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Abstract: 
Alzheimer's disease (AD) is the most common form of age-related dementia, leading to a decline 

in memory, reasoning, and social skills. While numerous studies have investigated the genetic 

risk factors associated with AD, less attention has been given to identifying a brain imaging-based 

measure of AD risk. This study introduces a novel approach to assess mild cognitive impairment 

MCI, as a stage before AD, risk using neuroimaging data, referred to as a brain-wide risk score 

(BRS), which incorporates multimodal brain imaging. To begin, we first categorized participants 

from the Open Access Series of Imaging Studies (OASIS)-3 cohort into two groups: controls (CN) 

and individuals with MCI. Next, we computed structure and functional imaging features from all 

the OASIS data as well as all the UK Biobank data. For resting functional magnetic resonance 

imaging (fMRI) data, we computed functional network connectivity (FNC) matrices using fully 

automated spatially constrained independent component analysis. For structural MRI data we 

computed gray matter (GM) segmentation maps. We then evaluated the similarity between each 

participant's neuroimaging features from the UK Biobank and the difference in the average of 

those features between CN individuals and those with MCI, which we refer to as the brain-wide 

risk score (BRS). Both GM and FNC features were utilized in determining the BRS. We first 

evaluated the differences in the distribution of the BRS for CN vs MCI within the OASIS-3 (using 

OASIS-3 as the reference group). Next, we evaluated the BRS in the Alzheimer’s Disease 

Neuroimaging Initiative (ADNI) cohort (using OASIS-3 as the reference group), showing that the 

BRS can differentiate MCI from CN in an independent data set. Subsequently, using the sMRI 

BRS, we identified 10 distinct subgroups and similarly, we identified another set of 10 subgroups 

using the FNC BRS. For sMRI and FNC we observed results that mutually validate each other, 

with certain aspects being complementary. For the unimodal analysis, sMRI provides greater 

differentiation between MCI and CN individuals than the fMRI data, consistent with prior work. 

Additionally, by utilizing a multimodal BRS approach, which combines both GM and FNC 

assessments, we identified two groups of subjects using the multimodal BRS scores. One group 
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exhibits high MCI risk with both negative GM and FNC BRS, while the other shows low MCI risk 

with both positive GM and FNC BRS. Moreover, in the UKBB we have 46 participants diagnosed 

with AD showed FNC and GM patterns similar to those in high-risk groups, defined in both 

unimodal and multimodal BRS. Finally, to ensure the reproducibility of our findings, we conducted 

a validation analysis using the ADNI as an additional reference dataset and repeated the above 

analysis. The results were consistently replicated across different reference groups, highlighting 

the potential of FNC and sMRI-based BRS in early Alzheimer's detection. 
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1. Introduction 

Alzheimer's disease (AD) is a neurodegenerative condition in individuals over 65 that affects the 

brain and causes memory, cognitive, and behavioral impairment. AD patients may experience 

disorientation, language difficulties, loss of independence, and personality changes as the illness 

worsens (Knopman et al., 2021). AD does not presently have a cure, but there are treatments 

and lifestyle modifications that can help control symptoms and enhance quality of life for both 

patients and their caregivers (Yiannopoulou and Papageorgiou, 2013; Yu and Tan, 2015). Given 

the substantial impact AD has on patients, their families, and society as a whole, in addition to 

the fact that there is no effective treatment, a preventative approach is essential. Prevention 

methods might both delay the development and lower the prevalence of dementia (Crous-Bou et 

al., 2017; Sindi et al., 2015). Before the onset of AD, some individuals may experience mild 

cognitive impairment (MCI), a stage characterized by cognitive decline greater than expected for 

one's age but not severe enough to interfere significantly with daily activities. As such, finding an 

MCI risk score that can identify the individual with a high risk of developing AD is vital for the 

prevention approach.  

Much previous research has focused on the genetic risk of AD (Stocker et al., 2018). While some 

genetics research has shown that some genes can enhance a person's risk of the illness, having 

a gene variation does not guarantee that an individual will get AD. Individual’s genetic profile only 

accounts for a portion of the AD progression risk. In fact, prior work has shown other phenotypes, 

such as diet, education, environment, and contribute to AD development (Imtiaz et al., 2014). For 

example, the chance of acquiring AD can be decreased by engaging in regular exercise, eating 

a balanced diet, and abstaining from tobacco use and excessive alcohol use. Although 

cerebrospinal fluid (CSF) and positron emission tomography (PET) are valuable for assessing 

risk factors in Alzheimer's disease, they are directly or indirectly invasive in nature thereby posing 

potential health risks (Hansson et al., 2019). Therefore, examining functional and structural brain 
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patterns can offer further insights of brain abnormality, potentially leading to new avenues for 

treatment strategies. This approach balances the need for precise diagnosis with considerations 

for patient safety and comfort. All of these mentioned factors can potentially affect brain features 

as well. Therefore, developing a new AD risk based on brain imaging phenotypes is a promising 

step in identifying different subgroups of AD.  

Magnetic resonance imaging (MRI) technology allows us to collect functional (fMRI) and structural 

(sMRI) information about the brain noninvasively (Grover et al., 2015). MRI has frequently been 

used to study structural and functional brain alteration linked to AD (Cuingnet et al., 2011; Jack 

et al., 2008; Sendi et al., 2023, 2021). Since these functional and structural alterations in the brain 

might manifest years before symptoms show up, MRI has been studied as a possible technique 

for the early detection and diagnosis of AD (Abrol et al., 2020; Sendi et al., 2021; Tondelli et al., 

2012). MRI can also potentially be used to track the effectiveness of therapy over time and to 

keep track of how AD develops. However, the majority of studies in the field of AD have primarily 

focused on case-control comparisons, which offer valuable insights but may not fully capture the 

individual variability. To achieve a more comprehensive understanding, it is essential to shift our 

focus towards studying individuals who have not yet received an AD diagnosis. Unfortunately, 

only a limited number of studies have explored the relationship between clinical indicators of AD 

and age-related changes in the brain within non-clinical populations. Expanding research in this 

area would provide valuable insights into early markers, risk factors, and potential interventions 

for AD in individuals without an existing clinical diagnosis. 

This study introduces a novel approach to assess the risk of AD by developing a pipeline for 

calculating a brain-wide risk score (BRS) using multimodal neuroimaging data. The longitudinal 

Open Access Series of Imaging Studies (OASIS)-3 cohort served as the reference dataset, 

enabling the characterization of healthy control (CN) individuals and those with mild cognitive 

impairment (MCI). Subsequently, the UK Biobank dataset, comprising a substantial sample size 
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(N>37,000), was employed as the target dataset on which we would calculate individual BRS. By 

leveraging the BRS, we stratified individuals into 10 risk deciles using resting-state functional MRI 

(rs-fMRI) and 10 risk deciles using structural MRI (sMRI). Additionally, to evaluate the multimodal 

risk, we stratified participants into two distinct subgroups. These subgroups were focused on the 

two extreme corners of a spectrum consisting of 100 decile combinations. To further validate our 

method and the newly developed MCI risk assessment, we conducted additional analyses using 

the Alzheimer's Disease Neuroimaging Initiative (ADNI) dataset to confirm similar rs-fMRI and 

sMRI risk patterns were present in an independent MCI vs control sample. Finally, in the UK 

Biobank study, we analyzed 46 AD patients and found that both FNC and GM patterns were 

consistent with those at a higher risk for MCI. We checked for similarities to establish this 

correlation. These findings emphasize the effectiveness of FNC and sMRI-based BRS in the early 

detection of AD, suggesting their potential in identifying individuals at an elevated risk for MCI. 

2. Materials and Methods 

2.1. Datasets and study population 

This study uses two datasets including the OASIS-3 (LaMontagne et al., 2019) cohort as the 

reference population and UK Biobank (Littlejohns et al., 2020) as the target one. OASIS-3 

contains 1389 imaging samples (age: 67.18±8.71) and their associated demographic and clinical 

data. We used Clinical Dementia Rating Scale Sum of Boxes Scores or CDR_SOB to identify 

samples with mild cognitive impairment or MCI with CDR_SOB>0 from control or CN with 

CDR_SOB=0. Overall, we have 1028 sample of CN and 361 sample of MCI in this dataset. The 

UK Biobank data includes resting-state fMRI (duration: 5min) and sMRI data of 37,780 (20,157 

females) adults’ brains and demographic information (age:64.06± 7.51). We additionally used the 

ADNI dataset (age:71.85± 6.99) which contain 382 CN and 347 MCI individuals to validate our 

proposed MCI risk score (Mueller et al., 2008; Weber et al., 2021). 
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2.2. Imaging protocol 

OASIS-3 data were collected from 3 different Siemens scanners (Siemens Medical Solutions 

USA, Inc), including one Vision 1.5T and two scanners of TIM Trio 3T with a 16-channel head coil 

on 1.5T scanners and 20-channel head coil on 3T scanners with foam pad stabilizers placed next 

to the ears to decrease motion. High-resolution T2*-weighted images were acquired using a 

gradient-echo EP sequence with TE =27 ms, TR = 2.5 s, flip angle = 90˚, slice thickness = 4mm, 

slice gap = 4 mm, and matrix size = 64 for the Trio scanner. For the Vision scanner, the scanning 

parameters with gradient-echo EP sequence are TE= 27 ms, TR= 2.2 s, flip angle= 90˚, slice 

thickness=4 mm, slice gap = 4 mm, and matrix size = 64 (LaMontagne et al., 2019). 

The UKBiobank imaging data were collected using a 3T Siemens (Siemens Healthineers, 

Erlangen, Germany) scanner with a 32-channel head coil. T1-weighted structural imaging protocol 

includes resolution=1x1x1 mm3, Duration=4:54 mins, TI/TR=880/2000ms, Field-of-view: 

256x256x208. The resting-state fMRI were collected using gradient-echo sequence with 

resolution=2.4x2.4x2.4 mm3, duration=6:10 mins, TE/TR=39/735 ms, field-of-view: =88x88x64 

(Miller et al., 2016). The ADNI dataset comprises imaging data acquired using various MRI 

scanners, including 1.5T GE, 3T GE, 1.5T Philips, 3 T Philips, 1.5T Siemens, and 3T Siemens 

scanners. The specific details of the imaging protocols utilized in the acquisition of the ADNI 

dataset can be found in (Song et al., 2022). 

2.3. Preprocessing and feature extraction 

For the resting-state fMRI analysis, the initial step involved removing the first five dummy scans 

prior to preprocessing. For the subsequent steps, we utilized the default slice timing routines of 

Statistical Parametric Mapping (SPM12, https://www.fil.ion.ucl.ac.uk/spm/). The slice that was 

obtained in the middle of the sequence was used as the reference slice in this procedure. For 

participant head movement correction, we used rigid body motion correction. After that, we used 
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the echo-planar imaging (EPI) template to normalize the imaging data to the standard Montreal 

Neurological Institute (MNI) space. Finally, we applied a Gaussian kernel with a full width at half 

maximum (FWHM) of 6mm to smooth the images.  

We then used the NeuroMark pipeline to identify a set of independent components for the whole 

brain of each subject. The NeuroMark_fMRI_1.0 template (available in GIFT; 

http://trendscenter.org/software/gift; and also at http://trendscenter.org/data) was derived by 

performing a group independent component analysis (ICA) on two healthy control datasets 

including the human connectome project (HCP: https://www.humanconnectome.org/study/hcp-

young-adult/document/1200-subjects-data-release, 823 subjects after the subject selection) and 

the genomics superstruct project (GSP: https://dataverse.harvard.edu/dataverse/GSP, 1005 

subjects after the subject selection). The extracted ICs from the two datasets were then matched 

to identify replicable group-level spatial maps. We further evaluated the reproducible ICs pairs by 

observing their spatial activations and low-frequency fluctuations of their related time courses 

(TCs). This process yielded 53 ICs and group them into seven domains including subcortical 

network (SCN), auditory network (ADN), sensorimotor network (SMN), visual network (VSN), 

cognitive control network (CCN), default-mode network (DMN), and cerebellar network (CBN) (Du 

et al., 2020). Next, we used this template to perform fully automated spatially constrained ICA, 

using the GIFT toolbox, to extract component maps and time courses for each subject in the 

OASIS, ADNI, and UK Biobank data sets. Finally, we implemented additional post-processing 

steps on the subject-specific time courses to eliminate noise and enhance data quality. These 

steps included detrending to remove linear, quadratic, and cubic trends, multiple regression of 

the 6 realignment parameters and their derivatives, identification and removal of outliers, and 

applying a low-pass filter with a cutoff frequency of 0.15 Hz. It is worth noting that the filtering was 

specifically performed on the time courses of ICs rather than voxel-based fMRI data, as we aimed 

to retain more information on fMRI for the subsequent ICA decomposition. This post-processing 
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approach has been successfully utilized in previous studies on ICA-based neuroimaging studies 

(Sendi et al., 2023, 2021).  

We next calculated the functional network connectivity (FNC) for any pairs of ICs of the whole 

brain using the Pearson correlation between pairs of ICs in each subject as shown in Equation 1: 

𝑅 =
∑ (𝑥1−𝑥1)(𝑥2−𝑥2)𝑁

𝑛=1

√∑ (𝑥1−𝑥1)2𝑁
𝑛=1  √∑ (𝑥2−𝑥2)2𝑁

𝑛=1

    (1) 

where 𝑥1 and 𝑥2 are time course signals and 𝑥1 and 𝑥2 are the mean of 𝑥1 and 𝑥2 , respectively. 

It takes values in the interval [-1,1] and measures the strength of the linear relationship between 

𝑥1 and 𝑥2. Each FNC is a 53×53 symmetric matrix with 53 ICs. Thus, we calculated 1378 

connectivity features for each sample. 

For the T1-weighted image preprocessing, we first performed spatial registration to a reference 

brain template in Montreal Neurological Institute (MNI) space. We employed the unified 

segmentation method integrated within SPM12 software package 

(https://www.fil.ion.ucl.ac.uk/spm/) to perform the segmentation of T1-weighted images into 

distinct components, including gray matter, white matter, and cerebrospinal fluid (CSF) images. 

Unified segmentation utilizes a probabilistic model that combines information from both the T1-

weighted image itself and a priori knowledge about tissue types to estimate the probability of each 

voxel belonging to gray matter, white matter, or CSF (Ashburner and Friston, 2005). By leveraging 

this approach, we were able to accurately delineate and separate these tissue types within the 

T1-weighted images. 

2.4. Brian-wide risk score estimation 

Our proposed approach for neuroimaging based BRS to estimate risk for MCI, shown in Fig.1, 

includes multiple steps. In the first step (Generation of references: OASIS-3), we calculated the 

mean neuroimaging features across CN and MCI groups in the reference dataset. In the second 
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step (target population: UK Biobank), we first calculated the mean of neuroimaging features 

across all participants and removed it from each participant's data. Next, we calculated the 

correlation between the data for each participant in the target dataset and the CN and MCI 

references generated in step1. Therefore, each target participant has two correlation values, one 

from each reference group (i.e., RCN and RMCI). Finally, we calculated the group difference in the 

estimated correlations (i.e., Δdiff=RCN-RMCI).  This final value is used as a BRS of MCI in the rest 

of this paper. We performed the same procedure using the ADNI dataset to validate our method, 

ensuring the generalizability and reliability of our approach when using different datasets to 

compute the references.  

Additionally, to validate the method, we conducted an assessment of the BRS among participants 

from the OASIS-3 study. The within-sample MCI and CN groups were used as references for this 

evaluation. Subsequently, we performed a comparative analysis of the BRS between MCI 

participants and CN participants. Furthermore, we extended our investigation by calculating the 

BRS of ADNI participants, utilizing the OASIS-3 dataset as a reference for the CN and MCI 

groups, thus evaluating the BRS in an independent sample. We computed the MCI BRS by 

employing two methods: one based on FNC derived from resting-state fMRI, and the other using 

gray matter (GM) estimations obtained from sMRI.  Additionally, we similarly evaluated the 46 

participants from the UKBB who had been diagnosed with AD.  

3. Results 

3.1 Functional network connectivity references for MCI versus controls 

In Fig. 2, the mean FNC of the CN (left panel), MCI (middle panel), and CN-MCI (right panel) in 

the reference dataset (OASIS-3) is displayed. We observed an increased connectivity in sensory 

networks, including VSN, SMN, and ADN, in the CN group. Functional network connectivity was 

highly negative in these brain networks for the MCI group. On the other hand, the MCI group 
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showed higher FNC between sensory networks and other brain networks. Specifically, the 

connectivity between these networks and CBN was highly positive in the MCI group. Furthermore, 

the CN group exhibited higher SCN and DMN connectivity, whereas this connectivity was less 

prominent in the brain networks of the MCI group. The second reference dataset, ADNI, displayed 

a similar FNC pattern in the CN and MCI groups, as shown in Fig. 2B. We conducted a correlation 

analysis between the CN-MCI differences in both the OASIS and ADNI datasets. This was done 

to evaluate the similarities between CN-MCI brain features across two datasets. The correlation 

between the CN-MCI groups in both OASIS-3 (Fig.2A, right panel) and ADNI (Fig.2B, right panel) 

datasets was found to be 0.67 (N=1378, p<10-5).  

3.2 Gray matter (GM) map references for MCI versus controls 

Fig. 3A presents the GM maps of the CN group (left panel), MCI group (middle panel), and the 

CN-MCI comparison (right panel) based on the OASIS-3 dataset. As depicted in the figure, we 

observed higher GM values in the visual, auditory, and sensory-motor networks in the CN group. 

This finding aligns with our previous observations of increased sensory network connectivity in 

the CN group FNC. Furthermore, the CN group also exhibited higher GM values in the cerebellar 

regions. Interestingly, we observed similar patterns in the GM comparison between the CN and 

MCI groups in the ADNI dataset, as we did in the OASIS-3 dataset. Specifically, higher GM values 

were found in the visual, auditory, and sensory-motor networks in the CN group when compared 

to the MCI group. 

3.3 Validation of the BRS in OASIS-3 and ADNI dataset 

In this study, we employed the MCI and CN groups from the OASIS-3 dataset as reference 

cohorts and calculated the BRS for the participants within this dataset. Fig. 4A presents a 2D 

histogram of the BRSCN (left panel), BRSMCI (middle panel), and BRSCN-BRSMCI (right panel) 

groups of OASIS-3 dataset. The figure demonstrates the clear differentiation between the MCI 
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and CN groups based on the BRS we calculated for the OASIS-3 dataset. The average FNC BRS 

for the CN group is 0.0361, whereas for the MCI group, it is -0.1221. Furthermore, considering 

the sMRI BRS, the CN group has an average score of 0.0504, while the MCI group has a score 

of -0.2091. To further validate our results, we employed a five-fold cross-validation approach. In 

this process, we divided the OASIS-3 dataset into 80% reference data and 20% target data 

segments. We then calculated the BRS for the target group and compared it with the BRS of the 

CN and MCI groups within the target segment. This procedure was repeated five times, ensuring 

coverage of the entire OASIS-3 dataset. The obtained p-values, using analysis of variance or 

ANOVA,  for FNC BRS ranged from 2.1296 x10-18 (minimum) to 9.9197 x10-14 (maximum), while 

the p-values for sMRI BRS ranged from 3.4210 x10-35 (minimum) to 2.9487 x10-29 (maximum). 

Using 2D BRS (i.e., considering both FNC BRS and sMRI BRS together), the obtained p-values, 

from Multivariate analysis of variance or MANOVA, raged from 2.9445 x10-18 (minimum) to 4.1647 

x10-14 (maximum). 

Fig. 4B displays the 2D histogram plot of BRSCN (left panel), BRSMCI (middle panel), and BRSCN-

BRSMCI (right panel) groups in the ADNI dataset. For this analysis, we utilized OASIS-3 as the 

reference dataset, thus it was completely independent of the ADNI dataset. Similar to Fig. 4A, our 

observations demonstrate a distinct separation of BRS between the MCI and CN groups, further 

affirming the accuracy of the BRS method in effectively distinguishing between these two 

populations. The average FNC BRS for the CN (i.e., BRSCN) and MCI (i.e., BRSMCI) groups are 

0.0583 and -0.0297, respectively. An ANOVA test reveals a statistically significant difference 

between these means (p = 7.1703 x10-7). Moreover, considering the sMRI BRS, the BRSCN group 

has an average score of 0.0855, while the BRSMCI group has a score of -0.0869 (p =2.7572 x10-

13).  Additionally, when employing 2D BRS, which encompasses both FNC BRS and sMRI BRS, 

the resulting p-value was found to be 1.9678 x10-14. 

3.4 Identified MCI subgroups based on FNC risk deciles 
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After calculating the BRS of participants in the UKBB based on each reference dataset, we divided 

the scores into deciles. We then categorized each participant based on their respective risk decile, 

resulting in the identification of 10 subgroups. In Fig. 5A, we present the 10 subgroups that were 

identified using the OASIS-3 dataset as a reference. To assess the similarity between each 

subgroup and the MCI and CN groups, we measured the correlation between the mean FNC of 

each subgroup and the mean FNC of each group, as depicted in Fig. 5B. Each subgroup 

represents a unique grouping of participants based on their BRS. Notably, subgroup 1 closely 

resembles the characteristics of the MCI group, suggesting that individuals assigned to subgroup 

1 exhibit BRS patterns similar to those typically observed in individuals with MCI. Conversely, 

subgroup 10 displays similarities with the CN group, indicating that participants assigned to 

subgroup 10 possess BRS patterns that closely align with individuals who have normal cognitive 

function. Based on Fig. 5B, we can identify subgroups 7, 8, 9, and 10 as CN, and subgroups 1, 

2, 3, 4, 5, and 6 as MCI. Additionally, Fig. 5C showcases the mean FNC of each subgroup. It is 

evident that the mean FNC of subgroup 1 is similar to the mean FNC of the MCI group, while the 

mean FNC of subgroup 10 is similar to the mean FNC of the CN group. 

The results were replicated using the ADNI dataset, as illustrated in Fig. 6A. We calculated the 

correlation between the mean FNC of each subgroup and the mean FNC of the CN and MCI 

groups, as shown in Fig. 6B. Similar to the findings in Fig. 5B, subgroups 1, 2, 3, 4, 5, and 6 

exhibited similarities to the MCI group of the reference dataset, while the remaining subgroups 

were more similar to the CN group. The replication of our findings using the ADNI dataset as a 

reference confirmed the robustness and consistency of our results. The identified subgroups 

exhibited similarities to the MCI and CN groups, supporting the notion that these subgroups 

capture meaningful patterns in BRS. 

3.5 Identified MCI subgroups based on GM risk deciles 
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Similar to the previous section, we categorized the participants in the UK Biobank dataset into 10 

distinct subgroups based on their respective GM-based BRS deciles, as illustrated in Fig. 7A. 

Additionally, we computed the correlation between the mean GM of each subgroup and the mean 

GM of the CN and MCI groups, as depicted in Fig. 7B. Based on these correlation results, we 

identified subgroups 1, 2, 3, 4, and 5 as resembling the MCI group, while subgroups 6, 7, 8, 9, 

and 10 exhibited similarities to the CN group. Furthermore, Fig. 7C displays the mean GM of each 

subgroup, confirming the same pattern. To enhance clarity and visualization, we focused on 

presenting the data from two specific subgroups: those with lower BRS, namely Subgroup1-3, 

and those with higher BRS, identified as Subgroup 8-10. Subgroups 1-3 demonstrate 

characteristics similar to the MCI group (Fig.3A left panel), while subgroups 8-10 exhibit features 

comparable to the CN group, aligning with the findings in Fig. 3A (middle panel). Furthermore, we 

observed similar patterns when using the ADNI dataset to identify the MCI and CN groups, as 

shown in Fig. 8. In this case, we identified 5 subgroups that resembled the CN group and another 

5 subgroups that resembled the MCI group, as depicted in Fig. 8B and 8C, respectively. 

3.6 Identified MCI subgroups based on multimodal risk  

By combining 10 deciles each from FNC-based BRS and GM-based BRS, we derived 100 distinct 

deciles. From these, we categorized participants into two groups based on their risk of MCI. The 

low-risk group consists of participants who are in both the 1st decile of FNC-based BRS and the 

1st decile of GM-based BRS. Conversely, the high-risk group includes participants who are in both 

the 10th decile of FNC-based BRS and the 10th decile of GM-based BRS. Fig.9A illustrates the 

two groups identified using the OASIS-3-based BRS, while Fig. 9B demonstrates the groups as 

identified through the ADNI-based approach. The left panel of Fig.10A illustrates the similarities 

between the low-risk and high-risk groups in relation to the CN and MCI reference groups, which 

are derived from the OASIS-3 dataset. The middle panel of Fig.10A displays the mean FNC of 

the high-risk group, while the right panel shows the mean FNC of the low-risk group. Analysis of 
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Fig.10A reveals that the FNC of the low-risk group closely resembles that of the CN group, and 

the FNC of the high-risk group is similar to that of the MCI group. Additionally, the left panel of 

Figure 10B highlights the similarities in GM between the two groups categorized by MCI risk 

according to the multimodal BRS and compares these with the GM of the MCI and CN reference 

groups from OASIS-3. Upon closer examination, it is observed that the GM pattern of the high-

risk group (shown in the middle panel of Fig. 10B) closely aligns with that of the MCI group. 

Similarly, the GM pattern of the low-risk group (depicted in the right panel of Fig. 10B) closely 

resembles that of the CN group. The results were consistently replicated using ADNI samples as 

the reference group, as depicted in Figure 11. Specifically, Figure 11A demonstrates that the low-

risk group, identified through multimodal BRS, exhibits an FNC pattern similar to that of the CN 

group, while the high-risk group displays an FNC pattern akin to that of the MCI group. 

Furthermore, as illustrated in Figure 11B, it was observed that the GM pattern of the low-risk 

group closely resembles that of the CN group, and the GM pattern of the high-risk group mirrors 

that of the MCI group within the ADNI samples. 

3.7 Efficacy of BRS in early AD detection 

We identified 46 UKBB participants diagnosed with AD within 5 years following their neuroimaging 

data collection. We then determined the number of AD-diagnosed participants across all 10 

subgroups, as classified using FNC-and sMRI-based BRS. Fig.12A and Fig.12B present the 

mean FNC and mean GM, respectively, of the 46 UKBB participants. Additionally, Fig.12C 

illustrates the similarities between the mean FNC and GM of these UKBB participants and those 

of a subgroup identified using the BRS decile. It was observed that UKBB participants diagnosed 

with AD exhibit FNC and GM patterns that are similar to the subgroup at a higher risk of MCI. This 

result was consistently replicated using the ADNI as the reference group, as shown in Fig.12D. 

The results demonstrated consistency with the use of multimodal BRS, as illustrated in Fig. 12E 

(using OSAIS-3 as the reference group) and Fig. 12F (using ADNI as the reference group). These 
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figures reveal that participants from the UKBB subsequently diagnosed with AD exhibit FNC and 

GM patterns akin to those observed in the high-risk groups. 

4. Discussion 

The risk of AD pertains to the probability or likelihood of an individual developing this 

neurodegenerative disorder (Knopman et al., 2021). Numerous factors, encompassing genetic 

and environmental influences, contribute to the risk of AD. Nevertheless, prior research has 

primarily concentrated on investigating the genetic risk associated with AD (Stocker et al., 2018). 

It is imperative to recognize that the development of AD is influenced by both genetic and 

environmental factors. Considering this, the present study has introduced a novel approach to 

assess the risk of AD by leveraging neuroimaging data, which is referred to as the brain risk score 

(BRS). This new risk score incorporates relevant information from neuroimaging to provide a 

comprehensive evaluation of an individual's risk for developing AD. 

We utilized two separate datasets, namely OASIS-3 and ADNI, to establish the reference groups 

for CN and MCI individuals. To define these reference groups, we employed FNC and GM map 

mapping techniques. By leveraging these datasets and employing FNC and GM mapping, we 

were able to form robust reference groups for CN and MCI individuals, facilitating a 

comprehensive analysis of MCI BRS in UK biobank. In our analysis of FNC data, we observed 

that the FNC patterns differed between the CN and MCI groups. Specifically, we found that the 

sensory network FNC exhibited greater prominence in the CN group compared to the MCI group. 

This finding is consistent with previous studies that have highlighted the importance of sensory 

network connectivity in predicting the progression of AD (Sendi et al., 2023, 2021). Importantly, 

we were able to replicate these results in an independent dataset (i.e., ADNI), confirming the 

robustness of our findings. These findings suggest that FNC, particularly in the sensory network, 

may serve as a valuable biomarker for distinguishing between CN and MCI individuals, providing 

insights into the potential role of FNC in understanding AD development and progression (Cai et 
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al., 2015; Li et al., 2020). While the current study primarily focused on analyzing whole brain FNC 

and defining the MCI BRS, future research may benefit from specifically examining the sensory 

network FNC. It would be valuable to explore whether a sensory network-based BRS could 

potentially serve as a superior predictor of AD compared to the whole brain-based MCI BRS.  

Through our analysis of the GM map from the OASIS-3 dataset, we found a distinct GM loss 

distributed across numerous brain regions. This observation is consistent with previous research 

indicating a combination of global and local GM loss in individuals diagnosed with MCI and AD 

when compared to the CN group (Karas et al., 2004). The identified GM loss across various brain 

regions further supports the notion of a widespread and potentially progressive degenerative 

process in individuals with MCI and AD. Notably, we found a more pronounced reduction in the 

GM of the visual sensory, auditory, and sensorimotor networks, highlighting the significant 

involvement of these specific brains and their particular susceptibility to the pathological changes 

associated with AD. 

In our research, we broadened our scope beyond the standard neuroimaging analysis of the CN 

and MCI groups found in our reference datasets. Our objective is to predict MCI risk within the 

UKBB population, using OASIS-3 and ADNI as our reference datasets. Diverging from the 

conventional approach of focusing solely on genetic factors for MCI risk prediction, we established 

a novel methodology. Our approach subtly incorporates both genetic and environmental factors 

influencing MCI risk by utilizing neuroimaging data as a proxy. This integration is possible 

because the brain data we use is susceptible to both genetic and environmental influences. Our 

research marks a significant step in MCI risk evaluation within the UKBB dataset, highlighting the 

crucial role of combining functional and structural MRI data. Our findings reveal a powerful 

synergy between these two types of MRI data in assessing MCI risk. Notably, our analysis within 

the UKBB cohort showed that individuals with higher BRS closely resembled the CN group, 

suggesting a reduced risk of MCI. In contrast, those with lower BRS mirrored the MCI group, 
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indicating a higher MCI risk. Previous studies demonstrated the effectiveness of combining 

resting-state fMRI functional connectivity analysis and sMRI data (Dang et al., 2023; Hojjati et al., 

2019). Using machine learning techniques, to accurately identify early stages of Alzheimer's 

disease among various groups, a recent study achieved a maximum classification accuracy of 

67% and 56% for different group classification using multimodal neuroimaging technique (Hojjati 

et al., 2019). What distinguishes our study is the consistency and validation of our findings when 

replicated with independent datasets, specifically OASIS-3 and ADNI. These datasets are 

considered benchmarks in the field. This replication not only reaffirms the solidity of our research 

but also highlights the transformative potential of merging functional and structural MRI data for 

accurate MCI risk assessment within the UKBB group. 

It is important to note that recent research has indicated that AD genetic risk can impact both 

functional and structural neuroimaging data (Chandler et al., 2022; Cho et al., 2035; Mirza-Davies 

et al., 2022; Sendi et al., 2023). Building upon this understanding, we hypothesized that our newly 

developed BRS would be capable of accounting for both genetic and environmental factors. This 

novel approach to MCI risk estimation offers a more comprehensive perspective on the complex 

interplay of genetic and environmental factors in the development of the disease. By 

acknowledging that MCI risk is not solely determined by genetics, but also influenced by 

environmental factors, this can enhance our understanding of the disease's multifactorial nature. 

This knowledge has implications for personalized risk assessment, early detection, and the 

development of targeted interventions that consider both genetic and environmental risk factors.  

Our research highlights a significant synergy in identifying MCI risk, particularly emphasizing the 

effectiveness of sMRI-based BRS as a biomarker for early detection and classification of AD. This 

is pivotal since MCI often precedes AD, and early detection is crucial for effective treatment. Our 

findings demonstrate that both unimodal and multimodal BRS are effective in AD detection. 

However, we observed that sMRI-based BRS and multimodal-based BRS outperform FNC-based 
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BRS in identifying AD. This distinction underlines the potential of sMRI-based BRS and 

multimodal-based BRS as more precise and reliable tools in detecting early-stage AD, thereby 

enhancing the accuracy of AD diagnosis. The implications of our findings are substantial, 

suggesting that sMRI-based BRS and multimodal-BRS could play a vital role in early and accurate 

identification of AD.  

Our study has several limitations that warrant consideration. Firstly, in this current study, we 

applied our method to the entire brain dataset, which may have introduced some noise as certain 

brain regions and features might not effectively distinguish MCI from CN individuals within our 

reference group. Therefore, future research concentrating on these specific brain regions, aimed 

at enhancing the discrimination between MCI and CN, holds the potential to improve the accuracy 

of the BRS for our target population. In the current study we do not compare polygenic risk score 

(PRS) and BRS, future study is needed to compare at the predictability power of BRS and PRS 

in predicting AD in UKBB. Furthermore, in our current study, we employed correlation as the 

distance metric. Future research should aim to investigate the potential advantages and 

limitations of alternative distance metrics in estimating the BRS.  

In conclusion, our analysis of the BRS scores obtained from participants in the UKBB using 

different reference datasets allowed us to identify 10 distinct subgroups based on FNC BRS, 10 

subgroups based on GM BRS, and 2 subgroups based on multimodal BRS. Through the 

correlation analysis of the mean FNC of each subgroup with the CN and MCI groups, we found 

that subgroup 1 demonstrated close resemblance to the MCI group, while subgroup 10 exhibited 

similarities with the CN group. These consistent findings were replicated when using the ADNI 

dataset as a reference. These results suggest that the identified subgroups capture meaningful 

patterns in BRS and provide insights into the cognitive status of individuals within the study 

population. Further investigation of these subgroups may contribute to our understanding of 
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cognitive impairment and potentially aid in the identification and characterization of individuals at 

risk for developing cognitive disorders. 
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Figure Captions 

Fig.1: The proposed method for calculating brain-wide risk score (BRS). To begin, we 

compute the correlation between the brain features of each participant in the UK Biobank dataset 

with two groups: control or CN (referred to as RCN), and mild cognitive impairment or MCI (referred 

to as RMCI), taken from the reference group. Subsequently, we calculate the BRS as the difference 

between RCN and RMCI. 

Fig.2: Mean functional network connectivity (FNC) of reference group. A) The mean FNC of 

CN (left), MCI (middle), and CN-MCI (right) in OASIS-3 dataset. B) The mean FNC of CN (left), 

MCI (middle), and CN-MCI (right) in ADNI dataset. The color bar shows the strength of the 

connectivity. SCN, Subcortical network; ADN, auditory network; SMN, sensorimotor network; 

VSN, visual network; CCN, cognitive control network; DMN, default-mode network; and CBN, 

cerebellar network. 

Fig.3: Mean gray matter (GM) of reference group. A) The mean GM of CN (left), MCI (middle), 

and CN-MCI (right) in OASIS-3 dataset. B) The mean GM of CN (left), MCI (middle), and CN-MCI 

(right) in ADNI dataset. The color bar shows the strength of the gray matter.  

Fig.4: Validating BRS in OASIS-3 and ADNI. A) 2D histogram of BRSCN, BRSMCI, and BRSCN-

BRSMCI in OASIS-3 dataset in which we used OASIS-3 as the reference group. B) 2D histogram 

of BRSCN, BRSMCI, and BRSCN-BRSMCI in ADNI dataset in which we used OASIS-3 as the 

reference group. 

Fig. 5: Subgroups of mild cognitive impairment in UKBB based on FNC BRS with OASIS-3 

as reference group. A) Ten subgroups were identified based on the decile of Brain-wide Risk 

Score (BRS) Functional Network Connectivity (FNC) in the OASIS-3 dataset. B) The correlation 

between the average FNC of each subgroup and the reference groups of Mild Cognitive 

Impairment (MCI) and Control (CN). Based on this graph, subgroup 1 resembles the MCI group, 

while subgroup 10 resembles the CN group. C) The average FNC of each subgroup identified 

based on FNC BRS. 

Fig. 6: Subgroups of mild cognitive impairment in UKBB based on FNC BRS with ADNI as 

reference group. A) Ten subgroups were identified based on the decile of Brain-wide Risk Score 

(BRS) Functional Network Connectivity (FNC) in the ADNI dataset. B) The correlation between 

the average FNC of each subgroup and the reference groups of Mild Cognitive Impairment (MCI) 

and Control (CN). Based on this graph, subgroup 1 resembles the MCI group, while subgroup 10 

resembles the CN group. C) The average FNC of each subgroup identified based on FNC BRS. 

Fig. 7: Subgroups of mild cognitive impairment in UKBB based on GM BRS with OASIS-3 

as reference group. A) Ten subgroups were identified based on the decile of Brain-wide Risk 

Score (BRS) gray matter (GM) in the OASIS-3 dataset. B) The correlation between the average 

GM of each subgroup and the reference groups of Mild Cognitive Impairment (MCI) and Control 

(CN). Based on this graph, subgroup 1 resembles the MCI group, while subgroup 10 resembles 

the CN group. C) The average GM of each subgroup identified based on GM BRS. For clearer 

understanding and better visualization, our presentation is tailored to showcase data specifically 

from two contrasting subgroups: the first consisting of Subgroup1-3, characterized by lower BRS, 

and the second comprising Subgroup 8-10, noted for their higher BRS. 
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Fig. 8: Subgroups of mild cognitive impairment in UKBB based on GM BRS with ANDI as 

reference group. A) Ten subgroups were identified based on the decile of Brain-wide Risk Score 

(BRS) gray matter (GM) in the ADNI dataset. B) The correlation between the average GM of each 

subgroup and the reference groups of Mild Cognitive Impairment (MCI) and Control (CN). Based 

on this graph, subgroup 1 resembles the MCI group, while subgroup 10 resembles the CN group. 

C) The average GM of each subgroup identified based on GM BRS. For clearer understanding 

and better visualization, our presentation is tailored to showcase data specifically from two 

contrasting subgroups: the first consisting of Subgroup1-3, characterized by lower BRS, and the 

second comprising Subgroup 8-10, noted for their higher BRS. 

Fig. 9: Subgroups of mild cognitive impairment in UKBB based on multimodal BRS. A) 

Using OASIS-3 as the reference group, we identified two distinct groups of UKBB participants 

categorized by higher and lower risk of Mild Cognitive Impairment (MCI), based on assessments 

from multimodal BRS. B) Using ADNI as the reference group, we identified two distinct groups of 

UKBB participants categorized by higher and lower risk of MCI, based on assessments from 

multimodal BRS. 

Fig. 10: Assessing similarity between participants identified using multimodal BRS and the 

CN and MCI reference groups from OASIS-3. A) This part demonstrates the similarity in 

Functional Network Connectivity (FNC) between groups with high and low MCI risk compared to 

the reference CN and MCI groups. B) This part demonstrates the similarity in gray matter (GM) 

between groups with high and low MCI risk compared to the reference CN and MCI groups. 

Fig. 11: Assessing similarity between participants identified using multimodal BRS and the 

CN and MCI reference groups from ADNI. A) This part demonstrates the similarity in Functional 

Network Connectivity (FNC) between groups with high and low MCI risk compared to the 

reference CN and MCI groups. B) This part demonstrates the similarity in gray matter (GM) 

between groups with high and low MCI risk compared to the reference CN and MCI groups. 

Fig. 12: Assessing similarity between UKBB participants diagnosed for AD functional 

network connectivity (FNC)-based, gray matter (GM)-based, and multimodal brain-wide 

risk score (BRS). A) Mean of FNC of UKBB participants diagnosed for AD. B) Mean of GM of 

UKBB participants diagnosed for AD. C) Similarity measure between UKBB participants 

diagnosed for AD and risk group identified in UKBB when we used OASIS-3 as a reference group.  

D) Similarity measure between UKBB participants diagnosed for AD and risk group identified in 

UKBB when we used ADNI as a reference group.  E) Similarity measure between UKBB 

participants diagnosed for AD and low/high risk group based on multimodal BRS when we used 

OASIS-3 as a reference. F) Similarity measure between UKBB participants diagnosed for AD and 

low/high risk group based on multimodal BRS when we used ADNI as a reference. 
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