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Abstract: Alterations of adipose tissue occurring in obesity have been recognized as a major risk
factor for several cancers. The relationship between adipose tissue and lung cancer, which is the main
cancer-related cause of death worldwide, still requires investigation. Perturbations in the adipokine
system are likely to interfere with inter-organ crosstalk in lung cancer, which may influence the
lung tumor microenvironment. Adiponectin (Acrp30) expression is deregulated in several cancer
types. Acrp30 circulates as oligomers with a Low (LMW), Medium (MMW), and High Molecular
Weight (HMW), with the latter mediating the main biological effects. Acrp30 acts through AdipoR1
and AdipoR2 receptors. T-cadherin has been described as a non-signaling receptor. This study’s
aim was to investigate the regulation of serum Acrp30 and its receptors in sample tissue from
non-small cell lung cancer (NSCLC) patients. We recruited 72 NSCLC patients and 60 healthy
controls, whom we evaluated in terms of their Acpr30 levels and oligomeric profile. In addition,
the expression of AdipoRs in tissues from lung cancer specimens was also measured and compared
to coupled healthy lung samples. Our findings show a significant reduction of total Acrp30 levels in
NSCLC patients compared to normal subjects, with a specific down-regulation of HMW oligomers.
Acrp30 expression was lower in lung adenocarcinoma than other subtypes, regardless of other
factors. A significantly higher expression of AdipoR1 was observed, while no differences in R2 and a
lower expression of T-cadherin were found in lung cancer specimens compared to normal healthy
lung tissues. Involvement of the Acrp30 system in lung cancer may provide new insight into the
interaction between adipose tissue and lung and sheds light on its potential ability to influence the
lung tumor microenvironment.
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1. Introduction

Lung cancer is the main cancer-related cause of death in developed countries, with an unsatisfactory
five-year survival rate, ranging from 10 to 15% [1,2]. Non-small cell lung cancer (NSCLC) accounts
for 85–90% of patients and can be further stratified, based on histology, into adenocarcinoma (AD),
squamous cell carcinoma (SC), large cell carcinoma (LCC), and “others” [1,3]. Despite substantial
advances in our understanding of the molecular basis of lung cancer [4–9], ongoing research on
driver genes, mechanisms of immune evasion, and the tumor microenvironment, which also triggers
crosstalk phenomena between organs/tissues, is expected to improve both early disease detection and
survival [10]. Data from genome-wide (GWAS) and transcriptome-wide association studies (TWAS)
in large lung cancer cohorts have documented prominent heterogeneity in the genetic susceptibility
across lung cancer histological subtypes, possibly reflecting different underlying oncogenic molecular
drivers [11–13]. Recently, obesity was recognized as a major risk factor linked to both the incidence
and progression of several cancer types [14]. However, the molecular and cellular mechanisms by
which adipose tissue affects both tumor initiation and progression have not yet been completely
elucidated. Nevertheless, it is well-known that, beyond the adipose tissue volume, the presence of
either inflammation/adipocyte hypertrophy or hypoxia reflects the metabolic and inflammatory status
involved in the disruption of local and systemic physiological body homeostasis [15]. Adipocytes,
through the production and secretion of different adipokines, while facilitating inter-organ crosstalk,
indirectly affect the biology of tumor cells by regulating insulin resistance and inflammation [16,17].

Among other adipokines, adiponectin (Acrp30), in addition to insulin-sensitizing and anti-inflammatory
functions, is downregulated in serum by different types of cancer [18]. Acrp30 is the most abundant
adipokine secreted by adipose tissue, and circulates at high concentrations (5–30 µg/mL) as oligomers
of different molecular weights:

- Low Molecular Weight (LMW);
- Medium Molecular Weight (MMW);
- High Molecular Weight (HMW) oligomers [19].

It has been widely reported that HMW oligomers mediate the main active biological effects of
the protein [20]. Acrp30 acts through two signaling receptors—AdipoR1 and AdipoR2—which are
widely expressed in several organs, tissues, and cell lines [21–23]. In addition, a third protein, known
as T-cadherin, has been described as a receptor mainly expressed in the vascular system and specific
for High and Medium Molecular Weight Acrp30 [24–26].

Several data sets support the hypothesis of both a direct and indirect role of Acrp30 as a regulatory
mediator of different mechanisms underlying lung carcinogenesis [15,27]. From a molecular point
of view, Acrp30 inhibits carcinogenesis by regulating both cell growth and inflammatory cytokine
levels [7]. Moreover, Acrp30 serum levels have been found to be heterogeneously expressed in patients
with cancer [28,29]. Altogether, these observations show that Acpr30 may have an important role in
both the establishment and progression of lung cancer, inhibiting both processes.

In this study, we aimed to investigate differences in adiponectin serum levels in patients with
NSCLC compared to healthy controls. Furthermore, we evaluated the AdipoRs expression of healthy
lung and neoplastic tissue. Therefore, we analysed Acpr30 levels and their expression profile,
particularly focusing on HMW forms. In addition, we also evaluated AdipoRs expression, both at
mRNA and protein levels, in tissue specimens from a cohort of lung cancer patients.

2. Material and Methods

2.1. Subjects

A total of 72 unrelated subjects (46 M/26 F) with NSCLC were recruited from the Respiratory
Diseases Unit of the Department of Translational Medical Sciences, University of Campania “Vanvitelli”,
Italy and compared to 60 age-matched healthy controls recruited at CEINGE (Naples, Italy). All subjects
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aged >18 years with newly diagnosed NSCLC (stage I–IV) were included in the study. Patients with
any previously diagnosed different types of cancer—other than non-melanoma skin cancer—were
excluded. For both lung cancer patients and healthy controls, blood samples were collected after a 12-h
overnight fasting period and centrifuged to collect serum. Serum aliquots were immediately frozen
in liquid nitrogen and stored at −80 ◦C. The Body Mass Index (BMI) was calculated as previously
reported [30].

Lung tissues from NSCLC specimens were collected from the first twenty consecutive patients.
The study was approved by a local Ethics Committee and conducted in accordance with the
1976 Declaration of Helsinki and its later amendments. Written informed consent was obtained
from all participants.

2.2. Anthropometric and Biochemical Measurements

For all participants, the total cholesterol, high-density lipoprotein (HDL), low-density lipoprotein
(LDL), triglyceride, fasting glucose, aspartate transaminase (AST), alanine transaminase (ALT),
and gamma glutamyl transferase (GGT) levels were collected. The serum total Acrp30 concentration
was measured in all individuals in triplicate by an enzyme-linked immunosorbent assay (ELISA)
using a polyclonal antibody produced in-house versus a human Acrp30 amino acid fragment
(H2N-ETTTQGPGVLLPLPKG-COOH), as previously described [30] . Each serum sample was tested
three times in triplicate.

2.3. Western Blotting Analysis

Total serum proteins were quantified by Bradford’s method (Bio-Rad, Hercules, CA, USA); 10 µg
was treated with 1X Laemmli buffer, heated to 95 ◦C for 10 min, and loaded on 10% SDS-PAGE gel,
as previously described [31] Blots were developed by ECL (Amersham Biosciences, Piscataway, NJ,
USA) with the use of Kodak BioMax Light film, digitalized with a scanner (1200 dpi), and analyzed by
densitometry with the ImageJ software (Available online: http://rsbweb.nih.gov.ij/). Each sample was
tested three times in duplicate.

Lung specimens were obtained from the neoplastic tissue and normal lung parenchyma of
20 NSCLC patients after being lysed and homogenized in RIPA buffer (Sigma-Aldrich, St. Louis,
MO, USA). The lysate proteins were quantified by the Bradford method and 25 µg of proteins was
dissolved in 1X Laemmli buffer and separated using 10% SDS-PAGE gel, as previously described [30].
Incubation with AdipoR1, AdipoR2 (Santa Cruz Biotechnology, Dallas, TX, USA), T-cadherin (Abcam,
Cambridge, UK), and Glyceraldehyde-3-Phosphate Dehydrogenase (GAPDH) primary antibodies
(Sigma-Aldrich, St. Louis, MO, USA) was performed according to the manufacturer’s instructions.
The blots were developed by ECL (Amersham Biosciences, Piscataway, NJ, USA) and Kodak BioMax
Light film, digitalized with a scanner (1.200 dpi), and analyzed by densitometry with the ImageJ
software (available online: http://rsbweb.nih.gov.ij/).

2.4. RNA Extraction and Real-Time Quantitative PCR

Total RNA was isolated in both neoplastic and normal lung parenchyma using TRIzol (Invitrogen,
CA). Real-time quantitative PCR was carried out for 40 cycles at a melting temperature of 95 ◦C for
15 s and an annealing temperature of 60 ◦C for 1 min. A dissociation curve was analyzed for each
PCR experiment to assess either primer–dimer formation or contamination. Relative mRNA level
quantifications of target genes were determined by the cycle threshold method with GAPDH as the
housekeeping gene, and data were expressed as the expression relative to the housekeeping gene.
AdipoR1, AdipoR2, CDH13, and GAPDH primers are available on request. The experiments were
performed two times in triplicate.

http://rsbweb.nih.gov.ij/
http://rsbweb.nih.gov.ij/
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2.5. Gel Filtration Analysis

Acrp30’s oligomeric distribution in serum samples was analyzed by gel filtration chromatography
on a Superdex 200 10/300 GL column connected to a fast protein liquid chromatography system
(Amersham Pharmacia Biotech, Upsala, Sweden). Specifically, about 1875 µg of total proteins contained
in about three hundred microliters was fractionated at 0.5 mL/min using a 100 mmol/L PBS, pH 7.4
elution buffer. The column was calibrated using Ferritin (440 kDa), Aldolase (158 kDa), and Ovalbumin
(44 kDa) (GE Heathcare, Little Chalfont, UK). Fractions (250 µL) were collected and the presence of
Acrp30 oligomers in Fast protein liquid chromatography (FPLC) fractions was tested by both the ELISA
assay and western blot analysis.

2.6. Statistical Analysis

Data are shown as either the median or range in the case of continuous variables or number and
percentage for categorical variables. All continuous variables were previously tested for normality
by the Kolmogorov Smirnov and the Shapiro Wilk goodness-of-fit tests. Differences between groups
were analyzed by Fisher’s exact test or a Chi-square test for categorical variables. A non-parametric
Mann–Whitney U test or Kruskal–Wallis test was performed to compare continuous variables.

All variables that were statistically significant in the univariate analysis were further tested for a
potential independent association with the outcome of interest. A multivariable logistic regression
model, with a stepwise selection method, was performed.

Finally, bivariate correlations were tested by the Spearman’s correlation coefficient. All tests were
two-tailed and a p-value < 0.05 was considered statistically significant. Data were analyzed using SPSS
Software, Version 24 (IBM, Armonk, NY, USA), and STATA 14.0 software (StataCorp. 2015. StataCorp
LP, College Station, TX, USA).

3. Results

3.1. Baseline Features and Serum Levels of Total and HMW Acrp30

The anthropometric and biochemical characteristics of both NSCLC patients and age-matched
controls are shown in Table 1. Higher levels of glucose and GGT were observed in patients compared
to controls. The analysis of total serum Acpr30 levels revealed a significantly lower concentration in
the NSCLC group (median 10.8 µg/mL vs. 15.5 µg/mL; p < 0.001). Moreover, the fasting glucose, ALT,
AST, and GGT levels were significantly higher among NSCLC patients compared to among controls.
In addition, a weak correlation between total Acrp30 and triglycerides in the NSCLC cancer patients
group emerged (Spearman’s rho = 0.246; p = 0.037). The entire correlation coefficient analysis is reported
in Table S1. A binary logistic regression, with stepwise method selection, was further performed to
investigate the influence of adiponectin levels on NSCLC histology (adenocarcinoma versus other
subtypes). Lower Acpr30 levels were documented in adenocarcinoma patients (n = 30, median
9.5 µg/mL (QR 8–10.7)) than in NSCLC with other subtypes (n = 40, median 12.4 µg/mL (IQR 10.5–14.6)).
In the multivariable logistic regression analysis, adenocarcinoma emerged as independently associated
with Acpr30 (OR 1.453, 95% CI 1.176–1.795; p = 0.001). Correlation coefficients for adiponectin
with clinical, laboratory, and pathological characteristics in NSCLC patients are reported in Table 2.
As presented in Table 2, only histologic classification shows a significant positive linear correlation
with serum Acrp30 from adenocarcinoma patients exhibiting lower Acpr30 levels compared with
other subtypes. No other linear correlation appears clear from our data, though the slightly inverse
correlation with cholesterol and fasting glucose is of interest and should be investigated further.

The next step was to characterize Acrp30’s oligomeric distribution by western blot analysis
(Figure 1A,B) and FPLC chromatography (Figure 1C,D). Both analyses showed reduced levels of
the three Acrp30 oligomers in lung cancer patients, particularly with regard to HMW, the most
bioactive oligomers.
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Table 1. Anthropometric, clinical, and biochemical features in controls and lung cancer patients.

Parameters NSCLC Patients (n = 72) Controls (n = 60) p

Sex, n (%) 0.300
M 46 (63.9) 33 (55)
F 26 (36.1) 27 (45)
Age (yrs.), median [IQR] 65 [58.5–70.5] 63 [51–76.8] 0.757
Weight (kg), median [IQR] 70 [64–79.5] 70.5 [64.3–81.8] 0.626
BMI (kg/m2), median [IQR] 25.3 [22.4–26.6] 24.9 [23.7–25.7] 0.696
Histology, n (%) n.a.
Adenocarcinoma 32 (44.4) -
Squamous Cell Carcinoma 27 (37.5) -
Other * 13 (18.1) -
Stage, n (%) -
1/2 22 (30.6)
3/4 50 (69.4) -
Performance status (ECOG), n (%) -
0/1 48 (66.7)
2/3/4 24 (33.3) -
Lung Resection, n (%) 20 (27.8) - n.a.
Brain Metastases, n (%) 12 (16.6) - n.a.
Total Cholesterol (mg/dL), median [IQR] 180 (165–195) 179 (54.3–194.8) 0.874
Triglycerides (mg/dL), median [IQR] 110 (88.3–135.8) 98.5 (69–133.8) 0.167
Fasting Glucose (mg/dL), median [IQR] 99 (89.3–108.8) 89 (80.8–98.3) < 0.001
AST, median [IQR] 20 (17–23.8) 17.5 (15–21.8) 0.039
ALT, median [IQR] 21 (17.3–27.8) 14 (11–22) < 0.001
GGT, median [IQR] 30.5 (21.3–41) 16 (11–26.3) < 0.001
Acpr30 (µg/mL), median [IQR] 10.8 (9.3–13.7) 15.5 (12.6–19) < 0.001

Data are presented as the median and interquartile range (IQR). * Large cell carcinoma, adeno-squamous, and not
otherwise specified. Abbreviations: IQR—interquartile range; M—male; F—female; BMI—Body Mass Index;
ALT—alanine transaminase; AST—aspartate transaminase; GGT—gamma glutamyl transpeptidase; n.a.— not
applicable; - missing.

Table 2. Linear Regression Model of serum total adiponectin in NSCLC Patient with respect to
clinicopathologic features.

Parameters Coefficient 95% CI p

Sex (M/F) 0.132 - 0.700 2.561 0.258
Age (years) 0.141 - 0.036 0.151 0.223

Stage (1/2 or 3/4) 0.010 - 1.849 2.000 0.938
Histology (adenocarcinoma, SCC or Other*) 0.347 0.566 2.606 0.003

BMI (kg/m2) 0.011 - 0.340 0.370 0.933
Cholesterol (mg/dL) - 0.181 - 0.055 0.008 0.147

Triglycerides (mg/dL) 0.225 0.000 0.047 0.048
Fasting Glucose (mg/dL) - 0.086 - 0.041 0.019 0.462

AST (U/L) - 0.020 - 0.124 0.105 0.870
ALT (U/L) 0.019 - 0.072 0.083 0.886
GGT (U/L) 0.135 - 0.015 0.062 0.231

* Other: Large cell carcinoma, adeno-squamous, and not otherwise specified. Abbreviations: SCC—squamous cell
carcinoma; M—male; F—female; BMI—Body Mass Index; ALT—alanine transaminase; AST—aspartate transaminase;
GGT—gamma glutamyl transpeptidase.

3.2. AdipoR1, AdipoR2, and T-Cadherin Expression in Lung Tissues

Considering the difference in both Acrp30’s serum levels and oligomeric distribution, we successively
considered the expression of the three Acrp30 receptors in lung specimens obtained from patients
undergoing surgery (Figure 2A–C). Therefore, we analyzed AdipoR1, AdipoR2, and T-cadherin at
both an mRNA and protein level by real-time PCR and western blot analysis. Both investigations
showed a significantly higher expression of AdipoR1 at both an mRNA (Figure 2A) and protein level
(Figure 2B,C) in neoplastic samples compared to healthy parenchyma. Conversely, T-cadherin was
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significantly down-regulated in cancerous tissue compared to non-cancerous tissue at both an mRNA
(Figure 2A) and protein level (Figure 2C). Finally, AdipoR2 was only slightly up-regulated in both
neoplastic tissue and normal lung parenchyma (Figure 2B,C).

Figure 1. Western Blotting (WB) and FPLC analysis of adiponectin oligomers. (A) Western blot of the
three Acpr30 oligomers High Molecular Weight (HMW), Medium Molecular Weight (MMW), and Low
Molecular Weight (LMW)) in two controls and two lung cancer patients. (B) Pixel quantization of
adiponectin oligomers of all analyzed controls (n = 60) and lung cancer patients (n = 72). (C) Each
fraction’s aliquot obtained from FPLC analysis was subjected to ELISA. The values are reported as the
mean of the absorbance ± SD. (D) Western blot analysis of each fraction obtained from FPLC (further
details are given in the methods section).

Figure 2. Different modulation of AdipoR1, AdipoR2, and T-cadherin expression in cancerous
lung tissues compared to non-cancerous tissues. (A) Real-time PCR analysis of AdipoR1, AdipoR2,
and T-cadherin relative to GAPDH expression in lung non-cancerous tissues and cancerous tissues
(data expressed as the mean of 2−∆Ct). (B) One representative western blot image of AdipoR1, AdipoR2,
T-cadherin, and GAPDH in lung non-cancerous tissues compared to cancerous tissues; (C) pixel
quantization representation of AdipoR1, AdipoR2, and T-cadherin in 20 lung non-cancerous tissues and
cancerous tissues. * p < 0.05 (Student t-test). For further details, see the materials and methods section.
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4. Discussion

In this study, the adiponectin system has been explored by the detection of both the serum level of
Acrp30 and its oligomeric distribution and the cell adipo-receptor in tissues from lung cancer patients.
We have demonstrated a statistically significant reduction of total Acrp30 levels in cancer patients
compared to healthy controls. Interestingly, patients with an adenocarcinoma subtype expressed lower
levels when compared to other subtypes. Furthermore, the Acrp30 oligomers’ profile underlined
a lower expression of all Acrp30 oligomers, in particular of HMW oligomers, which are the most
biologically active. Finally, we documented that AdipoR1 expression is significantly up-regulated,
while T-Cadherin is down-regulated, in NSCLC tissues.

A number of soluble mediators, along with cells, signaling molecules, and the extracellular
matrix (altogether constituting the tumor microenvironment), play a crucial role in both promoting
or not-promoting carcinogenesis and conferring resistance to therapy [32]. Cytokines and hormones
produced by adipose tissue are both directly and indirectly involved in the creation of the
tumor microenvironment, as they take part in cellular processes such as proliferation, apoptosis,
and inflammation [32,33]. Among adipokines, growing interest has focused on Acpr30 and its HMW
oligomers, since their levels are altered in several lung pathological conditions, such as Chronic
Obstructive Pulmonary Disease (COPD) and asthma [34,35].

With regard to receptors for adiponectin, we observed a different trend for each specific receptor.
Indeed, AdipoR1 expression was significantly higher in lung cancer specimens than normal healthy lung
tissues. Finally, no differences were observed in R2, even when the expression of T-cadherin was lower.

Despite the strong evidence for Acrp30’s crucial role in lung physio-pathological conditions,
controversial results on Acpr30 levels in lung cancer patients have been reported. In accordance with
our results, Petridou et al. did not observe any significant difference in Acpr30 concentrations in
patients with lung cancer compared to controls, despite significantly lower levels in patients with an
advanced stage of the disease [36]. On the contrary, Karapanagiotou et al. reported no significant
difference in Acpr30 serum levels in advanced NSCLC patients [37]. Furthermore, Kerenidi et al.
demonstrated a significant increase in serum Acpr30 levels in lung cancer patients [38], but, contrary
to our data, did not find any correlation with clinical data. Although the sample size between the
two studies is comparable, several factors might explain this inconsistency, such as the age, sex, BMI,
and tumor subtypes of the studied population. Furthermore, our findings suggest a potential difference
in histology subtypes, documenting lower serum Acrp30 in patients with adenocarcinoma. These
results have never been previously reported in NSCLC. Conversely, at other cancer sites, a correlation
between serum adiponectin and specific cancer subtypes has been suggested. Wang et al. showed
that lower Acpr30 levels were independently associated with clear cell renal carcinoma (ccRCC) when
compared to non ccRCC (p = 0.004) [39]. The down-regulation of Acrp30 levels might represent a
relevant factor directly regulating tumor growth. Indeed, circulating hormones and growth factors
influence tumorigenesis, modifying the stromal microenvironment [40].

Regarding AdipoRs expression, Petridou et al. demonstrated a higher expression of both AdipoR1
and 2 in cancer lung tissues [36]. The third Acpr30 receptor, T-cadherin, most likely acts as a co-receptor
with the more classic AdipoR-1 and -2 in the binding of hexameric and larger Acrp30 forms [23,41].
T-cadherin was discovered to be a unique “truncated” cadherin associated with the plasma membrane,
though lacking cytoplasmic cytoplasm sequences [42]. It is likely that T-cadherin sequesters Acrp30,
but also serves as an Acrp30 repository [43]. Therefore, T-cadherin not only regulates circulating and
tissue-bound Acrp30 levels, but also competes with Adipo R1 and R2 receptors for Acrp30 binding
and interferes with the coupling of both receptors to their downstream intracellular targets [42,43].
In this scenario, the decreased expression of T-cadherin observed in lung cancer tissues supports the
role of this receptor in Acrp30 regulation. Previous studies have suggested that almost all Acrp30
metabolic effects are conferred by AdipoR1 and R2 receptors [22]. Bag and Anbarasu analyzed
functional gene interactions of Acrp30 and observed that, in contrast to AdipoR1 and AdipoR2 (mostly
involved in glucose and lipid metabolic processes), the T-cadherin gene participates in the cell adhesion
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process [44]. In tumors, T-cadherin/CDH13 is often silenced in cancer cells, but up-regulated in tumor
vasculature; its T-cadherin-dependent accumulation in a tumoral microenvironment may favor both
neoangiogenesis and tumor growth [45]. Therefore, T-cadherin down-regulation seems to play an
important role in inducing malignant phenotypic change and tumorigenicity in lung cancer. One
of the limitations of the study is the lack of information about T-cadherin expression specifically in
vasculature and therefore, Acrp30 retention in the tumor microenvironment. In addition, the limited
number of lung specimens represents another limitation, because it did not allow any inferential
analysis of AdipoRs in correlation with tumor characteristics.

We can speculate that a bidirectional regulation could exist between tumor microenvironment
(TME) and adipose tissue. On one hand, the observed down-regulation of T-cadherin (indicated as the
storage Acrp30 receptor) in tumor tissues has been reported to be associated with an up-regulation
of T-cadherin in the vasculature that could partially determine a reduction in Acrp30 production
by the local infiltrating adipose tissue; this decrease of local Acrp30 in turn determines AdipoR1
up-regulation (in this regard, TME affects adiponectin production and function). On the other hand,
Acrp30 levels may be regulated by other factors, such as pro-inflammatory cytokines acting on adipose
tissue; low levels of Acrp30 affect the expression levels of its receptors in lung tissues, which may have
implications in TME regulation, also through the down-regulation of T-cadherin and up-regulation
of AdipoR1. Whilst our data do not give evidence about mechanisms determining adiponectin
down-regulation, they suggest that nearby and distant adipose tissue may participate in TME through
several mechanisms.

Our data support the concept that an alteration in adipokine homeostasis may modulate processes
involved in cancerogenesis. Figure 3 schematically represents the findings of the present paper.
Targeting the Acrp30 axis through the modulation of the hormone and related receptors induced
by antidiabetic, antihypertensive, or immunomodulatory agents is under evaluation in early phase
investigations. Evidence from studies of thiazolidinediones, fenofibrate, renin-angiotensin inhibitors,
and mineralocorticoid receptor blockers have documented positive correlations with adiponectin
serum level expression. In addition, as adipokines homeostasis appears to be modulated by physical
training and pulmonary rehabilitation, this should also be explored in NSCLC cohorts [15,26,46–49].

Figure 3. The down-regulation of T-cadherin in lung cancer tissues has been reported to be associated
with an up-regulation of T-cadherin in the vasculature that could partially determine a reduction
in Acrp30 production by the local infiltrating adipose tissue; this decrease of local Acrp30 in turn
determines AdipoR1 up-regulation. On the other hand, Acrp30 levels may be regulated by other factors,
such as pro-inflammatory cytokines acting on adipose tissue; low levels of Acrp30 affect the expression
levels of its receptors in lung tissues, which may have implications in TME regulation, also through the
down-regulation of T-cadherin and up-regulation of AdipoR1.
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5. Conclusions

Investigating the complex interaction between the Acrp30 system and lung cancer may provide
new insight into the understanding of crosstalk between organs that interfere with tumor growth.
Perturbations in the Acrp30 system, as we have demonstrated in lung cancer patients, may result in
the modulation of anti-proliferative and anti-inflammatory effects induced by Acrp30, which might
offer novel therapeutic options for patients with NSCLC. This may lead to further defining the real
contribution of adipose tissue to both cancer development and progression.

Larger population studies are required to better establish the functional effects of Acrp30
down-regulation in lung cancer and to provide new insights into the implications for organ crosstalk
on TME.

Supplementary Materials: The following are available online at http://www.mdpi.com/2218-273X/10/6/926/s1,
Table S1: Correlation between Adiponectin levels and clinical and laboratoristic parameters.
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