitor production
parameters. AI also works together with blockchain to build an immutable and end-point
traceability system. Furthermore, multi-source data fusion can provide personalized nu-
trition and dietary recommendations. The integration of AI technologies with traditional
food detection methods has significantly improved the accuracy and sensitivity of food
analytical methods. Finally, in the future, to address the increasing food safety issues,
Food Industry 4.0 will expand the application of AI with lightweight edge computing,
multi-modal large models, and global data sharing to create a more intelligent, adaptive
and flexible food safety system.
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1. Introduction
Food safety is a core issue worldwide and directly related to human health [1,2], social

stability [3,4], and economic development. According to the World Health Organization,
approximately 600 million people are affected every year by eating contaminated food, of
which 420,000 die [5–8]. Food safety is an important public health issue that has affected all
stages of the food industrial chain [9], such as the repurposing of spoiled food [10,11], the
fraudulent use of additives in processing [12,13], the excessive use of preservatives [14,15],
the return of cooking oil to the table [16], the illegal processing of lymph meat [17], highly toxic
packaging [18,19], and low-quality meat production [20,21]. Long-term intake of such food can
damage the liver, kidneys, and other organs; similarly, these contaminated foods can also cause
different cardiovascular diseases, metabolic diseases, and even cancer [22–24]. Food safety
issues arise because some industries try to make extra profit, engage in malicious practices,
and exploit regulatory loopholes. Thus, to maintain standards, there is a need to improve
regulations and standards, strictly control the source of production [25,26], upgrade the
testing system, strengthen the traceability mechanism, and popularize nutrition labeling,
among other actions, thereby building a whole chain of security defense from farm to
fork [27–30].
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With the complexity of the global food supply chain and consumer demand for trans-
parency, food safety management has shifted from the detection of contamination at the
end to whole-chain risk prevention and control [31–33]. After Norman Borlaug’s “Green
Revolution”, mechanization and large-scale food production and processing improved the
quality and quantity of food production, but the risks such as the abuse of chemical fertiliz-
ers [34,35] and pesticides [36–38], excessive veterinary drug residues [39–41], and microbial
pollution [42] have increased exponentially [43]. To detect these poisons and contamination,
different analytical methods have been developed. These detection methods rely on manual
sampling [44,45] and laboratory analysis [46–48] and have limitations like poor timeliness,
low coverage rates, and tedious analytical procedures. Secondly, it is difficult to achieve
on-site detection using existing detection technology [49] and real-time monitoring [50–52],
and there are still limitations in the integration, intelligence, and convenience of detection
technology [53–55]. These obstacles greatly reduce the efficiency of food detection technology.
The gap between food production development and testing technology makes the prevention
and control of food safety accidents more challenging [56–59].

The development of AI technology for food safety provides a revolutionary tool for
restructuring the food safety governance system [60–62]. By integrating cutting-edge technolo-
gies such as spectral analysis [63,64], machine vision [32,65], sensor networks [66–68], and
blockchain [69,70], AI can be used to build a full-chain intelligent management and control
system covering the whole process from farm to fork. As shown in Figure 1, the application
of AI in food source quality control, process safety management, regional traceability, and per-
sonalized service is very diverse and demonstrates great potential. In agricultural production,
the pest and disease identification system based on deep learning (DL) and big data analysis
has realized the real-time monitoring of more than 200 diseases. In the processing system, the
fusion technology of hyperspectral imaging and machine learning (ML) can accurately detect
any illegal food additives and adulteration. At the consumer end, smartphone-based colori-
metric sensors combined with edge computing models enable consumers to identify meat
freshness. These technological innovations not only overcome the limitations of traditional
detection methods for food contaminants but also change the data- and experience-dependent
decision-making system to enable intelligent forecasting for food safety [71–74].

This article systematically reviews the core applications of AI in the orbit of food
safety. First, in the production and quality control of primary food sources, the integra-
tion of spectral data with AI efficiently identifies pests and diseases, food spoilage, and
pesticide and veterinary drug residues. Secondly, during food processing, sensors com-
bined with machine learning algorithms are utilized to ensure regulatory compliance and
monitor production parameters. AI also works together with blockchain to build an im-
mutable and end-point traceability system. Furthermore, multi-source data fusion can
provide personalized nutrition and dietary recommendations. This study highlights how
AI-driven algorithm models can be combined with various detection technologies, such
as spectroscopy, machine vision, big data, and sensors, to address the technical barriers
encountered by traditional detection technologies in food safety. Additionally, it system-
atically summarizes the technological breakthroughs of AI in the field of food safety and
constructs an interdisciplinary research framework. In multidisciplinary fields such as food
science, computational chemistry, and operations research, AI technology can create a new
governance system through integration. AI-driven food safety governance is improving
from technical exploration to institutional innovation worldwide, which marks a new era
of intelligent governance in the effort to ensure food safety.
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Figure 1. General process of Al applied to food safety detection. Specific applications of AI in 1. source
quality control, 2. process safety management, 3. regional traceability, and 4. personalized service.

2. AI-Based Food Detection Technology
2.1. Literature Search and Screening Methods

Based on a search of the Web of Science, X-MOL, and IEEE Xplore core databases,
this study identified 1528 relevant papers published up until April 2025, focusing on the
keywords “artificial intelligence”, “machine learning”, “neural network”, and “food safety”.
Following the order from farm to fork, this review systematically analyzed innovative
development brought by the combination of AI technologies and traditional detection
methods in the field of food safety. The search strategy was determined mainly through
the following seven aspects, with the application scenario and detection purposes used as
the inclusion and exclusion criteria. For food source management in farming, we mainly
focused on the application of AI technology in crop pest management, pesticide and
fertilizer residues, veterinary drug residues, heavy metal pollution, and crop planting
structure. In food quality screening, spectral data and machine learning algorithms are
used to screen foreign substances and defects and assess meat freshness. In food storage
monitoring, the integration of the internet of things and AI technologies is used to monitor
the storage environment in real time, analyzing the risk of food spoilage and the quality of
perishable and difficult-to-store foods. In quality control in food processing, deep learning
and machine vision are used to monitor production parameters in real time and strictly
supervise the quality and safety of food packaging. In the detection of contamination in
food products, the integration of AI technologies and the colorimetric method is used for
the rapid detection of food quality. In food traceability, a trusted traceability architecture of
blockchain +AI builds tamper-resistant food information. Personalized meal services for
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consumers provide information on the influence of healthy food on human diseases and
special proteins and balanced meals for customized nutrition. The first six aspects ensure
the absolute safety of food placed on the table and the seventh aspect aims to solve the
contradiction between healthy eating and personalized nutrition needs.

For the 1528 retrieved studies, we used seven application scenarios from farm to
fork, including factors such as detection purpose, technical feasibility, model performance,
innovation, and repeatability, in the quality assessment framework. Based on this qual-
ity assessment, we selected 276 high-quality studies, 129 medium-quality studies, and
1123 low-quality studies. The low-quality literature was not included in the scope of this
study. The specific literature search following the PRISMA process is shown in Figure 2.

 

Figure 2. The flow chart of PRISMA.

2.2. Background of AI Applications in Food Safety

As an emerging technology in the new era of the industrial revolution, AI is chang-
ing the orientation of traditional industries. One important factor is AI’s role in food
safety [75,76]. The rise of AI in the field of food safety is the result of technological
innovation, industrial upgrading, market demand, the search for healthy food, timely
and cost-effective analytical methods, and the demand for green and high-quality prod-
ucts [77,78]. In the whole chain management system of food safety, for the accurate control
of food sources through intelligent sorting before pre-processing, food storage safety spec-
ifications, the strict supervision of food processing, food safety testing, blockchain and
AI trusted traceability architecture, and personalized intelligent services, the traditional
supervision model has obvious defects in detection methods, efficiency, cycle and accuracy.
In terms of efficiency, manual sampling is time-consuming and laborious, resulting in
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a prolonged detection cycle and response to food safety risks. In terms of traceability,
due to limited detection samples and a lack of systematic records, when defective food
is found, it is extremely difficult to trace its source. In terms of coverage, most manual
sampling is not truly representative, and in the processing and circulation stages, there are
many regulatory blind spots [49,79,80]. More importantly, in the whole industry chain of
food from farm to fork, traditional detection methods are unable to achieve real-time and
continuous monitoring or detect any delicate changes that may occur in the production,
processing, storage, and transportation of food [81–83].

Nowadays, food safety detection remains a thorny issue; the adulteration of food is
increasing and it is difficult to detect adulteration at every stage. This is due to the high
analytical cost, long analysis time, and lack of resources required for these sophisticated
techniques [84]. To resolve this complex issue in food safety and improve detection effi-
ciency and accuracy, AI has brought new possibilities with its powerful data processing
capabilities, efficient automation characteristics, and accurate analysis and judgment [85].
AI technology, including computer vision, the internet of things, natural language process-
ing, and DL, can achieve real-time data acquisition, automated defect detection, component
analysis, and risk prediction. By combining blockchain with AI, the whole process can
be monitored to achieve traceability. AI can also improve the coordinated governance of
governments, enterprises, consumers, and farmers by building an intelligent prevention
and control system. This will build a full chain security system from farm to fork, covering
production, circulation, and consumption. In the future, with the integration of high-speed
communication and digital twins, AI will shift from a single point of application to a
systematic restructuring of food safety governance models [27,86,87].

2.3. Classification of AI Algorithms in Food Monitoring

AI technology builds intelligent systems by simulating human cognitive mechanisms
and completes some complex tasks, even surpassing human ability. Its core technologies
include computing power architecture, high-quality labeled data, and ML algorithms. AI
technology has revolutionized food safety, quality control, and identification systems with
automated analysis. This enables analysts to accurately identify contaminants and make
real-time decisions [88]. AI provides intelligent solutions for food detection with minimal
errors. According to different learning modes, ML can be divided into three core branches:
supervised learning, unsupervised learning, and semi-supervised learning. DL, as an
important branch of ML, belongs to the categories of supervised learning and unsupervised
learning, also known as deep neural networks (DNNs) [89–91].

2.3.1. Supervised Learning

Supervised learning generally includes linear regression (LR), logistic regression, deci-
sion tree (DTs) [92,93], support vector machines (SVMs) [94,95], random forest (RF) [96,97],
and K-nearest neighbor (KNN). Its core feature is to use labeled data to train classification
or regression models and predict or classify unknown data by learning input and output
mapping relationships [98]. In food safety, supervised learning can be used for food quality
classification and defect detection, microbial contamination prediction [99], food adulter-
ation and composition identification, and toxic substance detection. Through automated
and high-precision data analysis, food detection efficiency, risk prevention, and control
ability are significantly improved. Rong et al. [100] proposed a two-stage convolutional
neural network (CNN) solution based on DL to solve the problems of the low efficiency of
traditional walnut impurity detection methods. Image segmentation and impurity identifi-
cation were realized by a multiscale, residual, fully convolutional network and a four-class
CNN. The detection problems in complex scenarios, such as adhesion between walnut
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and impurities and surface wear interference of conveyor belts, were successfully resolved.
This method achieved 99.4% section segmentation accuracy and 96.1% impurity detection
accuracy for the test image, and the processing time of a single image was less than 60 ms,
which showed significant improvement in the sorting of impurities in walnuts.

2.3.2. Unsupervised Learning

Unsupervised learning generally includes principal component analysis (PCA) [101–103],
K-means clustering (K-means) [104,105], cluster analysis (CA) [106], dimension reduction
(DR) technology, and anomaly detection (AD). Unsupervised learning can independently
discover hidden patterns or anomalies in unlabeled data, which is suitable for exploratory
data analysis and complex scene modeling. Unsupervised learning can be applied to anomaly
detection, defect detection, food adulteration, and ingredient abnormalities in food production
and the supply chain. The value of unsupervised learning in the field of food safety lies
in proactively discovering unknown risks and ensuring timely prevention and supervision.
Chen et al. [107] designed a real-time detection device and method based on machine vision
for the quality of metal cans in the manufacturing process, which was used to determine
the integrity and safety of food packaging. The device used a multi-stage algorithm and a
specific imaging scheme to solve the problem of complex surface illumination and could
efficiently and accurately identify a variety of defects to ensure the safety of food packaging.
The experimental results showed that the system could detect the round bottom of different
sizes with an accuracy of 99.48%, and the processing time of a single bottom of the tank was
0.7 s. The system could effectively identify eight types of typical defects and provide a reliable
solution for food packaging safety.

2.3.3. Semi-Supervised Learning

Semi-supervised learning generally includes the self-training model (STM), co-training
model (CTM), generative model (GM), and transduction SVM (TSVM) learning model.
Semi-supervised learning combines supervised learning and unsupervised learning, using
a small amount of labeled data to train a model and mining the distribution characteristics
of a large amount of unlabeled data to enhance the generalization ability of the model and
reduce the cost of data labeling. In practical applications, semi-supervised learning can
reduce the need for data labeling while maintaining detection accuracy, which is suitable
for identifying food appearance defects, component analysis, foreign body detection, and
supply chain risk prediction. Looverbosch et al. [108] used X-ray computed tomography
combined with ML technology for the non-destructive testing of pear fruit internal quality,
testing for browning, cavities, and other defects during long-term storage. This resolved
the limitations of low sensitivity of traditional spectral detection methods. In pear fruit
quality detection, SVM was used as a classifier to construct an automatic detection system.
A few 3D mask fruit samples of labeled fruit were combined with unlabeled fruit data to
determine the quality of fruit. The overall accuracy of the method was 92.2% in the five-fold
cross-validation. This ML-based, 3D, nondestructive testing scheme shows broad prospects
in high-end fruit and vegetable quality control and can be extended to other perishable
agricultural products, such as apples and mangoes.

2.3.4. Deep Learning

DL generally includes CNNs [109–111], recurrent neural networks (RNNs) [112–114],
transformer, and automatic encoder (AE). It constructs a multi-layer deep model by simu-
lating a human brain neuron network to automatically learn abstract features from data.
DL is used in the non-destructive testing of food, prediction of food chemical composition,
real-time monitoring of microorganisms, and rapid identification of pesticide residues in
fruits and vegetables. For the monitoring of meat freshness, Gong et al. [115] introduced a
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smartphone platform based on a gelatin–methylacrylyl (GelMA) hydrogel combined with
the DL model. Bromocresol green dye was encapsulated in the GelMA hydrogel through
ultraviolet crosslinking technology to make a colorimetric indicator strip that changed
color with volatile nitrogen compounds produced by food degradation. The indicator
strip image was captured by a smartphone and the classification was carried out by using
the dataset. Combined with the application program developed by the CNN and the
watershed algorithm, the automatic classification and recognition of meat freshness were
determined with 96.2% prediction accuracy. This platform is non-destructive, real time, and
portable, providing an intelligent food freshness evaluation solution for the food industry
and consumers.

2.4. Critical Analysis of AI Technologies in Food Safety

In the field of food safety detection, more AI technologies are integrated with tradi-
tional detection technology. This integration gives rapid and accurate information on food
quality and contaminants, improves detection efficiency and accuracy, and resolves the
shortcomings of traditional detection methods, which are time-consuming and error-prone.
In addition, the early risk warning and traceability system based on AI can deeply an-
alyze the data of food source quality control, circulation, storage, production, and sales
stages. This AI-integrated system can sense potential risks, accelerating the process of
traditional manual monitoring. This system integrates information from all stages of the
food supply chain to ensure that when safety problems arise, the source is quickly and
accurately detected. This will assist regulatory authorities in efficient disposal and build a
comprehensive food safety system from farm to fork.

The integration of AI technology with traditional detection technology has improved
detection efficiency and accuracy, but different AI technology branches have their own
advantages and disadvantages. Supervised learning has great advantages in the case of
explicit classification criteria, but it relies on data labeling. Unsupervised learning can de-
tect unknown risks, but the results are not interpretable enough. Semi-supervised learning
can balance efficiency and cost, but the model complexity is high. DL is good at process-
ing high-dimensional data, but it has problems such as high computing power demands
and “black box” characteristics. The internet of things (IoT) has significant advantages in
real-time dynamic monitoring scenarios, but there are challenges with data heterogeneity
and transmission delay. Blockchain has significant advantages in the scenario of building
a trusted traceability system, but it suffers from the problems of high storage costs and
collaborative governance. The advantage trade-off of AI technology in food safety is essen-
tially a 3D balance of technical characteristics, scenario requirements, and cost constraints.
There is no optimal technology, only the most suitable scenario. Each AI technology has its
own advantages in accurate classification scenarios, but it needs to break through the limi-
tations of a single algorithm through cross-technology integration. Unsupervised learning
and semi-supervised learning are more cost-effective in cost-sensitive scenarios, but they
need to cooperate with blockchain and other technologies to improve the credibility of the
results. DL and IoT have outstanding advantages in processing complex data and realizing
real-time decision-making. However, it is necessary to integrate explainable AI (XAI), edge
computing, semi-supervised methods, unsupervised methods, and blockchain technology
to build a hybrid intelligent system with complementary advantages and synergy. In the
future, as technologies such as edge computing and multimodal models mature, AI will be
upgraded from a single-point optimization tool to a full-chain intelligent center to truly
realize the technical value of AI in food safety governance and the further upgrade from
risk prevention and control to value creation.
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In order to understand the technical boundaries and optimization paths of AI technolo-
gies in food safety applications, the pros and cons of different algorithms are systematically
evaluated in Table 1. Their adaptation scenarios are identified through comparative analysis,
which provides a critical perspective for technology selection and cross-domain integration.

Table 1. Comparison of the application of AI technology in food safety.

AI Branch Advantages Disadvantages Applicable Scenarios

Supervised learning Easy to explain, suitable for
small samples

Depends on labeled data,
limited ability to extract

complex features

Classification tasks, such as
disease recognition,

pesticide residue detection

Unsupervised learning
No need for labeled data,
ability to discover hidden

patterns

Poor result interpretability,
relies on assumptions

about data distribution

Anomaly detection,
food sorting

Semi-supervised learning

Combine limited labeled
data with abundant

unlabeled data to cut
labeling costs.

High model complexity,
need to balance the impact

of labeled and
unlabeled data

Small sample scenarios

Deep learning

Automatic feature
extraction, capable of

handling high-dimensional
data

High demand for
computing resources, poor

interpretability

Image recognition, such as
meat freshness,

pathogen detection

Internet of things Real-time monitoring,
fusion of multi-source data

Data heterogeneity,
transmission delay

Warehouse environment
monitoring

Blockchain
Data immutability,

enhanced traceability
transparency

High storage costs,
difficulty in collaborative

governance

Full-chain traceability,
production–distribution–

consumption

3. Intelligent Application of AI from Farm to Fork
3.1. AI-Based Food Source Management in Farming

For food source safety, disease and pest monitoring, the accurate application of fer-
tilizers and pesticides, the pre-harvest interval (PHI), residue control of fertilizers and
pesticides, and the dynamic optimization of the planting environment are the fundamental
guarantees of raw food material quality and ingredient safety. Intelligent monitoring, big
data analysis, and biological and physical control methods strengthen the prevention and
control of pests and diseases [116,117]. Modern agricultural machinery, such as drones and
intelligent sprays, achieves accurate pesticide application; strict residue detection systems
ensure the safety of agricultural products; and soil health management, water-saving irriga-
tion, and climate-adaptive planting optimize the planting environment [118–120]. The new
model of AI+ agriculture shows great potential in regulating the safety of food sources.

The combination of neural networks and machine vision technology is commonly
used to detect surface, sub-surface, and internal defects in fruits and vegetables and
monitor plant pests and diseases. Multidimensional plant leaf image data generated by
RGB cameras, multi-spectral imaging, hyperspectral imaging, X-ray, and other imaging
technologies are often used for the identification of leaf and fruit defects. To identify
more complex internal lesions, neural networks are used to automatically learn abstract
features in images through multi-layer iteration [121]. Compared with traditional machine
vision, which relies on artificial features to extract color, shape, and texture characteristics,
the detection accuracy is higher [122]. Sambasivam et al. [123] trained a CNN for the
disease detection and classification of cassava leaves in the agricultural sector based on
field datasets collected in Uganda from the Kaggle competition. The complete classification
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process is represented graphically in Figure 3A. The dataset contained 10,000 labeled
images across five categories, with healthy leaves making up only 3.16%, indicating a
significant category imbalance. By building a custom CNN model with three convolution
layers and four fully connected layers, combined with data enhancement and SMOTE
oversampling, the class bias was effectively reduced. Hyperparameters were adjusted by
grid search and three-fold cross-validation and, finally, 93% accuracy was achieved under
the input resolution of 448 × 448 pixels. This proved the robustness of the CNN under
the condition of limited and unbalanced data, providing a feasible scheme for real-time
disease diagnosis in resource-limited areas. In order to make it easier for multiple AI
technologies to monitor plant pests and diseases, Christakakis et al. [124] developed a
cross-platform mobile application that could identify damage in tomato crops caused by
tomato leaf miners by using the real-time detection of plant diseases and pests through
AI and DL technology. An infected crop image was transferred to the back-end system
through REST API and the disease features in the image were analyzed in real time by the
pre-trained YOLOv8 model. After processing by the support system and the compilation
of detection results, including disease location, confidence, and management suggestions,
YOLOv8 ensured robustness for real-time inspection on mobile devices in complex field
environments with 87% accuracy and directly reduced manual inspection errors.

The precise application of chemical fertilizers and the monitoring of pesticide residues
are crucial for food safety [125–127]. The illegitimate use of pesticides to protect crops can
lead to residues in final products; these poisons are not only directly related to the quality
and safety of food but also affect the sustainable development of agricultural production
and the protection of the ecological environment [128,129]. The precise application of these
chemicals can effectively reduce residues. Hajikhani et al. [130] developed a novel detection
method combining surface-enhanced Raman spectroscopy (SERS) and a transformer model
for detecting pesticide residues in spinach (Figure 3B). The model processed a labeled SERS
dataset with a shared-weight transformer encoder layer, which contained specific pesticide
types and pesticide labels. The classification branch used the six-category Soft Max classifier
to identify pesticide types, and the regression analysis predicted concentrations through
the machine language program. This method could be used for qualitative and quantitative
analysis with accuracy of 98.4%, mean absolute error (MAE) of 0.966, and mean square
error (MSE) of 1.826, showing good sensitivity and selectivity. SERS was also used for the
detection of pesticide residues on the surface of fruits. Wang et al. [131] combined SERS and
CNN innovative methods for the qualitative and quantitative detection of pesticide residues
on peel surface. The CNN model automatically extracted spectral features without manual
selection, which effectively solved the problem of SERS data complexity. The mapping
relationship between spectra and pesticides was established through the training set to
achieve the accurate classification and detection of a variety of pesticides. A prediction
accuracy of 99.62% was achieved on the test set, which was significantly better than ML
models such as SVM and RF. This method provided an efficient solution for the rapid
screening of multiple pesticide residues.

In addition to organic pollutants and pesticide residues, heavy metal ions such as
lead, cadmium, mercury, and arsenic also pose a serious threat to food safety. These heavy
metal ions can accumulate in the body, resulting in chronic poisoning and damage to
the nervous system, hematopoietic organs, kidneys, and other systems [132–135]. For
example, lead can affect the growth and development of children, cadmium can cause
“Itai-itai disease”, and mercury can cause “Minamata disease”, so it is crucial to ensure that
heavy metal levels in food are within acceptable limits. Heavy metal enters our food chain
either from the growing environment or through raw material processing [136–138]. In
order to detect these heavy metal ions in food, Mandal et al. [139] developed a detection
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method based on a combination of a carbon nanoparticle fluorescence sensor array and DL.
Nine different surface-functionalized fluorescent carbon nanoparticles were synthesized by
the hydrothermal method to build a sensor array. These carbon nanoparticles generated
distinguishable visual features under ultraviolet excitation when they interacted with
heavy metal ions. Fluorescence images were captured by digital cameras, RGB values were
extracted as feature data, and the original 86 data points were enhanced by generating
adversarial networks to form an enhanced multi-layer perceptron model. Finally, ML
algorithms such as the multi-layer perceptron were used for the high-precision classification
and recognition of five heavy metal ions, achieving 83.1% accuracy in three-fold cross-
validation. This detection method was significantly better than the traditional methods.
By combining genome-wide association analysis and genomic prediction techniques, Yan
et al. [140] developed a hybrid model based on ML and linear statistics methods to assess
genotypic–phenotypic relationships for cadmium concentration in maize grains. The
research focused on screening single nucleotide polymorphism markers associated with
cadmium accumulation and optimizing model parameters and compared the prediction
performance of the Bayesian method, ridge regression, the best linear unbiased prediction
(rrBLUP) and RF algorithms, as shown in Figure 3C. The results showed that the rrBLUP
had the highest prediction accuracy in field trials. The mean correlation coefficient was 0.89
and the MAE was 0.0037, which provided a biological basis for revealing the molecular
mechanism of cadmium accumulation and provided data-driven decision support for
precision agriculture and food pollution prevention and control.

In animal husbandry, in order to prevent and treat animal diseases, various veterinary
drugs are often used [141]. However, if animals are slaughtered during the drug action
interval, drugs or their metabolites may accumulate and concentrate in animal tissues.
The long-term intake of food contaminated with veterinary drug residues may lead to
health problems such as decreased human immunity and endocrine disorders. Therefore,
it is crucial to monitor these veterinary drugs to ensure that the food is safe for human
consumption [142]. Dong et al. [143] proposed a rapid detection method for ofloxacin
(OFX) veterinary drug residues in mutton based on hyperspectral imaging technology com-
bined with XAI, as shown in Figure 4A. By collecting near-infrared hyperspectral data of
300 groups of mutton samples with different OFX residue concentrations, a convolutional
neural network-stacked sparse auto-encoder model was constructed for the qualitative
and quantitative detection of OFX residues. The CNN, as the core architecture, enhanced
the feature extraction ability of small sample data and achieved 93.65% prediction ac-
curacy. Compared with the traditional chromatographic detection method, this method
has the advantages of conducting non-destructive detection and real-time analysis and
decision-making processes for the detection of antibiotic residues in meat.
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Figure 3. Application of AI in food source quality control. (A) CNN model framework for the
classification of cassava leaves infected by pests and diseases. (B) SERS combined with AI to detect
pesticide residues on vegetable surfaces. (C) ML algorithm for the detection of heavy metal content
in maize grains.

The detection of chemical fertilizer, heavy metals, and pesticide and veterinary drug
residues in food commodities ensures safety. Adjusting crop planting structure and im-
proving other agricultural management practices can significantly improve the quality of
food. This optimization not only reduces the input of toxic substances but also reduces their
detrimental effects on the environment. Zhu et al. [144] developed a web-based CPDOS
AI platform to increase crop yields by optimizing crop planting density and fertilization
strategies. The system integrates AI technologies such as genetic algorithms and back-
propagation neural networks and combines multiple yield density models to develop core
modules, including yield density, optimal planting density range, and joint optimization
modules of fertilization and planting density. The effectiveness of the system was validated
on potato, corn, and soybean. The average determination coefficient of the genetic algo-
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rithm in the three crop density models reached 98.18%. The system integrates algorithms
and web technology, realizes data visualization and automation processes through B/S
architecture, lowers the threshold for agricultural practitioners to use complex models,
and promotes the actual landing of intelligent planting technology. While optimizing
planting technology, environmental factors such as temperature and climate also affect the
quality and yield of crops. Decardi et al. [145] used AI to optimize the energy efficiency and
resource management of plant nurseries with artificial lighting (PFALs) and automatically
adjusted artificial lighting and climate systems in plant factories. By building a model of
plant–environment interaction, the deep reinforcement learning agent selected the optimal
control actions that reduced energy consumption by 25% and improved crop yield. The
results showed that a soft actor–critic algorithm could reduce the energy consumption
of PFALs from 9.5–10.5 kwh kg−1 to 6.42–7.26 kwh kg−1 by dynamically adjusting the
lighting and climate control system and revealed the tradeoff between energy saving and
CO2 utilization in ventilation. By optimizing the light and climate system and enabling
personalized regulation according to plant species and growth stage, this AI technology
can directly increase the yield and quality of agricultural products, enhance sustainability
and food safety, and ultimately improve the supply capacity and quality level of raw
food materials.

3.2. AI-Based Sorting in Food Ingredients

Intelligent sorting before preprocessing can quickly and accurately classify raw food
materials and eliminate low-grade products before the preprocessing stage. The fusion of
multi-spectral data and ML algorithms improves sorting efficiency, reduces the risk of food
contamination, and provides more reliable food products. Magnus et al. [146] proposed
a novel cascade classifier architecture to solve the problem of sample variability in food
detection by traditional stoichiometric methods. The architecture integrated the data of
reflection and fluorescence spectra, adopted a feature selection strategy to reduce detection
wavelengths to 8, and integrated models such as extreme learning machines and SVMs.
Through the mapping relationship between spectral data features and known class labels,
the classifier could effectively distinguish normal and defective walnuts, and the correct
classification rate of various defective samples was more than 98%. So, it was concluded
that the fusion of multi-spectral data and the ML algorithm showed high accuracy in food
sorting. These techniques also demonstrate great application potential in evaluating meat
freshness. Lee et al. [147] used hyperspectral imaging to capture the morphological and
fluorescence spectral information of meat surfaces, defined a freshness index based on the
ratio of reduced nicotinamide adenine dinucleotide and myoglobin fluorescence intensity,
and correlated it with bacterial density, as shown in Figure 4B. Two device methods, line
scanning and snapshot, were used in the study, combined with ML algorithms such as
linear discriminant analysis (LDA) and quadratic discriminant analysis. Features were
extracted from hyperspectral data and classification models were established. Finally,
the system was integrated with a smartphone to detect meat freshness in real-time and
remotely. The FI value based on the fluorescence spectrum showed a linear relationship
with bacterial density (R2 = 0.99). Qu et al. [148] developed a novel gas array sensor based
on SERS technology, which was used for the multidimensional detection of volatile organic
compounds (VOCs) in food and combined with an ML algorithm to achieve the real-time
assessment of food freshness, as shown in Figure 4C. The plasma array substrate prepared
by the interface self-assembly method selectively captured four VOCs using a metal–organic
framework and different monolayer layers. The sensor obtained multidimensional spectral
fingerprint information by combining direct and indirect SERS signals. Combined with
PCA dimensionality reduction and the LDA training model, a complete analysis process
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was formed. Experiments showed that the four-dimensional LDA model had a classification
accuracy of 96.9% for fresh, sub-fresh, spoiled, and rotten samples. This method removes
the limitations of traditional SERS single-target detection and gives high-accuracy and
low-interference analyses of complex VOC mixed systems. For the authenticity detection
of meat food, the fusion of multi-spectral data and the ML algorithm is still applicable.
Parastar et al. [149] developed a fast, non-destructive method to detect the authenticity of
chicken meat by combining handheld near-infrared spectroscopy and ML algorithms. In
this study, different measurement modes were used to classify chicken meat. By obtaining
spectral data through the top and bottom of the package, fresh and thawed chicken were
classified through a random subspace discriminant integration algorithm. The classification
was quick and, with more than 95% accuracy, rapid detection through the package could be
obtained. The complex spectral patterns were resolved by the ML model, which removed
the obstacles of traditional chemical analysis methods.

Figure 4. Application of AI in meat freshness assessment. (A) Qualitative and quantitative testing of
mutton using CNN-SSAE model. (B) Schematics of the full process required to obtain hyperspectral
data and evaluation using ML for food inspection. Two hyperspectral imaging systems were used
for hyperspectral data acquisition: a line-scan-type HIS installed with a commercial grating for
high spatial and spectral resolution and a snapshot-type HIS for compact form factor and efficient
computation resources. ML was conducted to extract FI values from the hyperspectral data for food
inspection [147]. (C) Freshness prediction and real-time detection scheme of array gas sensor based
on the LDA model.



Foods 2025, 14, 1973 14 of 38

3.3. AI-Based Food Storage Monitoring in Warehouses

After the strict control of the quality of source crops and the sorting of defective food
before pre-processing, an intelligent prediction system of food storage safety should include
the last shift of food into the production line. Through the integration of advanced means
such as the internet of things +AI technology, an intelligent prediction system can monitor
the storage environment in real time and accurately analyze the risk of food deterioration.
This effectively extends the shelf life of food and ensures the freshness and safety of food.
For grain storage, Wang et al. [150] used grain quality indicators, temperature, and humidity
to construct predictive models to dynamically analyze grain quality changes during storage.
Two models were proposed in the research, namely, the intertemporal prediction model
based on BP neural networks and the synchronous prediction model based on SVMs. These
models are applicable to wheat, corn, rice, and soybeans. Combined with the stored data
of different ecological regions, the prediction errors of the two models were controlled
within 15% to 20%. Both models could effectively predict key storage characteristics with
an error of 15–20%. Westerveld et al. [151] developed a portable food storage security
prediction model by integrating multi- and open-source data with the XGBoost algorithm.
Taking the living area as the spatial unit, the study defined the change in food safety status
based on comprehensive stage classification data and collected a total of 130 open-source
datasets in 19 categories as predictors. Lagged variables and seasonal indicators were
generated by feature engineering and the ADASYN algorithm was used to deal with class
imbalance. The results indicated that the model performed better in the 7-month forecast
horizon compared to the 3-month short-term forecast, achieving an F1 macro average of
0.61 for July and an F1 macro average of 0.51 for March. For disease and insect attacks on
stored food, Wu et al. [152] used DL technology to automatically identify common beetle
species, and a dataset was built by collecting micrograph images of elytra fragments from 15
storage beetles. The CNN model based on the VGG16 architecture and the transfer learning
method was used to classify beetle species. At the same time, to overcome the challenge
of the limited sample size, 6900 elytra fragment images were used, finally achieving an
overall classification accuracy of 83.8% in cross-validation. This provided a scalable and
intelligent analysis tool for food storage. For the shelf-life prediction of meat at different
temperatures, Cui et al. [153] developed a multi-objective real-time prediction model using
an ML algorithm to simultaneously predict the shelf life of five fish products at different
storage temperatures by monitoring 14 characteristic indicators such as total live count,
volatile base nitrogen, K value, electronic nose, gas chromatography–mass spectrometry
data, and sensory evaluation data. This model combined four ML models: the BP neural
network, BP neural network optimized by the genetic algorithm, radial basis function (RBF)
neural network, and extreme learning machine. A shelf-life prediction model of marine fish
under multi-species and multi-temperature conditions was established. The results showed
that the RBF model had the smallest prediction error: the absolute error was less than
0.5 days, MAE = 0.118, and R2 = 0.9994. Based on the RBF model, a real-time prediction
platform was developed, which provides technical support for quality monitoring in the
food supply chain and intelligent solutions for reducing food losses.

In order to ensure food quality and safety, advanced sensor technology should be
used to monitor key indicators such as temperature and humidity, gas composition, and
microbial activity. In cases of abnormalities, storage conditions should be adjusted to
reduce food loss. In the interim, big data analysis should be used to predict the shelf life
of food. Precise management should be undertaken for perishable and difficult-to-store
foods during storage to protect the health and safety of consumers. Formalin is mostly
used to preserve fish by controlling parasitic infection in fish skin. Mahata et al. [154]
used a SnO2 nano-structured gas sensor combined with ML technology to detect formalin
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residues in fish. A dataset containing the dynamic response characteristics of the sensor was
constructed by comparing the VOC differences of fresh tilapia under different handling and
storage conditions. RF and SVM achieved a theoretical detection limit for formaldehyde as
low as 75 ppb by constructing a decision boundary to classify the three samples with 95.83%
accuracy. Similarly, a DNN model accurately predicted food storage time by establishing
nonlinear mapping between response amplitude and storage time, and the regression
average error was less than 8.28%. This method combined the high sensitivity of a physical
sensor with the advantage of ML pattern recognition to enable the intelligent conversion
from signal detection to quality assessment. This method also provides an extensible
technical framework for the safety monitoring of perishable and difficult-to-store foods.
The applications of AI in quality control at the source of food, intelligent sorting before
pre-processing, and food storage safety are summarized in Table 2.

Table 2. Application of AI-based inspection methods in food source quality control, intelligent sorting
before preprocessing, and food storage safety.

Foods Detection Methods ML Algorithms Model Performance Ref.

Nut Machine vision MRFCN, CNN RS: 99.4% Acc., ID: 96.1% Acc. [100]
Can Machine vision ERC, MSRD MSRD: 99.48% Acc. [107]
Pear X-ray tomography SVM SVM: 92.2% Acc. [108]
Fish Colorimetry CNN, VGG16 CNN: 96.2% Acc. [115]

Cassava Machine vision CNN CNN: 93% Acc. [123]
Tomato Machine vision YOLOv8 Test confidence: 87% [124]
Spinach SERS Transformer Transformer: 98.4% Acc., MAE = 0.966 [130]
Fruits SERS CNN, SVM, RF CNN: 99.62% Acc. [131]

Water Fluorescence sensor Aug-MLP, KNN, SVM,
GNB, RF Aug-MLP: 83.1% Acc. [139]

Corn Genomics technology Bayes, rrBLUP, RF rrBLUP: ACC = 0.89, MAE = 0.0037 [140]
Mutton Hyperspectral imaging CNN-SSAE CNN-SSAE: 93.65% Acc. [143]

Crop Data-driven GA, BP GA: 98.18% R2 [144]
Lettuce Sensor data SAC 32.34% energy saved [145]

Nut Spectrum ELM, SVM, LDA, QDA,
PLS-DA SVM: 5.54% LR, 98% CR [146]

Meat Fluorescence spectrum LDA, QDA Linear, R2 = 0.99 [147]
Chicken SERS, gas array sensor PCA, LDA LDA: 96.9% Acc. [148]
Chicken IR RSDE RSDE: 95% Acc. [149]

Crop Data-driven BP, SVM Error: 15%~20% [150]
Crop Data-driven XGBoost SFMA = 0.61, TFMA = 0.51 [151]
Crop Machine vision CNN CNN: 83.8% Acc. [152]

Fish E-nose BP, GA-BP, RBFNN,
ELM RBF: MAE = 0.118, R2 = 0.9994 [153]

Fish Gas sensor RF, SVM, DNN RF, SVM: 95.83% Acc. [154]

The abbreviations in Table 2 are explained as follows. MRFCN: multi-scale residuals full convolutional network;
CNN: convolutional neural network; RS: region segmentation; Acc.: accuracy; ID: impurity detection; ERC:
entropy rate clustering; MSRD: multi-scale ridge detection; SVM: support vector machine; VGG16: visual
geometry group 16-layer network; YOLOv8: You Only Look Once version 8; SERS: surface-enhanced Raman
spectroscopy; MAE: mean absolute error; MSE: mean square error; RF: random forest; Aug-MLP: enhanced mul-
tilayer perceptron; KNN: K-nearest neighbors; GNB: gaussian naive Bayes; rrBLUP: ridge regression best linear
unbiased prediction; ACC: average correlation coefficient; CNN-SSAE: convolutional neural network-stacked
sparse auto-encoder; GA: genetic algorithm; BP: backpropagation neural network; R2: determination coefficient;
SAC: soft actor–critic; ELM: extreme learning machine; LDA: latent Dirichlet allocation; QDA: quadratic dis-
criminant analysis; PLS-DA: partial least squares discriminant analysis; LR: loss rate; CR: classification rate;
PCA: principal component analysis; IR: infrared radiation; RSDE: random subspaces discriminative ensemble;
XGBoost: eXtreme gradient boosting; SFMA: seven F1 macro average; TFMA: three F1 macro average; E-nose:
electronic nose; GA-BP: genetic algorithm–backpropagation; RBFNN: radial basis function neural network; DNN:
deep neural network.

3.4. AI-Based Quality Control in Food Processing

The introduction of AI technology, such as DL and machine vision, into the food
processing chain can achieve more efficient and accurate quality control. These technolo-
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gies can monitor various parameters on the production line in real time to ensure that
the processing conditions meet food safety standards. For the detection of adulteration,
Shi et al. [155] developed a self-priming capillary electro spray ionization source and a
two-step pretreatment method, combined with the ion trap analyzer and ML algorithm, to
achieve the efficient detection of illegal food additives without chromatographic separation,
as shown in Figure 5A. A mass spectrum library containing 31 illegal substances was
contracted including, for instance, Sudan Red, borax, and melamine. A SVM model was
trained to classify and identify unknown samples using functional food containing illegal
substances as positive samples and unadulterated matrices as negative samples. The model
could complete sample pretreatment and detection within 1 min and was successfully ap-
plied to the field screening of 55 batches, with an accuracy rate of 100%, which significantly
improved the detection efficiency and portability. In terms of adulteration detection in
food processing, Ni et al. [156] developed a condiment identification method based on
an improved CNN for the classification of five condiments with similar appearance but
different effects to solve the problem of food adulteration, as shown in Figure 5B. Based on
the residual network 18 (ResNet18) model, three improvements were made in the study.
Spatial and channel squeeze and excitation were introduced, the convolution kernel size
of the last residual module was adjusted, and the classifier structure was optimized. A
recognition accuracy of 95.71% was finally achieved, which was 1.11% higher than that of
the original ResNet18. This approach overcomes the dependence of traditional methods
on professional equipment and complex operations, such as near-infrared spectroscopy
and chemometrics. This approach enables low-cost and high-efficiency detection based on
conventional images and provides a new technical path for intelligent food detection.

The degree of food processing is significantly associated with physical health, and the
higher the degree of processing, the greater the potential harm to health. Ultra-processed
foods are significantly associated with the risk of metabolic syndrome, diabetes, and other
diseases [157]. By using alternative strategies, it is found that replacing a small amount of
ultra-processed foods can significantly improve health indicators. For predicting the degree
of food processing, Menichetti et al. [158] proposed FoodProX, an ML-based classification
model for predicting the concentration changes of food nutrients, as shown in Figure 5C. In
the study, FoodProX standardized nutrient composition data from the USDA database as
the input of the RF and output the distribution probabilities of unprocessed and processed
raw materials and processed and ultra-processed foods. Through the cross-verification
of 50 folds, the model showed high differentiation in the mentioned four classes. The
area under the curve was more than 0.96. Finally, the continuous processing score index
was generated by probability weighting to quantify the gradient of the processing degree.
In terms of the regulation of harmful ingredients in food packaging, Wang et al. [159]
built an improved radial basis function artificial neural network (RBF ANN) model based
on gas chromatography–mass spectrometry experimental data to predict phthalic acid
under different temperature, time, and food analog types. At the same time, a molecular
dynamics simulation was used to analyze the interaction, solubility parameters, and free
volume fraction of polyvinylidene chloride packaging materials with food simulants. The
results showed that the model had a high correlation coefficient of 0.95, low prediction
error, and MSE of 0.046, accurately predicting migration behavior in complex environ-
ments. Moreover, it was found that temperature was the key factor affecting the migration,
which provides a multi-scale analysis framework for the migration mechanism of toxic
components in packaging materials.
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Figure 5. Application of AI in the intelligent control of food processing. (A) Schematic diagram of AI
combined with micro-mass spectrometry for detecting food adulteration. (B) Spice classification flow
chart based on an improved CNN model. (C) Classification flow chart of FoodProX for predicting the
degree of food processing.

3.5. AI-Based Detection in Food Products

In food safety testing, the combination of AI and rapid detection technology has brought
revolutionary changes to the detection of microorganisms, spoilage, and toxicity [160,161].
Using AI algorithms, rapid detection technology can identify harmful substances in food more
accurately and efficiently, realize on-site detection, reduce the detection cycle, and improve
the practicality and timeliness of food safety monitoring [162–164].

For the rapid detection of foodborne pathogens, Tago et al. [165] developed a new
imaging system of bacterial colony fingerprints based on a line image sensor. Wide-field
imaging of bacterial microcolonies using high-speed wire sensors could scan an entire
92-mm diameter petri dish in 22 s. By extracting morphological, optical, and textural
features during colony growth and constructing a classification model with the XGBoost al-
gorithm, the high precision and rapid identification of 15 species of bacteria were achieved
(Figure 6A). This method could detect Staphylococcus aureus in 10 h with 96% accuracy in
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food samples, which significantly reduced the detection cycle compared with the traditional
24-h mass spectrometry method. Guo et al. [166] introduced a new, portable, optical fiber,
real-time fluorescence detection system for the high-precision field detection of pathogenic
microorganisms in food (Figure 6B). By integrating an LED light source, optical fiber
sensing array, and micro-camera, the system enabled multichannel fluorescence signal
acquisition. It also combined environmental parameter sensing functions such as temper-
ature, humidity, and GPS positioning and innovatively combined a radial basis function
neural network algorithm with digital signal processing technology to solve the problem
whereby traditional detection methods are susceptible to environmental interference. The
model processed multidimensional input data through a hidden layer with a Gaussian
kernel function and output the predicted concentration of target microorganisms. The
model showed high sensitivity and accuracy for the detection of African swine cholera
virus and Salmonella, with detection limits of 2.5 CFU/µL and 10 CFU/mL, respectively.
The model supported dynamic monitoring during transportation. Wang et al. [167] de-
veloped a fluorescence sensor array based on single-stranded DNA and two-dimensional
nanomaterials, combined with an ML algorithm, for the rapid detection and identification
of multiple foodborne pathogens and spoilage bacteria in milk (Figure 6C). The sensor
array could generate unique fluorescence recovery fingerprints for different bacteria; after
standardization, the algorithm extracted characteristic patterns from the fluorescence re-
covery intensity of 12 sensor units. The mapping relationship between bacterial species
and fluorescence response was established, the complex multidimensional data generated
by non-specific sensors was effectively analyzed, and the limitation of traditional single
biomarker detection was overcome. Moreover, the accuracy rate of the ANN model reached
93.8% under the short-term incubation condition of 30 min, showing the advantage of the
ANN in handling nonlinear relations. This method realizes the simultaneous identification
of multiple bacteria through a multi-sensor cooperative response and algorithm optimiza-
tion and has better detection throughput and cost-effectiveness than traditional methods,
which provides a new strategy for the rapid microbial detection of food substrates.

In food safety, an intelligent detection system can complete rapid and on-site detection of food
spoilage through a combination of the colorimetric method and the ML algorithm [168]. Dogan
et al. [169] built a smartphone-embedded, ML, on-site, colorimetric food spoilage moni-
toring system. They developed a fish gelatin film adulterated with red cabbage extraction
that showed color changes when exposed to volatile amines produced by food spoilage.
By integrating ML algorithms and smartphone applications, the rapid classification and
recognition of ammonia concentration gradient responses were achieved, as shown in
Figure 7A. After selecting and optimizing features based on the Chi-square test, the RF
classifier was adopted to achieve 98.8% accuracy, and the training model was innovatively
embedded in Android Smartfood ++. The offline detection of food spoilage in real fish
samples was achieved in 0.1 s with 99.6% accuracy. These improvements remove the
limitations of traditional colorimetric methods that rely on manual interpretation and cloud
computing. Ghorbanizamani [170] developed a colorimetric sensing system by combining
silver nanoparticles, smartphone imaging, and ANN models to detect bioamines produced
during chicken spoilage, as shown in Figure 7B–F. Through the interaction of green, syn-
thesized silver nanoparticles with biogenic amines, the color changes were triggered, and
the RGB color parameters were captured by a smartphone. By optimizing the reaction
conditions, the sensor detected the initial biogenic amines with a detection limit of 0.21
µg/mL. In order to further improve the performance, the researchers combined various
color parameters extracted from smartphones with spectral data to train the ANN model
and finally improved the detection limit to 0.09 µg/mL and extended the dynamic range to
0.5–200 µg/mL, and the R2 of the ANN model was 0.9946. The effectiveness of the system
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in three days’ spoilage monitoring was verified by actual chicken samples, which proved
that the system could reflect the degree of spoilage.

   

Figure 6. Application of AI in the rapid detection of foodborne pathogens. (A) Image processing steps
for colony fingerprint analysis from clipped colony images. (B) The working principle of a portable,
optical fiber, real-time fluorescence detection system based on radial basis function neural network
algorithms for detecting pathogenic microorganisms in food. (C) ANN model-based fluorescent
sensor arrays for identifying multiple foodborne pathogens and spoilage bacteria in milk.
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Figure 7. Study design for the rapid assessment of meat freshness based on the colorimetric method.
(A) Fish freshness detection based on portable colorimetry. (B) Schematic diagram of synthesized
silver nanoparticles. (C) Histamine spectrophotometric analysis. (D) Histamine analysis based on
smartphone images. (E) Using colorimetric data for ANN model training. (F) Simulation of a real
chicken sample contrast color sensing system for testing.

3.6. AI-Based Blockchain for Food Traceability

The most important feature of the trustworthy traceability architecture of blockchain
+AI is immutability [171–174]. Using blockchain technology and AI’s intelligent analysis
ability, the information of key stages such as the source, production and transportation of
each batch of raw materials is accurately recorded and immutable, thus forming a complete
traceability chain, effectively preventing the inflow of counterfeit and substandard products
while enhancing the credibility and security of food [175–177]. It provides a solid guar-
antee of food safety. Richter et al. [178] proposed a method for the rapid screening of the
geographical origin of white asparagus using near-infrared spectroscopy combined with an
SVM model. After the asparagus samples were freeze-dried and ground, Fourier transform
near-infrared spectral data were obtained, an SVM was used to establish a classification
model, and the feature selection and confidence estimation methods were combined to
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distinguish the country of origin of the asparagus. The accuracy of differentiation be-
tween German asparagus and other countries reached 89%. The study proved the practical
value of near-infrared spectroscopy combined with ML in the field of food traceability
and provided an efficient technical means for the protection of geographical indications
of agricultural products and food origin traceability. Li et al. [179] used two-dimensional
gas chromatography–time-of-flight mass spectrometry to obtain complex composition data
of 262 Chinese liquors of different geographical sources and flavor types. The chemical
characteristics of different flavor types were revealed through PCA and hierarchical clus-
tering, and, for further analysis, SVM and RF ML models were used. The high precision
classification of Chinese liquor was successfully obtained with accuracies of 91.86%, 97.67%,
83.72%, and 95.36%, respectively. Alfian et al. [180] developed a traceability system based
on radio frequency identification, combined with internet of things sensors to monitor
real-time temperature and humidity data during storage and transportation. The XGBoost
algorithm was used to solve the problem of radio frequency identification label direction
recognition, as shown in Figure 8. Through experimental verification, the XGBoost model
performed well in the test, with an accuracy rate of 93.59%, a recall rate of 92.95%, and an
F1 score of 92.78%. The system could effectively distinguish between label entry and exit
directions, such as receiving or shipping, while providing complete supply chain history
and environmental monitoring data, thereby improving the efficiency of food quality and
safety management.

 

Figure 8. Trusted traceability architecture with blockchain +AI, where food moves from producers to
consumers through multiple supply chains such as distributors and transporters.

Blockchain +AI technology not only strengthens the transparency of the supply chain
but also enhances the standards of accountability in the food industry. At the same time, AI
also demonstrates a strong ability to predict defective product categories, hazard types, and
disposal measures. By analyzing large amounts of food testing data, consumer feedback,
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and production process information, AI can identify potential safety hazards in different
foods and accurately predict the product categories that may have problems. Whether
this involves microbial pollution, excessive additives, or deterioration due to expiry, AI
can quickly make judgments and provide timely warnings for regulatory authorities and
enterprises. Nogales et al. [181] introduced the application of ML models in predicting
food and feed safety risks. By comparing the performance of neural and non-neural
models in three food safety prediction tasks, the impact of the classification variable coding
strategy on model performance was analyzed. It was found that the neural network model
combined with entity embedding coding achieved the highest accuracy in predicting the
product category, hazard category, and treatment measures, with accuracies of 86.81%,
82.31%, and 88.94%, respectively. This approach integrates structured classification data
and DL models through a data-driven risk warning system to improve the initiative and
resource utilization of food safety supervision.

3.7. AI-Based Personalized Meal Services for the Table

In the field of food safety and health, a personalized, intelligent nutrition service man-
agement system for the whole life cycle can be achieved by combining the customization
of food sensory characteristics and nutrient matching, dynamic food demand prediction
based on individual characteristics, and the prediction of the influence of food components
on disease-related protein pathways [182]. Mengucci et al. [183] explored the key role of
food structure in sensory properties, stability, and nutrient digestion and absorption and
proposed a predictive model framework using AI technology to build food structure and
function. The description of traditional food is mostly based on chemical composition
analysis, but many important characteristics are determined by the micro and macrostruc-
ture. The research systematically reviewed the definition of food structure, measurement
methods, and the mechanism of its influence on function. Taking the structural changes
in the cooking process of pasta as an example, a modeling process integrating multi-scale
structural data and kernel principal component analysis (KPCA) was proposed. The aim
of this approach was to reduce the dependence on physical experiments through digital
twin technology, enabling the computer-aided design of food attributes and providing a
computing platform for personalized food design and a new path for precise nutrition
collocation and personalized food development.

Dynamic food demand forecasting based on individual characteristics is an innovative
tool integrating intelligence and environmental protection concepts. Through big data
analysis of users’ eating habits and preferences, it accurately predicts future food demand,
enables the accurate management of food procurement and consumption, automatically
balances meals according to actual needs, ensures balanced nutrition, effectively reduces food
waste, and promotes resource conservation. Rodrigues et al. [184] used four ML models—RF,
light gradient boosting machine, long short-term memory, and transformer—to predict the
next day’s catering demand. The results showed that RF and the long short-term memory
model could effectively reduce food waste by 14–52%, and reduce unmet demand by
3–16%. The study also highlighted the importance of accurate demand forecasting in
optimizing production plans and reducing resource waste, providing data-driven solutions
and actionable decision support for addressing sustainable development issues in the
catering industry.

The prediction of the effect of food composition on disease-related protein pathways
is mainly reflected in the balance of nutrients and the activity of specific ingredients. A
balanced diet can provide all needed nutrients, boost immunity, and prevent diseases
caused by nutrient deficiencies. In addition, the active ingredients in some foods, such as
antioxidants, dietary fiber, and probiotics, can directly act on the bodily systems, reduce



Foods 2025, 14, 1973 23 of 38

inflammation, regulate intestinal flora, and reduce the risk of chronic diseases. Through
scientific and reasonable food selection, we can not only satisfy the taste buds but also
effectively prevent diseases and improve quality of life. Inoue et al. [185] built a prediction
framework from food composition to disease pathway by integrating data from multiple
sources such as food composition, compound protein interaction, and the influence on
disease-related pathways. The L1 regularized logistic regression model was used to as-
sess the interaction between food composition and target proteins, and hypergeometric
tests were used to assess the enrichment degree of food target proteins in disease path-
ways. This was to predict the functional association between food and disease, as shown
in Figure 9B–D. The model performed well in the five-fold cross-validation, predicting
a mean AUC of 0.92 for compound protein interactions with an accuracy of 84%. The
method covered 876 foods and 83 diseases, revealed the potential mechanism by which
food regulates molecular pathways through multi-component synergies, and explored food
combinations that may have synergistic effects, providing a new computational tool for
preventive medicine. Razavi et al. [186], based on 14 basic nutritional indicators such as
the calories, fat, and protein of 5624 foods in the Food and Nutrient Database of Dietary
Research, constructed models such as random forest and a support vector machine to
predict the content of vitamins A, B, C, E, and K and 15 unlabeled micronutrients such as
magnesium and zinc, and these prediction models were integrated through the develop-
ment of mobile applications to help consumers have a more comprehensive understanding
of the nutritional composition of food and assist dietary decisions to deal with the global
micronutrient deficiency, as shown in Figure 9A. This data-driven approach breaks through
the physical space limitations of traditional labels, provides a scalable technology path for
mobile health applications, and realizes the transformation of laboratory-level detection
capabilities to consumer applications. In Table 3, the applications of AI in the intelligent
control of food processing, rapid detection, trusted traceability of blockchain +AI, and
personalized intelligent services are summarized.

Table 3. AI-based intelligent control in food processing, rapid detection, trusted traceability of
blockchain +AI, and personalized intelligent services.

Foods Detection Methods ML Algorithms Model Performance Ref.

Condiment Machine vision CNN CNN: 95.71% Acc. [156]
Functional food Ion trap analysis SVM SVM: 99.78% sensitivity [155]

Cereal Data-driven RF RF: AUC = 0.96 [158]
Fatty food GC-MS RBF ANN R2 0.95, MSE = 0.046 [159]

Milk Line image sensor XGBoost XGBoost 96% Acc. [165]
Pork Fluorescence detection RBFNN RBFNN: 100% Acc. [166]
Milk Fluorescence sensor ANN ANN: 93.8% Acc. [167]
Fish Colorimetry RF RF: 98.8% Acc. [169]

Chicken Colorimetry ANN ANN: R2 = 0.9946 [170]
Asparagus FT-NIS SVM SVM: 89% Acc. [178]

Liquor GC × GC/TOF-MS PCA, SVM, RF SVM: 97.67% Acc., RF: 95.36% Acc. [179]
Feed Data-driven NN, Non-NN NN: 86.02% Acc. [181]

Noodles SEM, TD-NMR KPCA / [183]
Meat Data-driven RF, LSTM, Transformer RFW 4% to 52%, RUN 3% to 16% [184]

Food composition Data-driven L1-RLR L1-RLR: 84% Acc., AUC = 0.92 [185]
Micronutrient Data-driven RF, GBM, SVM, KNN Accuracy >80% [186]

The abbreviations in Table 3 are explained as follows. AUC: area under curve; GC-MS: gas chromatography–
mass spectrometry; RBF ANN: radial basis function artificial neural network; ANN: artificial neural network;
FT-NIS: Fourier transform near-infrared spectroscopy; GC × GC/TOF-MS: full two-dimensional gas
chromatography–time-of-flight mass spectrometry; DT: decision tree; NonNN: non-neural network; SEM: scan-
ning electron microscope; TD-NMR: time domain NMR; RFW: reduced food waste; RUN: reduced unmet needs;
KPCA: kernel principal component analysis; LSTM: long short-term memory; L1-RLR: L1-regularized logistic
regression; GBM: gradient boosting machine.
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Figure 9. Application of AI in personalized intelligent service systems. (A) An AI model was
established to rapidly predict the nutrient composition of trace elements in food. (B) AI-based
methods for predicting functional associations between food and disease. (C) The proposed approach
consisted of three main steps. In the first step, sparse logistic regression analysis combined with the
KCF-S descriptor analyzed the interactions between the component compounds in the food and the
target proteins to reveal the molecular interaction mechanism within each food. In the second step,
the compound protein interactions derived from the first step were grouped by food to evaluate the
causal relationship between the food and the target protein. In the third step, the target proteins
of each food were mapped to disease-associated pathways, and pathway enrichment analysis was
used to predict which diseases each food may be suitable for [185]. (D) The functional association
between food and disease was established through the following two steps. First, compound protein
interactions derived from machine learning were combined with food composition information
to estimate the causal relationship between food and protein. Secondly, the target proteins of the
food and disease pathway were analyzed to predict the functional association between food and
disease [185].
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4. Challenges and Future Directions of AI in Food Safety
Under the wave of digitalization, AI technology is profoundly reconstructing the

food safety governance paradigm and building a new system of healthy food quality
control through intelligent monitoring, prediction, and decision-making, covering the
whole chain from farm to fork [187–189]. From the intelligent analysis of environmental
parameters and the early warning of diseases and pests at the production end to the
ingredient detection and specification monitoring in the processing chain, the cold chain
logistics tracking in the circulation chain, and nutrition adaptation suggestions at the
consumption end, AI technology significantly improves the accuracy and efficiency of
food safety management with multi-modal data fusion, real-time decision support, and
cross-domain collaboration capabilities. Its technical potential has been verified in pesticide
residue detection, microbial contamination, early warning signalling, food adulteration
identification, and food storage [51].

Despite the powerful effect of AI and its deepening application in the field of food safety, it
still faces many structural challenges, of which the first is data governance [190,191]. Agricul-
tural production data are mostly fragmented and non-standardized and are significantly
different due to the environmental parameters, crop variety characteristics, and processing
technology in different regions. So, these variations make it difficult to unify data collection
standards and the generalization ability of cross-regional models. [192,193]. The second
is the contradiction between algorithm interpretability and real-time monitoring. Food
detection scenarios require millisecond-level decision-making, but the “black box” feature
of the DL model does not meet the requirements of regulatory transparency [194,195].
Moreover, the technology cost is high. Small and medium-sized enterprises face financial
barriers to intelligent transformation. The cost of a set of AI quality inspection equipment
is usually 5–8 times more than that of traditional equipment, and the budget of small
and medium-sized enterprises that account for the main body of the industry is seriously
mismatched. In addition, multi-source data fusion technology is not mature, and the
integration and analysis ability of heterogeneous data such as biosensor data, supply chain
logs, and consumer feedback is insufficient, which restricts the construction of whole-chain
risk prediction models [196–198]. In Table 4, the challenges and future directions of AI in
food safety detection are summarized.

For the transformation needs of the food industry 4.0, the breakthrough direction
of AI technology will mainly focus on three dimensions. Technically, the popularity of
edge computing and lightweight models will reduce the hardware cost and compress the
cost of equipment to below USD 1,500, benefiting small production entities [199–201]. The
development of multimodal large models will drive innovation in data fusion, integrating
satellite remote sensing, production line sensors, and consumer data to build a global risk
assessment system from the composition safety of raw materials to table nutrition. At
the governance level, it is necessary to establish algorithm authentication standards and
data sharing mechanisms to achieve global data compliance flow. At the industrial level,
industry–university–research collaborative innovation will accelerate the adaptation of
technology and build a quality control ecosystem covering the whole chain through smart
devices, cloud services, and blockchain [202–204].
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Table 4. Challenges and future directions of AI in food safety detection.

Dimensionality Challenges Future Direction

Technical level

• Cross-modal fusion is difficult.
• The model is not robust and

interpretable enough.
• Real-time, small sample,

multitasking bottleneck.

• Cross-modal framework.
• Robust algorithm, explainable

AI technology.
• Lightweight model, multi-learning,

multitask optimization.

Data level

� Uneven quality, privacy barriers,
difficult to adapt dynamic data.

� Multi-source integration, labeling
cost, spatio-temporal
deviation problems.

� Data enhancement, privacy
computing, dynamic graph.

� Cross-modal pre-training, active
learning, domain adaptation, time
series modeling.

Regulation and ethics

� Lack of standards,
fuzzy responsibility.

� Hidden fairness, human–machine
decision conflict.

� Judicial effectiveness dispute,
technology dependence risk.

� Standardization construction,
responsibility sharing.

� Fairness algorithm, man–machine
coordination mechanism.

� Judicial certification, skills
maintenance system.

Application and industry

� High deployment cost and
talent shortage.

� Equipment compatibility, whole
chain coordination, and compliance
transformation are difficult.

� Lightweight solutions,
interdisciplinary talents.

� Standardized interface, whole
chain modeling.

� Compliance tool development.

Environmental sustainability

F High computing power
consumption, electronic
waste pollution.

F Excessive consumption
of resources.

F Green AI technology, circular
economy model.

F Sustainability optimization model.

Global perspective

v Regional differences, barriers to
mutual recognition of standards.

v Language, culture,
geopolitical influence.

v Regional adaptation model,
international coordination
mechanism.

v Multi-language processing,
localization technology ecology.

In the next decade, AI-driven food safety management will show three major develop-
ment trends. First, the miniaturization of intelligence detection equipment will be achieved
through a combination of nano sensors and AI to achieve the real-time monitoring of trace
pollutants. Second, the decision-making model is transparent, and XAI technology will
reveal the correlation of pollution events through causal reasoning. Thirdly, the ecological
management system and the establishment of a transnational food safety database will
enhance the coordination of global risk prediction [205]. These technological improvements
will not only improve the level of food safety but also restructure the food trust system. By
analyzing the full life cycle data of every food product with an AI system, personalized
nutrition advice and agricultural production data can be intelligently matched. Then,
food safety management will shift from risk prevention and control to value creation,
finally forming a new food ecology with data-driven production, intelligent security, and
healthy technology.

AI technology is becoming the core driving force of global food safety governance, but
its development needs a three-in-one support system of technology, ethics, and policy [206].
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By continuing to break through key technical bottlenecks such as data standardization,
model interpretability, and the weight of equipment and improving cross-field collaboration
mechanisms and legal and regulatory frameworks, AI will eventually achieve a paradigm
shift from passive supervision to active prevention, provide intelligent solutions for global
food safety, and allow the food industry to progress in an efficient, safe, and sustainable
direction [207–209].

5. Conclusions
In the context of the deep integration of globalization and digitalization, AI technology

is reshaping the food safety governance paradigm through full-chain penetrating supervi-
sion, and its core value is to achieve accurate control from farm to fork through data-driven,
intelligent decision-making. In the process of source control, AI integrates spectral analysis,
machine vision, and DL algorithms to build a dynamic monitoring system to realize de-
tect diseases and pests, pesticides, veterinary drug residues, and heavy metal pollution.
Through multi-modal data fusion technology, the supply chain can improve the sorting effi-
ciency and cold chain monitoring accuracy and realize the quality traceability of the whole
process. The processing process relies on intelligent sensors and neural network models to
monitor production parameters in real time and predict the migration amount of harmful
ingredients in packaging materials. On the consumer side, colorimetric sensing and edge
computing technology are used to realize the second-level evaluation of food freshness and
early warning of spoilage. A reliable traceability system jointly built by blockchain and AI
ensures that data cannot be tampered with and enhances the transparency of the supply
chain. A personalized, intelligent service system realizes accurate nutrition matching, food
demand forecasting, and personalized meal matching through multi-source data fusion.
AI technology has not only brought revolutionary changes to food safety governance but
has also provided consumers with safer, healthier, and personalized food choices.

Although AI shows great potential in the field of food safety, its application also
faces technical obstacles such as insufficient data standardization, a lack of algorithm
interpretability, the heterogeneity of food samples leading to limited model generalization
ability, the difference in detection tools increasing the problem of model migration, and
the high cost of intelligent transformation restricting the landing of technology. In the
future, with the continuous progress of technology, edge computing will promote the
miniaturization of detection equipment, achieve real-time monitoring cost compression,
integrate multi-modal large models and multi-source data such as spectra and images, build
a global risk assessment system, and frontier technologies such as quantum sensing to break
through the detection sensitivity limit. AI is expected to play a more important role in the
field of food safety, promoting food safety management from risk prevention and control
to value creation, ultimately forming a new food ecology, with data leading production
changes and intelligent security defense lines and technology helping to upgrade health.
This will provide intelligent solutions for global food safety and allow the food industry to
progress in an efficient, safe, and sustainable direction.
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Abbreviations
The following abbreviations are used in this manuscript:

AD anomaly detection
Acc. accuracy
AE automatic encoder
ACC average correlation coefficient
AI artificial intelligence
ANN artificial neural network
AUC area under curve
Aug-MLP enhanced multilayer perceptron
BP backpropagation
CA cluster analysis
CNN convolutional neural network
CNN-SSAE convolutional neural network-stacked sparse auto-encoder
CTM co-training model
DL deep learning
DNN deep neural network
DR dimension reduction
DT decision tree
ELM extreme learning machine
E-nose electronic nose
ERC entropy rate clustering
FT-NIS Fourier transform near-infrared spectroscopy
GA genetic algorithm
GA-BP genetic algorithm–backpropagation
CR classification rate
GBM gradient boosting machine
GC × GC/TOF-MS full two-dimensional gas chromatography–time-of-flight mass spectrometry
GC-MS gas chromatography–mass spectrometry
GelMA gelatin–methylacrylyl
GM generative model
GNB gaussian naive Bayes
ID impurity detection
IR infrared radiation
K-means K-means clustering algorithm
KNN K-nearest neighbor
KPCA kernel principal component analysis
L1-RLR L1-regularized logistic regression
LR loss rate
LDA linear discriminant analysis
LR linear regression
LSTM long short-term memory
MAE mean absolute error
ML machine learning
MRFCN multi-scale residuals full convolutional networks
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MSE mean square error
MSRD multi-scale ridge detection
NonNN non-neural network
OFX ofloxacin
PCA principal component analysis
PFALs plant factories with artificial lighting
PHI post-harvest interval
PLS-DA partial least squares discriminant analysis
QDA quadratic discriminant analysis
R2 determination coefficient
RBF radial basis function
RBF ANN radial basis function artificial neural network
RBFNN radial basis function neural network
ResNet18 residual network 18
RFW reduced food waste
RUN reduced unmet needs
RF random forest
RNN recurrent neural network
rrBLUP ridge regression best linear unbiased prediction
RS region segmentation
RSDE random subspaces discriminative ensemble
SAC soft actor–critic
SEM scanning electron microscope
SERS surface-enhanced raman spectroscopy
SFMA seven F1 macro average
STM self-training model
SVM support vector machine
TD-NMR time domain NMR
TSVM transduction SVM
TFMA three F1 macro average
VGG16 visual geometry group 16-layer network
VOCs volatile organic compounds
XAI explainable AI
YOLOv8 You Only Look Once Version 8
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